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Abstract 

This paper derives a Murthy’s unbiased estimator of population total under unequal probability inverse sampling. 
A general unequal probability inverse sampling is combined with adaptive cluster sampling. An unbiased 
estimator of population total and its variance estimator are given using Murthy’s approach. The general unequal 
probability inverse adaptive cluster sampling and general equal probability inverse adaptive cluster sampling are 
compared using simulation study based on real life data. The results indicate that the general unequal probability 
inverse adaptive cluster sampling has a small coefficient of variation for estimates compared to equal probability 
inverse adaptive cluster sampling. When the coefficients of correlation between study variable and probability of 
selection units increase, the coefficient of variation decreases. 
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1. Introduction 

An efficient sampling design for estimating parameters of interest in a rare population is one of the most 
challenging areas for statisticians. Haldane (1945) used an inverse sampling for selecting units of interest in a 
population which contains a small fraction of the units of interest. Thompson (1990) proposed adaptive cluster 
sampling that is an efficient design when populations are rare and clustered because survey effort can be targeted 
to units of interest. One of problems encountered when adaptive cluster sampling from a rare population is that 
an initial sample may not contain a unit of interest. In order to get sampled units of interest, Christman and Lan 
(2001) applied inverse sampling to selecting an initial sample in adaptive cluster sampling. For any inverse 
sampling design, there is the possibility that we cannot select a fixed number (m) of units of interest under a 
given resource. It might happen because m is too large or the number of units of interest in the population is too 
small. Salehi and Seber (2004) proposed a general inverse sampling with fixing the final sample size 
incorporated into adaptive cluster sampling.  

The sampling designs mentioned above are taken under sampling with equal probability. If the probability of 
selecting a unit is highly correlated to the study variable, unequal probability sampling design can give higher 
efficiency than equal probability sampling design. Greco and Naddeo (2007) proposed an unequal probability 
inverse sampling with replacement. An unbiased estimator of the population total was derived by using 
conditional expectation of sample size approach. This paper derives an unbiased estimator of population total 
using Murthy’s approach. A general unequal probability inverse sampling is combined with adaptive cluster 
sampling. An unbiased estimator of the population total and an unbiased variance estimator are given. A 
comparison of the sampling design with the general equal probability inverse adaptive cluster sampling design is 
considered using simulation study.  

2. Murthy’s Estimator 

Murthy (1957) derived an unbiased estimator of population total as 

 
 i

i 1

P s | i
ˆ y

P s




   ,                                   (1) 
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where   is the number of distinct units in the sample,  P s|i  is the conditional probability of getting the 
sample s , given the i-th unit was drawn first. The variance of ̂  is given by 

     
 

2
N N ji

i j
i 1 j i s i, j i j

yP s | i P s | j y
ˆV 1 z z

P s z z  

  
            

.                    (2) 

An unbiased estimator of the variance of ̂  is  
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 

2
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 

                
,                 (3) 

where  P s|i, j  denotes the probability of getting sample s  given that the i th  and j th  units were 
drawn in the first two draws.  

Salehi and Seber (2004) proved that Murthy’s estimator can be applied for sequential sampling. Using this 
approach, we derive unbiased estimators of population total and its variance estimator under considered 
sampling desings. 

3. Unequal Probability Inverse Sampling 

Assume that a finite population consists of N  units with associated study values 1 2 Ny , y , , y . An initial 

selection probability of the i-th unit is denoted by iz . The parameter to be estimated is the population total, 



 
N

i
i 1

y . Assume that population units are divided into two classes according to whether the study values 

satisfy a given condition. A common form of the condition is  y : y c  where c is a given constant. The class 

of units which study values satisfy the condition is defined to be the class (C ) of interest and C  is the class of 

the remaining units.  

In unequal probability inverse sampling, we select units one at a time with unequal probability with replacement 
until we have obtained a given number  m  of units from class C , in the sample. The sample size  1n  is a 
random variable. The sample  s  can be partitioned into two parts: a part cS  is the set of sample units from 
the class C  and cS  is the set of sample units from C  with cardinalities m  and 1n m , respectively. 

Let k  and g  be the numbers of distinct units in cS  and cS , and which indexed by  i 1, 2, , k  and 

   i k 1, k 2, , , respectively. If ir  is the number of times that unit i appears in the sample. With an ordered 

sample  *S , the probability of getting the ordered sample is    




 ir*
i

i 1

P s z  where the last sampled unit 

belongs to the set cS . For an unorded sample  s , the last sampled unit must belongs to cS , so that after 

allocating one i-th unit of k sampled unit in cS , the rest of sampled units can be ordered in 


 
  

1

1 i

n 1
r , r 1, , r

 

ways. Therefore, the sample s can be constructed in 
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Theorem 1 Under the unequal probability inverse sampling design, an unbiased estimator of the population 
total is 

    I C C
ˆ ˆˆ Py 1 P y ,                                 (4) 
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where 
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. An unbiased estimator of the variance of Iˆ  is 
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              (5) 

Proof: Using Murthy’s estimator, the 
 
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Substituting 
 
 

P s | i

P s
 into (1) and using some algebra, we obtain the expression (4). The 

 
 

P s | i, j

P s
 is given by  
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Substituting 
 
 

P s | i, j

P s
 and 

   
  2

P s | i P s | j

P s  
into (3) and using some algebra, we obtain the result as in 

expression (5). 

Note that using Murthy’s estimator, we obtain the same estimator given by Greco and Naddeo (2007).  

4. General Unequal Probability Inverse Sampling 

In a sampling procedure which avoids sampling large number of sample size, an initial sample of size 0n  is 
drawn by unequal probability sampling with replacement where 0n m . We stop further sampling if the initial 
sample consists at least m  units from class C. Otherwise, we sequentially continue sampling with unequal 
probability with replacement until either the sample consists of m  units from the class C or the total sample 
size is equal to 2n  ( 2 0n n ) where 2n  is fixed in advance. This sampling scheme is called a general unequal 
probability inverse sampling. Let 1n  denote the sample size of the final sample.  

If 0n m  and 2n  is not fixed, the sampling design reduces to unequal probability inverse sampling. The 
sampling design reduces to original unequal probability sampling when 0 2n n . If the probabilities of selection 
are equal, the sampling design is a general inverse sampling. 

Theorem 2 Under the general unequal probability inverse sampling design, an unbiased estimator of the 
population total is 
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Proof: When 1 0n n  and 1 2n n , the 
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into (3) and using some algebra, we obtain the result as in expression 

(7). 

5. General Unequal Inverse Adaptive Cluster Sampling 

We apply the general unequal probability inverse sampling to adaptive cluster sampling. Assume that each unit 
in the population is defined to have a neighborhood. The neighborhood of a unit is a set of other units associated 
with the unit. The sampling scheme is as following. 

An initial sample is drawn by the general unequal probability inverse sampling with replacement. For the sample 
units in class C , their neighborhoods are added to be sampled and observed. The procedure continues until no 
more units in the class C  are found. This sampling scheme is called a general unequal probability inverse 
adaptive cluster sampling because sampling begins with general unequal probability inverse sampling and 
incorporates adaptive cluster sampling. The final sample consists of the initial sample and all adaptively sampled 
units.  

The set of units that are adaptively sampled as a result of unit i-th being sampled and that are also the member of 
class C are called the network to which the unit i belongs. The units that are adaptively sampled but are in the 
class C  are called edge units. By this way, if any unit in the i-th network is selected in the initial sample, all 
units in the network are sampled. From definition of network, the population can be divided into K mutually 
exclusive networks.  

Let n  be the final sample size. Let k  denote the set of units in the k-th network and km  denote a number 

of units in the network. The total value of the study variable in a network k  is 
k

*
k j

j

y y


   and the 

probability of selection of that network is 
k

*
k j

j

z z


  . The parameter to be estimated can be written as 

N K
*

i k
i 1 k 1

y y
 

    . Since the probability of any edge unit included in the final sample is not known, some 

estimators which included edge units will be biased. So the edge units in the final sample are excluded from the 

estimation stage. An unbiased estimator for the population total uses the sample units in the class C  only when 

they are drawn to be the initial sample. The estimator is formed by modifying the unbiased estimator given by 

Theorem 2. 

Theorem 3 Under the general unequal probability inverse adaptive cluster sampling design, an unbiased 
estimator of the population total is 
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where 
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Proof: Let iw  represent the new value of a study variable of the i-th unit in the k-th network, given by 


*

i k
i *

k

z y
w

z
. Under an initial sample with general unequal probability inverse sampling, when observed value iy  

is replaced by the value iw , we obtain the results of this theorem. 

6. Simulation Study 

The ring-necked ducks data given by Smith et al. (1995) was used as the study population. The population 

consists of N 200  units. In general unequal probability inverse adaptive cluster sampling, the population 

units are selected by using probability proportional to auxiliary variable. Auxiliary variable (x) correlated to the 

study variable are generated with the coefficients of correlation equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. 

The initial selection probability of the i-th unit is 
200

i i j
j 1

z x / x


  . For general inverse adaptive cluster sampling, 

the probability of selection a unit is equal to 1/ 200 .  

Simulations of sampling from the population were carried out to study the properties of the general unequal 

probability inverse adaptive cluster sampling (GUIACS) compared to the general inverse adaptive cluster 

sampling (GIACS) when sampling is with replacement. We chose the condition  y : y 0  for dividing the 

units into class C  or C . The numbers  m  of sample units satisfying the condition are 3, 4, 5 and 6. The 

initial sample sizes  0n  are given as 10, 15, 20 and 25. The final sample sizes  2n  in the initial sample are 

25, 35, 45 and 55. The neighborhood of a unit is defined as the set of the four adjacent units. The simulation 

consists of 50,000 replications. The population total (  ) was estimated for each sample. In each sampling design, 

the values of the estimates  ̂ are averaged. The averages were interpreted as expected values, i.e., 
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i
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i
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, where     ˆE . The 
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estimate of coefficient of variation is given by          ˆ ˆ ˆcv V /E . 

 
Table 1. The coefficient of variation of estimates under GIACS and GUIACS with 0.1,0.2   where 

3 4 5 6m , , , , and initial sample size 0n 10,15,20, 25 with 2 25 35 45 55n , , ,   

n2 m GIACS 

GUIACS GUIACS 

 =0.1   =0.2 

n0=10 n0=15 n0=20 n0=25 n0=10 n0=15 n0=20 n0=25 n0=10 n0=15 n0=20 n0=25 

55 

6 1.256 1.249 1.238 1.226 1.178 1.166 1.161 1.138 1.096 1.100 1.085 1.064 

5 1.420 1.388 1.364 1.317 1.304 1.294 1.260 1.223 1.227 1.216 1.181 1.142 

4 1.599 1.540 1.465 1.396 1.489 1.433 1.363 1.289 1.412 1.346 1.277 1.212 

3 1.864 1.730 1.582 1.462 1.742 1.604 1.462 1.350 1.641 1.498 1.374 1.257 

45 

6 1.291 1.281 1.270 1.252 1.197 1.184 1.189 1.161 1.110 1.113 1.105 1.087 

5 1.419 1.388 1.363 1.318 1.305 1.298 1.268 1.223 1.229 1.224 1.188 1.149 

4 1.620 1.549 1.466 1.385 1.485 1.441 1.367 1.279 1.399 1.355 1.273 1.202 

3 1.874 1.726 1.565 1.451 1.741 1.587 1.453 1.342 1.625 1.487 1.358 1.248 

35 

6 1.367 1.363 1.345 1.320 1.262 1.251 1.246 1.230 1.173 1.174 1.164 1.145 

5 1.455 1.430 1.406 1.366 1.349 1.332 1.308 1.265 1.280 1.250 1.232 1.186 

4 1.620 1.565 1.484 1.409 1.519 1.458 1.382 1.308 1.425 1.372 1.294 1.218 

3 1.866 1.726 1.572 1.460 1.749 1.606 1.462 1.351 1.635 1.506 1.367 1.259 

25 

6 1.529 1.523 1.521 1.500 1.426 1.416 1.402 1.391 1.331 1.315 1.304 1.298 

5 1.568 1.564 1.544 1.503 1.461 1.453 1.42 1.392 1.374 1.354 1.327 1.300 

4 1.689 1.637 1.582 1.489 1.568 1.525 1.458 1.384 1.479 1.420 1.358 1.290 

3 1.920 1.750 1.611 1.504 1.777 1.634 1.488 1.389 1.662 1.520 1.393 1.301 

 

When 0n 25  and 2n 25 , the sampling designs reduce to original adaptive cluster sampling. Table 1 shows 
that the general unequal probability inverse adaptive cluster sampling design outperforms the general inverse 
adaptive cluster sampling design. Tables 1, 2 and 3 indicate that the coefficients of variation of the estimates 
under GUIACS decrease when the coefficients of correlation increase with given the numbers m , 0n  and 2n . 
Under m , 0n  and   fixed, the coefficient of variation decreases when the initial sample size  0n  increases. 
The coefficient of variation decreases when the number of sampled units in class C increases for given sample 
sizes 0n  and 2n . With fixed numbers m , 0n  and  , the coefficient of variation of the estimates decreases 
when the truncated sample size  2n  increases. However, if 2n  is too large, the sampling design reduces to 
inverse adaptive cluster sampling. In this case, although the value 0n  increases, the coefficient of variation may 
not decrease.  
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Table 2. The coefficient of variation of estimates under GUIACS with 0.3,0.4,0.5   where 3 4 5 6m , , , , 
and initial sample size 0 10 15 20 25n , , , with 2 25 35 45 55n , , ,  

n2 m 
 = 0.3  = 0.4  = 0.5 

n0=10 n0=15 n0=20 n0=25 n0=10 n0=15 n0=20 n0=25 n0=10 n0=15 n0=20 n0=25 

55 

6 1.041 1.048 1.024 1.011 0.982 0.971 0.962 0.943 0.938 0.930 0.933 0.904 

5 1.154 1.156 1.118 1.082 1.080 1.075 1.047 1.009 1.039 1.030 1.002 0.969 

4 1.334 1.283 1.204 1.139 1.232 1.198 1.123 1.062 1.199 1.145 1.080 1.022 

3 1.546 1.414 1.294 1.185 1.441 1.322 1.199 1.095 1.380 1.263 1.148 1.050 

45 

6 1.064 1.057 1.041 1.035 0.990 0.985 0.974 0.957 0.950 0.944 0.945 0.920 

5 1.164 1.160 1.118 1.088 1.091 1.085 1.050 1.009 1.051 1.043 1.008 0.969 

4 1.327 1.280 1.207 1.143 1.246 1.196 1.130 1.061 1.193 1.140 1.085 1.014 

3 1.537 1.411 1.288 1.182 1.437 1.311 1.195 1.100 1.377 1.260 1.144 1.048 

35 

6 1.110 1.111 1.099 1.079 1.032 1.038 1.021 1.004 0.990 0.986 0.979 0.960 

5 1.213 1.191 1.164 1.123 1.125 1.105 1.068 1.042 1.080 1.058 1.026 0.997 

4 1.339 1.300 1.231 1.148 1.250 1.207 1.142 1.063 1.209 1.164 1.093 1.025 

3 1.536 1.422 1.299 1.189 1.447 1.317 1.206 1.105 1.388 1.266 1.156 1.055 

25 

6 1.251 1.242 1.227 1.217 1.156 1.149 1.138 1.125 1.117 1.105 1.092 1.079 

5 1.289 1.277 1.252 1.221 1.203 1.186 1.169 1.128 1.163 1.138 1.112 1.079 

4 1.403 1.342 1.287 1.213 1.298 1.242 1.188 1.123 1.253 1.189 1.138 1.075 

3 1.576 1.445 1.310 1.222 1.463 1.338 1.222 1.131 1.404 1.278 1.161 1.081 

 

Table 3. The coefficient of variation of estimates under GUIACS with 0.6,0.7,0.8  where 3 4 5 6m , , , , and 
initial sample size 0 10 15 20 25n , , , with 2 25 35 45 55n , , ,   

n2 m 

 = 0.6  = 0.7  = 0.8 

n0=10 n0=15 

 

n0=20 n0=25 n0=10 n0=15 n0=20 n0=25 n0=10

 

n0=15 

 

n0=20 

 

n0=25 

55 

6 0.892 0.878 0.874 0.855 0.839 0.835 0.813 0.808 0.763 0.759 0.753 0.725 

5 1.000 0.971 0.953 0.912 0.940 0.915 0.892 0.854 0.848 0.834 0.808 0.771 

4 1.128 1.086 1.022 0.955 1.068 1.018 0.958 0.894 0.977 0.920 0.861 0.802 

3 1.307 1.200 1.077 0.990 1.225 1.116 1.011 0.922 1.114 0.998 0.902 0.822 

45 

6 0.895 0.897 0.886 0.867 0.846 0.844 0.834 0.813 0.766 0.767 0.754 0.733 

5 0.994 0.980 0.955 0.912 0.944 0.926 0.897 0.859 0.857 0.841 0.807 0.772 

4 1.133 1.085 1.024 0.961 1.071 1.021 0.959 0.903 0.979 0.921 0.866 0.803 

3 1.316 1.187 1.081 0.992 1.232 1.113 1.013 0.921 1.110 0.997 0.908 0.823 

35 

6 0.930 0.931 0.924 0.906 0.879 0.879 0.863 0.846 0.794 0.785 0.775 0.758 

5 1.020 1.000 0.975 0.938 0.963 0.948 0.911 0.873 0.867 0.854 0.819 0.784 

4 1.140 1.095 1.033 0.970 1.075 1.024 0.964 0.907 0.972 0.928 0.866 0.807 

3 1.314 1.191 1.091 0.994 1.236 1.122 1.016 0.926 1.121 1.004 0.908 0.824 

25 

6 1.050 1.042 1.030 1.005 0.975 0.975 0.961 0.939 0.875 0.866 0.860 0.843 

5 1.099 1.071 1.039 1.018 1.031 1.009 0.974 0.943 0.918 0.901 0.866 0.838 

4 1.189 1.125 1.066 1.007 1.101 1.058 0.994 0.942 0.990 0.953 0.886 0.837 

3 1.321 1.206 1.099 1.013 1.242 1.123 1.026 0.943 1.117 1.001 0.918 0.837 
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7. Discussion 

An adaptive cluster sampling is an efficient sampling design for rare and clustered population. However, if an 
initial sample in adaptive cluster sampling is selected by fixed sample size design, a sample may not consist of 
units of interest. The paper considered a general unequal probability inverse sampling and combined it with 
adaptive cluster sampling. An unbiased estimator of the population total and an unbiased estimate of its variance 
were derived using Murthy’s method. The simulation study showed that the efficiency of the general unequal 
probability inverse adaptive sampling design depends on the coefficient of correlation between the study variable 
and the auxiliary variable, number of sampled units of interest, initial sample size and truncated sample size. 
When the auxiliary variable is highly correlated with the study variable the general unequal probability inverse 
adaptive cluster sampling design is fairly efficiency. In addition, the general unequal probability inverse adaptive 
cluster sampling design is more efficient than general inverse adaptive cluster sampling design. However, when 
the auxiliary variable is not appropriate for the study variable, an estimator of parameter by using the general 
unequal probability inverse adaptive cluster sampling design may lose its efficiency. 
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