
Modern Applied Science                                                               November, 2008

81

Study on the Duality between MFP and ACP 
Xiaojun Lei 

Department of Mathematics 
 Tongren University 

Tongren 554300, China 
Tel: 86-856-523-0984   E-mail:xjleitrxy@163.com 

Zhian Liang 
Department of Statistics 

 Shanghai Financial and Economics University 
Shanghai 200433, China 

Tel: 86-21-6591-3351   E-mail:Zhian L@163.com 
Abstract 

Under the generalized weak convexity of (F, d,, ρα ), we studied the results of several sorts of duality type about the 
problem of multi-objective fractional programming (MFP), extended this results to the generalized arcwise connected 
hypothesis, established the optimized problem of arcwise connected area (ACP) and the optimal sufficient condition of 

0)(..)(min ≤
∈

xgtsxf
Sx

 under constraint condition, and gave the duality model, and obtained the conclusions of 

weak duality and strong duality. 
Keywords: Arcwise connected function, Generalized convexity, Weak (strong) duality, Strong Quasi-arc, Optimal 
solution
1. Introduction 
One of important extensions about convexity was the concept of invariant convexity put forward by Hanson in 1981, 
after that, in twenties years, thirty sorts of generalized convexity functions are introduced, which makes the research 
contents of the optimized problems become very deep and abundant. The extrusive problem in these problems is the 
duality problem under the weak convexity concept. In the optimization theory, for an appointed mathematic 
programming problem, there are many types of duality, and two famous dualities are Wolfe duality (Wolfe, 1961, 
p.239-244) and Mond-Weir duality (Mond, 1981, p.263-28), and in recent years, the mixed duality has been thought as 
the type of various optimized problems, and the mixed duality (Aghezzaf, 2000, p.91-101, Aghezzah, 2001, p.617-628, 
Zi, 1993, p.113-118, Liang, 2001, p.446-461, Mond, 1982, p.105-124, Mukherjee, 2000, p.571-586, Preda, 1992, 
p.365-377, Xu, 1996, p.621-635, Yang, 2000, p.999-1005, Zhang, 1997, p.29-44). 
Generally, when we solute an optimized problem, the feasible area is usually in the area with interior points, but in 
practical problems, it always doesn’t possess this condition, for example, the feasible area of the problem is the 
following line-type figure without interior point which is seen Figure 1. Its feasible area is connected by curve S. So 
when we define the function in this feasible area, we can not consider its partial derivative or directional derivative, and 
the grads of the function. For these problems, in early 1970, Ortega and Rheinboldt (Ortega, 1970) put forward the 
concept of regional arcwise connection, after that, Avriel and Zang (Avriel, 1980, p.407-435) extended it as various 
generalized convexities. The arcwise connected function and various generalized functions possess very good 
local-global extremum property, and in this article, we mainly introduce the duality problem result under the 
generalized weak convexity of (F, d,, ρα ) introduced by Liang. Z. A, Huang. H. Z. and Purdulos. P. M (Liang, 2003, 
p.447-471), and extend it into the weak duality and strong duality of generalized arcwise connected function optimized 
problem (ACP), and give some results. 
2. Basic conclusions of MFP duality under generalized weak convexity of (F, d,, ρα )
Here, we will give the conclusions of several duality problems about MFP. 
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When nRX ⊂  is an open set, ),2,1(, pigf ii =  is the real valued function on X, and h is m dimensional vector 
value function defined on X, and 

qMMandMmM 10 ,},2,1{=  is a  

partition of M, i.e. φ==
= lkk

q

k
MMMMU ,

0
, when lk ≠ , so the generalized Mond-Weir duality of MEP is 

T
M

T
M

p

p
M

T
MM

T
M uh

ug
uf

uh
ug
ufeuh

ug
ufMax ))()

)(
)(

)(
)(
)(()(

)(
)(

000000
1

1 λλλ ++++Δ+    (1----2) 

0)(
)(
)(

.
11

=∇+∇
==

uh
ug
ufts j

m

j
j

q

i i

i
i λτ

qkuh
kk M

T
M ,2,1,0)( =≥λ

=
+ =>∈=

P

i
i

PT
p R

1
21 1,0,),,( ττττττ

XuqkR k

k

M
M ∈=∈ + ,2,1,0||λ

Where, Te )1,1,1(=  and 
kMλ represent column vectors, and their component subscripts belong to kM .

2.1 Mond-weir duality 
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Theorem 2.1 (weak duality) (Liang, 2003, p.447-471): Supposed x  is a feasible solution of (MFP), and ),,( λτu  is 

a feasible solution of (MFD1), and if if  and ),2,1( pigi =−  are convex ),,,( iii dF ρα  on u , so 

),2,1( mjh j =  is convex ),,,( ji cF ζβ  on u , and the inequation exists. 
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Deduction 2.1 (weak duality) (Liang, 2003, p.447-471): Supposed x  is a feasible solution of (MFP), and ),,( λτu  is 

a feasible solution of (MFD1), and if if  and ),2,1( pigi =  are strongly convex ),,,( iii dF ρα  (or convex ),( iF α ).

On u , ),2,1( mjh j =  is strongly convex ),,,( ii cFu ζβ ,                     so    
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Theorem 2.2 (strong duality): Supposed x  is an effective solution of (MFP), and x  fulfills the restrain condition 
(GGCQ) (Avriel, 1980, p.407-435), so mp RR ++ ×∈),( λτ  exists and makes ),,( λτx  be a feasible solution of (MFD1), 
and the objective function values on the corresponding points of (MFP) and (MFD1) are equal, and if it fulfills the 
generalized convex inequation in Theorem 2.1, so ),,( λτx  is an effective solution of (MFD1). 

In fact, because x  is an effective solution of (MFP), and (GGCQ) exists on x , as a necessary and effective condition, 
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0,),( >×∈ ++ τλτ mp RR  exists and makes ),,( λτu  be a feasible solution of (MFD1). Though the corresponding 
objective functions of (MFP) and (MFD1) are equal, but if ),,( λτu  is not the sufficient solution of (MFD1), so a 

feasible solution ( *** ,, λτx ) of (MFD1) must exist and make 
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Its result is contradictive with the conclusion of weak duality in Theorem 2.1, so ),,( λτu  is an effective solution of 
(MFD1). 
2.2 Schaible duality 
The extended formula of (MFP) Schaible duality (Schaible, 1976, p.452-46 & Schaible, 1976, p.858-867) is 
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Theorem 2.3 (weak duality) (Liang, 2003, p.447-471): Supposed that x  is a feasible solution of (MFP), and 

),,,( vu λτ  is a feasible solution of (MFD2), if one of following equation comes into existence. 
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Theorem 2.4 (strong duality) (Liang, 2003, p.447-471): Supposed x  is an effective solution of (MFP), and x  fulfills 
the restrain condition (GGCQ) (Avriel, 1980, p.407-435), so mPp RvRR +++ ∈∈∈ ,,λτ  exists and makes 

),,,( vx λτ  be a feasible solution of (MFD2), and 
)(
)(

xg
xf=λ . If all hypotheses in Theorem 2.3 are fulfilled, so the 

corresponding ),,,( vx λτ  is an effective solution of (MFD2). 

2.3 Extended Bector duality 
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We use the equation of (MFP) from the form of ( MFP ) to establish the following duality which is called as the 
extended Bector duality, 
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Theorem 2.5 (weak duality) (Liang, 2003, p.447-471): Supposed that x  is a feasible solution of (MFP), and 
),,( vu τ  is a feasible solution of (MFD3), and –G is convex ),,,( dF ρα  on u point, )2,1( pifG ii =  is convex 
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Theorem 2.6 (strong duality) (Liang, 2003, p.447-471): Supposed x  is an effective solution of (MFP), and x  fulfills 
the restrain condition (GGCQ) (Avriel, 1980, p.407-435), so ),( vτ  exists and makes vx ,,τ  be a feasible solution of 

(MFD3), and the objective function values of (MFP) and (MFD3) are respectively equal on x  and ( vx ,,τ ), If the 

hypotheses and conditions in Theorem 2.5 are fulfilled, so the ( vx ,,τ ) is an effective solution of (MFD3). 

3. The optimal condition and duality of generalized arcwise connected function 
After we give the weak duality and strong duality of (MFP) under some very weak generalized functions, now we 
consider the optimized problem which area is arcwise connection. 

(ACP)    )(min xf
Xxts ∈.

here, ),2,1(),(),(}.,2,1,0)(;{ mjxgxfmjxgSxX jj ==≤∈=  is the real valued function on the set of 

arcwise connection nRS ⊆ , and to any Sxx ∈21 ,  and the arc )()(,
21

xandgxfH jxx ),2,1( mj =  connecting 

21andxx  are arcwise derivative about 
21xxH  on x2.

Definition 3.1: Supposed 
21xxH  is a continual vector value function, i.e. 
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equation come into existence when 10 ≤≤ λ
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So vector )( 021
λxxH−∇  is called as the directional derivative of 

21xxH  on the point of 
0λλ = , which is got from the 

following equation 
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Thus, we can define the arcwise derivative concept of arcwise connected function. 
Definition 3.2: Supposed f(x) is the continual real valued function on the arcwise connected set nRS ⊆ , to any one 
point x in S, Sx ∈0

,
0,xxH  is the arcwise connecting x  and 0x . If x  tends towards 0x  along 

0,xxH , the 

following limitation exists. 
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So we call )(xf  is arcwise derivative about 
0,xxH  on the point of 0x , and it is marked as )( 00,

xf
xxH .

In this way, to 10 ≤≤ λ , a continual arcwise connected function (ACF) f(x) on S can be denoted as 
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Definition 3.3: Supposed f(x) is the continual real valued function on the arcwise connected set nRS ⊆ , to any one 
point x in S, Sx ∈0 , the arcwise 

0,xxH  connecting x  and 0x  exists and makes the following containment 
relationship come into existence. 

0)()()( 00 0,
≥≤ xfxfxf

xxH                                                (3—5) 

So we call that f(x) is the puppet arcwise connected function on x0 which is marked as PACF. 
Under the same condition, if the containment relationship is 0)()()( 00 0,

>≤ xfxfxf
xxH , so we call f(x) is the 

strong puppet arcwise connected function on x0 which is marked as SPACF, and if 0)()()( 00 0,
>< xfxfxf

xxH , so 

we call f(x) is the strict strong puppet arcwise connected function on x0 which is marked as STPACF. 
If f(x) is PACF, SPACF and STPACF on any point of S, so we call f(x) is PACF, SPACF and STPACF on S. 
Theorem 3.1 (Zhiun, 2001): Supposed f(x) is the quasi-arcwise connected function QACF on an arcwise connected set 

nRS ⊆ , if Sx ∈0
 is a strict local minimum point of f(x), so 0x  is a strict global minimum point of f(x) on S. 

Theorem 3.2 (Zhiun, 2001): Supposed f(x) is the strong quasi-arcwise connected function SQACF on an arcwise 
connected set nRS ⊆ , if Sx ∈0

 is a strict local minimum point of f(x), so 0x  is the only strict global minimum point 
of f(x) on S. 

Prove: counterevidence. Supposed f(x) is SQACF and Sx ∈0  is a local minimum point of f(x), if Sx ∈  exists and 

makes )()( 0xfxf < , so the arcwise 
0,xxH  connecting x  with 0x  exists, to any 10 <≤ λ , there is 

)())(( 0, 0
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To any neighbor area of 0x , we can always find 0λ  to make )(
0, λxxH  in this neighbor area when 10 <≤ λλ , that is 

contradictive with that 0x  is a local minimum point of f(x), so the theorem is proved. 

To STQACF, there are following theorems. 
Theorem 3.3: Supposed f(x) is the STQACF defined on an arcwise connected set nRS ⊆ , and if Sx ∈0

 is a strict 

local minimum point of f(x), so 0x  is the global minimum point of f(x) on S. 

Theorem 3.4: Supposed f(x) is the real valued continual funciton on an arcwise connected set nRS ⊆ , Sx ∈0
 is the 

point to fulfill 0)( 0 =∇ xf , and if f(x) is STPACF, so 0x  is the global minimum point of f(x) on S. If f(x) is SPACF, 

so 0x  is the only strict global minimum point of f(x) on S. 

Prove: supposed f(x) is STPACF, Sx ∈0  is the point to fulfill 0)( 0 =∇ xf , so to any Sx ∈  and corresponding 

arcwise xxH , , there is 
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0))()(()( 0,0 00,
=∇∇= − xfvHxf xxH xx

.

Thus, from the definition of STPACF, we can obtain )()( 0xfxf ≥ , i.e. x0 is the global minimum point of f(x) on S, 

and if f(x) is SPACF, so from definition, we can obtain )()( 0xfxf > . To any Sx ∈ , 0xx ≠  comes into 
existence, i.e. x0 is the only global minimum point of f(x) on S. 
Theorem 3.5: supposed in the problem (ACP), },2,1,0)(,{ mjxgSxX j =≤∈=  is the feasible area, 
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0)())(( *
, * <− xfHf xx λ . That is contradictive with that *x  is the optimal solution of (ACP), so the equation group (3.10) 

and (3.11) has no solution. 
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XXXX
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Let 0* =Jr , so the theorem is proved. 

Now, we establish the Mond-Weir duality of (ACP), and give the theorems of weak duality and strong duality. 
(ACPD)        Max f(u) 

)19.3(0)()(.
,,0 −−≤+ ugrufrts
uxux H

T
H

)20.3(0)(
0

−−≥
=

m

j
jj ugr

)21.3(,,0),( 00 −−∈∈≥∈ mRrRrrrSu
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Theorem 3.7 (strong duality): supposed *x  is the optimal solution of (ACP), *)()()(
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feasible solution of (ACPD), and the objective function values of (ACP) and (ACPD) are equal on *x . If to every 
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Prove: because *x  is the optimal solution of (ACP), so from theorem 3.1, mRrRr ∈∈ **
0 ,  exist and make 

( **
0

* ,, rrx ) is the feasible solution of (ACPD), so the objective function values of (ACP) and (ACPD) are equal on 
*x . If ( **

0
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)()( *xfuf >                 (3----.26). 
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1
)(  is SPACF on u, (3.22) is contradictive with theorem 3.4, so 

( **
0

* ,, rrx ) is the optimal solution of (ACPD). 
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Figure 1. A Line-type Figure without Interior Point 
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