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Abstract 
This study presents the analysis and the benefits from using Micronized Biomass Silica (MBS) of rice husk 
which comprises of high content of silica. MBS was generated from controlled burning of the husk into 
off-white biomass silica ash and crushing the ash into micronized size. Concrete samples containing various 
percentages of MBS were tested for workability, compressive strength and also water permeability performances. 
It was found that the optimum percentage of MBS added to the concrete that lead to good performance of 
concrete in terms of compressive strength and water permeability was 12%. The compressive strength increased 
up to 43% when 12% of MBS was added to the concrete after 90 days period. Increasing the content of MBS 
exceeding the optimum percentage showed inferior performance of the concrete. It indicates that the pozzolanic 
reaction properties of MBS could improve the compressive strength and water permeability of concrete. 
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1. Introduction 
Concrete is produced when cement, coarse aggregate, fine aggregate, water and admixtures are mixed 
thoroughly. Concrete is considered of good quality when it enables to achieve good strength and durability 
(Neville, 2004). Good strength is achieved when concrete can sustain maximum load imposed on it. To achieve 
good durability, the concrete should be able to attack from aggressive ion either externally or internally. One of 
the methods to produce quality concrete is by adding pozzolanic material. Pozzolanic material like fly ash, silica 
fume and ground granulated blastfurnace slag has been widely used in construction industry. The pozzolanic 
material is generally produced from by-product of wastes and thus, it has advantages in encouraging the 
application of waste product which is good for environmental conservation (Sampaio et al., 2000). Normally, 
these pozzolanic materials are functioning as cement replacement material which substitute a part of cement 
content. In this study, the Micronized Biomass Silica (MBS) was produced from the burning of rice husk was 
used as cement replacement in concrete samples. Various percentages of MBS were added to replace cement in 
order to determine the optimum percentage that gives the maximum performance of concrete produced. The 
performances considered in this paper are on the compressive strength and water permeability of the produced 
concrete. 

2. Micronized Biomass Silica (MBS) 
Biomass waste material used in the production of MBS was rice husks. The rice husk was taken from Bernas rice 
milling plant in Kedah, Malaysia. The husk was burnt under controlled in a rotary furnace at Material Laboratory 
of the Faculty of Civil and Environmental Engineering, UTHM (Lee et al., 2007). The husk fed was into the 
furnace in a continuous process through multiple distributed inlets at the furnace temperature regime of 500 °C 
to produce white amorphous biomass silica. This furnace is equipped with controlling opening for the air 
(oxygen) to come in and assist a complete burning process and thus produce low carbon content of white 
amorphous biomass silica ash. The perforated trays in the furnace rotated to enhance the mixing process, heat 
distribution and to achieve optimum burning efficiency. After one hour of burning, the white biomass silica ash 
falls through the perforated trays and into a collecting funnel at the downstream of the furnace. The 
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Table 2. Chemical properties of MBS 

Properties Value 

Surface Area 24.4039 m2/g 

Loss Of Ignition 1.22 

Chemical Composition (%)  

SiO2 87.67 

Al2O3 0.343 

Fe2O3 0.531 

CaO 1.18 

MgO 0.872 

K2O 5.078 

SO3 0.590 

 
The chemical composition contents of the MBS are compared with other established Supplementary 
Cementitious Materials (SCM) like RHA, silica fume, fly ash, palm oil fuel ash (POFA) and sawdust ash and are 
as shown in Table 3. It shows that the percentage of silica dioxide (SiO2) of MBS is higher than normal RHA 
and second to silica fume. This indicates MBS is one of Supplementary Cementitious Materials. 

 
Table 3. Chemical composition of MBS and other Supplementary Cementitious Materials (SCM)  

Chemical 
Compositions 

Type of Ash 

MBS (%) 

RHA (%) Silica Fume (%) Fly Ash (%) POFA (%) Sawdust (%)

(Isaia et 
al., 2003) 

(Toutanji & 
El-Korochi, 

1995) 

(Oner et al., 
2005) 

(Awal & 
Hussin, 
1997) 

(Elinwa & 
Mahmood, 

2002) 

SiO2 87.67 86.5 95.75 57.55 43.6 67.2 

Al2O3 0.343 0.3 0.35 25.16 11.4 4.09 

Fe2O3 0.531 0.1 0.21 6.5 4.7 2.26 

CaO 1.18 0.5 0.17 2.1 8.4 9.98 

MgO 0.872 0.3 0.09 2.5 4.8 5.8 

K2O 5.078 1.6 - 3.65 3.5 18.75 

SO3 0.59 0.1 0.42 0.19 2.8 - 

Loss Of 

Ignition  
1.22 9.1 1.44 1.66 18 4.67 

 
3. Performance of Compressive Strength 
The pozzolanic reaction occurs when MBS ash reacts with calcium hydroxide generated from the cement 
hydration process. The amount of pozzolanic material added is limited with the amount of hydroxide produced 
during the hydration. This was the reason where different percentages of MBS were added to determine the 
optimum amount in enhancing the compressive strength and water permeability of the concrete. Concrete sample 
specimens were produced based on the cement percentages replacement of MBS added which were 0%, 4%, 8%, 
12%, 16%, 20% and abbreviated with M0, M4, M8, M12, M16 and M20. The mix proportions for concrete 
mixtures are presented in Table 4.  
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sulpho-aluminate and 3% of secondary phases. The calcium hydroxide, Ca(OH)2 from cement hydration process 
reacts with silicon dioxide (SiO2) from MBS which is known as pozzolanic reaction and the reaction process is 
described as in Equation 2. In this reaction, the calcium hydroxide (Ca(OH)2) is transformed into secondary 
calcium silicate hydrate (C-S-H) gel which leads into transformation of larger pores into finer pores (Oner et al., 
2005). This C-S-H gel is able to fill-up to the micro-pores and ITZ in concrete. Thus, this reaction gave a 
significant effect to the development of concrete strength. 

(C3S, C2S) + H2O → C-S-H + Ca (OH)2                            (1) 

tricalcium  water  calcium  calcium                                

silicate and       silica   hydroxide                               

dicalcium silicate          hydrated gel                             

Ca(OH)2  + SiO2  → C-S-H                                  (2) 
calcium    silico  calcium silicate                                 

hydroxide   dioxide   hydrated gel                                 

Finer particles sizes of MBS (24.4039 m2/g) as compared to cement (2.693 m2/g) has improved filler mechanism 
by densifying the cement matrix, filling the voids in concrete with hydration product, improving the bonding 
with aggregates and reinforced the materials like a glass fiber (Isaia et al., 2003). The physical action of 
pozzolanic material will contribute into denser, more homogeneous and uniform paste. Thus, it can be seen 
besides the pozzolanic reaction the filler effect of pozzolan material also plays role in densifying the cement 
matrix.  

MBS possess better resistance in allowing water to permeate into the concrete and also its compressive strength 
as compared to that of control concrete because of pozzolanic reaction which had taken place between silicon 
dioxide (SiO2) from MBS with calcium hydroxide (Ca(OH)2) from cement hydration. The reaction leads into 
calcium silicate hydrate, C-S-H gel formation. The gel acts to fill up the pores in concrete and also ITZ between 
aggregate and cement paste. These actions lead to lower permeable characteristic of the concrete.  

For samples containing percentage of MBS replacement exceeding the optimum amount, its compressive 
strength and water permeability will reduce. This is due to the reducing amount of cement content in concrete 
mixes as the replacement takes higher proportion of cementitious function. It is related to the decreasing amount 
of C-S-H gel which latter enable to fill up the ITZ and micropores within the matrices in concrete. Consequently, 
water-filled space is then created and will lower the performance of concrete.   

Also, it is evident that MBS does behave like other high pozzolanic reactivity of Supplementary Cementitious 
Material (SCM) namely silica fume and metakolin as depicted in Table 6. It can be seen from Table 6 that MBS 
is in agreement with Poon et al. (2006), Wong and Abdul Razak (2005), Mazloom et al. (2004) and Zhang et al. 
(1996) which shows the enhancement in compressive strength of concrete as SCM was included in the concrete 
mixes. However, MBS concrete obtained lower compressive strength in 7 and 28 days compared to those of 
silica fume and metakolin in Poon et al. (2006) study for concrete with same w/c ratio. This is might be due to 
different strengthening mechanisms of silica fume, metakaolin and MBS in concrete. According to Poon et al. 
(2006), the different strengthening mechanisms for different SCM have contributed into different development 
of compressive strength. This is due to pozzolanic reaction which occurred from SCM has becomes as dominant 
mechanism at early or later age. 

 
Table 6. Findings for various types of Supplementary Cementitious Material (SCM) 

Reference Type of Supplementary 
Cementitious Material 

(SCM) 

 

w/c ratio

 

% SCM 

Compressive Strength (MPa) 

7 
days

28 
days

% difference with 
respect to control 

7 days 28 days 

Current Study  

 

MBS 0.5 0 

4 

8 

12 

20.0

24.0

24.8

29.8

30.2

32.4

37.5

39.0

0 

20.0 

24.0 

49.0 

0 

7.3 

24.2 

29.1 
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Poon et al. 
(2006) 

 

Silica fume 

 

0.5 

 

0 

5 

10 

41.2

47.0

47.4

52.1

54.3

58.4

0 

14.1 

15.0 

0 

4.2 

12.1 

Metakaolin 

 

0.5 

 

0 

5 

10 

20 

41.2

45.9

55.2

43.2

52.1

57.1

66.2

58.4

0 

11.4 

34.0 

4.9 

0 

9.6 

27.1 

12.1 

Wong and 
Abdul Razak 

(2005) 

Silica fume 

 

0.3 

 

0 

5 

10 

15 

72.0

81.0

78.5

74.5

83.5

91.0

95.0

98.5

0 

12.5 

9.0 

3.5 

0 

9.0 

13.8 

18.0 

Metakaolin 

 

0.3 

 

0 

5 

10 

15 

72.0

76.5

81.0

80.0

83.5

88.5

93.5

94.5

0 

6.3 

12.5 

11.1 

0 

6.0 

12.0 

13.1 

Mazloom et 
al. (2004) 

Silica Fume 0.35 0 

6 

10 

15 

46 

50.5

52 

53 

58 

65 

67.5

70 

0 

9.8 

13.0 

15.2 

0 

12.1 

16.4 

20.7 

Zhang et al. 

(1996) 

Silica fume 0.3 0 

10 

52.1

64.8

61.0

78.9

0 

24.4 

0 

29.3 

 
6. Conclusions 
This study has indicated the potential benefit of MBS in enhancing the compressive strength and the water 
permeability of concrete. The pozzolanic properties of MBS satisfy the ASTM C 618-08a standard as pozzolan 
materials where the proportion of silica, alumina and iron oxide is 88.544%, which is exceeding the standard. It 
reacts with calcium hydroxide generated from cement hydration has increase the CSH gel to fill up the ITZ and 
micropores within the matrices in concrete. The significant findings from this study are: 

 Workability of fresh concrete decreased with as the content of MBS added to the concrete increased.  

 The optimum percentage of MBS added to the concrete that lead to good performance of concrete in 
terms of compressive strength and water permeability was 12%.  

 The compressive strength increased up to 43% when 12% of MBS was added to the concrete after 90 
days period.  

 Increasing the content of MBS exceeding the optimum percentage showed inferior performance of the 
concrete.  

These findings have given good potential in adding values to normal RHA in the application of enhancing the 
performance of concrete. 
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Note 
Note-SP is a superplasticizer. 


