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Abstract 
The objective of our study is to predict the flame spread route by the quantity of combustible materials and their 
placement. In this paper, we examine non-uniform flame spread in open air along a thin combustible solid with 
randomly distributed square pores of two different sizes (8 x 8 and 4 x 4 mm respectively). Experimental results 
show that the flame-spread probability falls with increasing porosity. Despite uniform porosity, the flame-spread 
probability differs with the rate of large square pores to small square pores. For a combustible area larger than a 
noncombustible area, the flame-spread probability reaches the local minimum value with a change in R8 (ratio of 
8 mm pores) under the same porosity condition. Conversely, for a combustible area smaller than a 
noncombustible area, the flame-spread probability reaches a local peak with changing R8 under the same 
porosity condition. In addition, we calculated the ratio of the unburned area (unburned area / total combustible 
area) by counting the unburned cells after the flame spread test, which might be useful to predict the fire hazard. 
We found that the ratio of unburned area grows with increasing porosity. 
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1. Introducation 
Multiple fires frequently occur in urban areas after a major earthquake. In fact, several fires broke out after the 
Great Hanshin Earthquake and Great East Japan Earthquake. Urban areas include combustible areas such as 
wooden structures and plants, as well as noncombustible areas, e.g. concrete buildings, roads, parks, and parking 
spaces. This means flames spread non-uniformly. In addition, it is difficult to predict the flame spread route 
because it also depends on the terrain and wind direction. Figure 1 shows photography of some urban area in 
Japan and a binary image, whereby the urban area is divided into combustible and noncombustible areas. As 
shown in Figure 1, combustible and noncombustible areas of various sizes are randomly distributed in an urban 
area. When a fire starts somewhere, one case involves the flame spreading and combustible materials burning out, 
and the other involves the flame self-extinguishing on the way. The threshold for burning out or 
self-extinguishing may be determined by the quantity of combustible materials and their placement. Establishing 
security by predicting the flame spread route is important to save human life in urban fires.  

Many studies have been conducted focusing on flame spread along a uniform solid fuel load as a fundamental 
component of fire research, but few have examined non-uniform flame spread in mixed combustible / 
noncombustible materials. Recently, a few papers have been published concerning the application of percolation 
theory to non-uniform flame spread. Percolation theory reveals a probabilistic connection route among particles 
randomly arranged on a grid, which may or may not be useful in predicting flame spread. A few numerical 
simulations have also been conducted using a square grid model, however, discussing from an experimental 
perspective is rare. Therefore, in our previous paper, we conducted experiments concerning flame spread along a 
thin combustible solid with randomly distributed circle or square pores. We also discussed the relationship 
between porosity and flame-spread probability based on percolation theory. However, combustible and 
noncombustible areas vary in respective size in real urban districts, which affects the flame-spread probability 
and damage by fire, despite the ratios of combustible and noncombustible areas being the same. 

In this paper, we studied the flame-spread probability along a thin combustible solid with randomly distributed 
square pores of various porosity and in two different sizes. In addition, we introduced the ratio of the unburned / 
combustible area, by counting unburned sample cells after the flame spread test, and discussing the hazard by 
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sizes randomly distributed. The following conclusions can be summarized here: 

1) The flame-spread probability decreases with increasing porosity. However, with changing R8 at the same 
porosity, the flame-spread probability reaches the local minimum and maximum values at around 40 and 50% 
porosity respectively. At 60% porosity, some slits are formed and the flame-spread probability becomes nearly 
0%. This tendency is similar to the threshold of percolation theory, meaning flame spread can be discussed in 
terms of percolation theory. 

2) The average number of slits, Ns, grows with increasing porosity ranging from 40 to 60%. However, Ns differs 
with different R8 at the same porosity. This difference is considered attributable to the presence or absence of a 
slit. For porosities of 40 and 45%, a slit is formed by distribution of small pores at R8 of around 80%. For 
porosities of 50 and 55%, the flame spread route is formed by the distribution of combustible cells at R8 of 
around 67%. For 60% porosity, almost two slits are formed for all R8. In fact, the flame-spread probability falls 
with increasing Ns. 

3) The ratio of unburned area to total combustible area grows with increasing porosity. This tendency is observed 
in all R8. However, under the same porosity condition, the Ru differs with R8. The value of Ru at 92% of R8 peaks, 
and the value of Ru at 57% of R8 has a minimum value for all porosities. We suggest that the fire hazard in urban 
areas is most dangerous where the number of noncombustible small spaces is three times larger than that of large 
spaces. 

4) The ratio of unburned area large increases around 60% porosity for all of R8. From a fire-safety perspective, it 
is advisable that the ratio of noncombustible area raise more than 60% relative to an urban area. Furthermore we 
should place the combustible materials in an urban area with spacing which fire cannot jump over. 
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Nomenclature 
d pore-size (diameter of the side of the square pore) 

F flame-spread probability 

Fj flame jumping probability 

Lh pre-heat length ahead of the flame lending edge 

N number of flame spread 

N4 number of 4 mm pores 

N8 number of 8 mm pores 

Nj number of flames jumping 

Ns average number of slits 

P porosity 

R8 ratio of 8 mm pore area 

Ru ratio of unburned area 

S scale ratio ( ≡ d / Lh) 
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