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Abstract  
Wireless sensors for Structural Health Monitoring (SHM) is an emerging new technology that promises to 
overcome many disadvantages pertinent to conventional, wired sensors. The broad field of SHM has experienced 
significant growth over the past two decades, with several notable developments in the area of sensors such as 
piezoelectric sensors and optical fibre sensors. Although significant improvements have been made on damage 
monitoring techniques using these smart sensors, wiring remains a significant challenge to the practical 
implementation of these technologies. Wireless SHM has recently attracted the attention of researchers towards 
un-powered and more effective passive wireless sensors. This article presents a review of some of the underlying 
technologies in the field of wireless sensors for SHM - with a focus on the research progress towards the 
development of simple, powerless, yet effective and robust wireless damage detection sensors. This review 
examines the development of passive wireless sensors in two different categories: (1) use of oscillating circuits 
with the help of inductors, capacitors and resistors for damage detection; and (2) use of antennas, Radio 
Frequency Identification (RFID) tags and metamaterial resonators as strain sensors for wireless damage 
monitoring. An assessment of these electromagnetic techniques is presented and the key issues involved in their 
respective design configurations are discussed.  

Keywords: structural health monitoring, wireless sensors, damage monitoring, oscillating circuits, metamaterial 
resonators, RFID 

1. Introduction 
Over the past few decades, the field of Structural Health Monitoring (SHM) has attracted considerable research. 
Several effective damage monitoring techniques like strain measurement, electro-mechanical impedance, 
scattering of guided waves, acoustic emissions, dynamic response and optical techniques have been developed. 
Several sensors like strain gauges, piezoelectric sensors and optical fibre sensors have been employed (Housner 
et al., 1997; Chang, 2002; Auweraer & Peeters, 2003; Chang, Flatau, & Liu, 2003; Wang & Rose, 2003; Wang 
& Chang, 2005).  

The above mentioned sensors are extensively used for damage monitoring; however, they do present certain 
limitations. Most of the existing sensors require an input power supply. When the sensors detect any change in 
strain or stress, they need to transfer the information, for signal processing and analysis, to the data acquisition 
system which may be located at the base station far away from the structure being monitored. The necessary 
connection of sensors by wires for power and data transmission often renders the SHM system complex to 
implement and difficult to maintain. The whole structure sometimes needs to be redesigned to accommodate the 
connections among these sensor networks; therefore, increasing the cost of manufacture. The technical 
difficulties of designing sensor systems along with their connections become more pronounced when the 
structure under investigation contains moving parts, such as a helicopter rotor. Furthermore, wiring between 
sensors and base-stations increases the cost of replacing damaged or degraded sensors. 

In order to tackle these challenges, researchers have started investigating options which could result in wireless 
SHM. By making the sensors wireless through the incorporation of energy coupling and communication 
functionalities, it is possible to integrate the data acquisition and signal processing system in the same sensor unit. 
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1 (2 )f LC                                      (1) 

Where f is the natural frequency; L is the inductance; and C is the capacitance. The inductance of the solenoid 
can be calculated by, 

2
0L k N A l                                      (2) 

Where k is the form factor; µ is the permeability; N is the number of turns; A is the cross sectional area; and l0 is 
the solenoid height. 

Thus, 
2

0(1 2 )f l Ck N A                                  (3) 

By applying strain the cross sectional area of the solenoid changes and from Equation 3 its resonant frequency 
changes accordingly. A high frequency oscillator was used to measure the resonant frequency of the solenoid. 
The dip in the RF power is measured to find the frequency of the sensor and thus the applied strain. The 
experimental setup of this concept is illustrated in Figures 2 and 3. 

 
Figure 2. Schematic of guillotine compressing non-embedded sensor coil (Butler et al., 2002) 

 

 
Figure 3. Illustration of experimental setup (Butler et al., 2002) 

 

Chuang, Thomson, and Bridges (2005) developed an embeddable wireless strain sensor which works with the 
same principle as the previous case. The difference is that instead of a solenoid a coaxial resonant RF cavity was 
used as the sensor (Figure 4). The cavity length changes under the applied load thereby changing its resonant 
frequency. The shift in the resonant frequency with respect to the applied strain is shown in Figure 5. This sensor 
was shown to be linear up to 130 με. The shift in the frequency was about 2.42 kHz per με. The relationship 
between the applied strain and the resonant frequency of the cavity was derived using the following equations. 

1
(1 )

2( ) 2 1str unstr

C C
f f

l l l



        

                         (4) 

r str unstr unstrf f f f                                      (5) 

 
Figure 4. Electromagnetic coaxial cavity sensor. The dominant TEM001 resonant mode is shown (Chuang et al., 

2005) 
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Figure 10. The biasing and sensing elements of the sensor are separated by a flexible layer to provide proper 

strain for a given compressive force (Tan et al., 2008) 

 

In this section, several wireless strain sensing techniques utilising LC or RC oscillating circuits are discussed. 
The summary of the most important techniques are presented in Table 1. For these circuits to resonate at a 
specific frequency, power has to be supplied to the circuits. Some of these techniques employed external 
frequency oscillators and hand interrogators to provide power to the LC/RC circuits wirelessly. Thus, it is 
important to ensure an efficient energy coupling between the transmitter and the receiver. In SHM in order to 
determine and predict the crack propagation, it is essential to measure the strain in the structural member and to 
determine its spatial distribution. The work reviewed in this section does not refer primarily to the strain spatial 
distribution which is a major concern for researchers. Although these techniques are shown to be linear, it is 
important to ensure an acceptable reliability and repeatability for practical applications. These limitations 
provided the direction for further research, leading to the development of techniques discussed in the next 
section. 

 

Table 1. Various techniques employed using oscillator circuits for wireless strain measurement 

Authors Technique 

Butler et al., 
2002 

The strain changes the dimensions of the inductor and hence the inductance in the LC 
circuit, thus changing the resonant frequency. 

Chuang et al., 
2005 

The strain changes the cavity length of the coaxial RF cavity thereby changing the 
resonant frequency. 

Umbrecht et 
al., 2005 

The strain moves the incompressible liquid through the capillary which is wirelessly 
read using ultrasound imaging technique. 

Matsuzaki & 
Todoroki, 2005 

The strain changes the capacitance of the RC oscillating circuit and hence changes the 
resonant frequency. 

Jia et al., 2006a 
The strain changes the capacitance of the interdigital capacitor coupled with the spiral 
inductor thereby changing the frequency of the LC circuit. 

Tan et al., 2008 
The strain deforms the flexible layer between the magnetically soft material and the 
permanent magnet hence changing the harmonic spectrum. 

 

3. Use of Resonators and Antennas as Strain Sensors 
The works discussed in the previous section are fairly simple and effective; however, researchers started to 
develop sensors which could directly convert strain into frequency shifts that could be read wirelessly. Antennas 
and electromagnetic resonators are passive devices which could be illuminated by incident electromagnetic 
waves and the backscattered signals could be received wirelessly using other antennas. Researchers have further 
tried to determine the direction of the strain induced in the structure. However, at present, it seems the work in 
this field is just starting. This section presents the recent techniques employed for wireless strain and damage 
monitoring which utilise resonators or antennas as strain sensors. 

Das, Khorrami, and Nourbakhsh (1998) designed a novel sensor/actuator system which utilizes a patch antenna 
with a multilayer substrate (Figure 11). The multilayer consists of a dielectric layer and a piezoelectric layer. The 
piezoelectric layer is the sensing unit which converts the measured strain/vibration into voltage. The antenna 
receives wireless EM signal from the base station and generates a voltage which gets added up to the 
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piezoelectric voltage and this modulated signal is transmitted back to the base station. This antenna can also be 
used for actuating the piezoelectric layer by supplying the required voltage to the piezoelectric by receiving 
wireless electromagnetic power. Das et al. (1998) developed a dielectric-piezoelectric grating technique to 
distinguish sensing and actuating activities. Due to this grating technique, the sensing and actuating functions are 
activated separately using orthogonal polarization orientation techniques. It is also feasible to stack such 
microstrip patch antennas with dimensions to operate at different frequencies. This sensor integrates wireless 
power reception, sensing and data communication in one simple unit. However, this sensor could function well 
only when it is interrogated from a very close distance. 

 
Figure 11. Microstrip antenna with Dielectric-Piezoelectric multilayer substrate (Das et al., 1998) 

 

Loh, Lynch, and Kotov (2007) developed a wireless RFID based sensor by incorporating the field of 
nanotechnology. They utilized a layer by layer fabrication technique of Single Walled carbon Nano-Tube 
(SWNT) films. These films could act as a strain or a pH sensor because their capacitance or resistance changes 
accordingly. When these films are integrated with a coil antenna, they could be inductively coupled using a 
RFID reader and thus rendering the sensor completely wireless. Because these sensors act as a RLC oscillating 
circuit, the resonant frequency changes with the change in mechanical behaviour of the structure. Use of 
conducting carbon nanotube-gold nanocomposites as an inductor for wireless coupling was also investigated. 
However, the inductance was shown to be low, thereby limiting its wireless range to a very small distance. The 
size of the film sensor is 2.5 cm × 2.5 cm and is stated to be sensitive and linear. Although this technique might 
be useful, it is believed that the manufacturing of such film nanocomposites could be expensive. 

Matsuzaki, Melnykowycz, and Todoroki (2009) developed a very innovative technique for wireless detection of 
damage in CFRP. The CFRP structure (e.g. the wing structure) can be modeled as a half-wavelength dipole 
antenna (Figures 12 and 13). The resonant frequency of the antenna is dependent on the length of the structure. 
When there is a crack perpendicular to the fibre direction, the dipole length decreases and hence the resonant 
frequency increases. Therefore, by measuring the frequency, the length of the dipole could be back calculated. 
With the length value, the crack location could be precisely identified. This method can only be used in 
structures with a specific geometry and it can only detect the crack when the crack reaches its critical length. 

 
Figure 12. Simulation model of a rectangular dipole antenna (Matsuzaki et al., 2009) 

 

 
Figure 13. Schematic of the wireless crack detection mechanism (Matsuzaki et al., 2009) 
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Bhattacharyya, Floerkemeier, and Sarma (2009) investigated a RFID tag antenna sensor for displacement 
measurement (Figure 14). A simple RFID tag was kept at a very close distance to a metal surface which was 
attached to the structure. As the structure deforms, the metal surface comes closer to the RFID tag which affects 
the antenna’s impedance and hence changes the backscattered power. It also affects the threshold power required 
to turn the RFID tag ‘on’. This RFID tag can be queried wirelessly from a convenient location using an RFID tag 
reader/transmitter. By processing the backscattering from the RFID tag, the displacement of the structure could 
be evaluated. Although this sensor is very cheap and simple to design, there are certain challenges associated 
with this design. Obtaining the displacement data from backscattering becomes difficult if there are other 
metallic elements in the host structure. Due to the randomly moving metallic components, the sensor might give 
false positive results. Moreover, the sensor is sensitive to the displacements of the structure only in one direction. 
However, it is mentioned that this sensing technique could be optimized and utilized for an effective passive 
wireless displacement sensing system.  

 
Figure 14. RFID sensor setup (Bhattacharyya et al., 2009) 

 

Occhiuzzi, Paggi, and Marrocco (2011) proposed a meandered RFID tag sensor. This sensor can measure strain 
based on the change in the impedance and gain of the tag as a result of the deformation in the meandered line. 
This RFID tag requires an IC chip which increases the complexity of the structure. The shift in the power level 
as a result of the applied strain cannot be distinguished from the shift caused by other parameters that may 
influence the power transmitted (i.e. propagation path-loss, reflection, diffraction etc.). Caizzone and Marrocco 
(2012) further studied the application of this sensor in a RFID network grid to monitor the deformation of the 
structure. Their study shows that increasing the number of RFID tags does not further improve the sensitivity of 
the grid when the spacing between the sensors becomes lower than an optimum threshold. 

Mandel, Schussler, and Jakoby (2011) proposed another concept for wireless passive strain measurement based 
on RFID tags principles. The proposed structure is composed of two layers of metal divided by a dielectric layer. 
The two metal layers are connected through the dielectric using an interconnecting via. This “mushroom 
structure” can be considered as a special case of a short-circuited microstrip patch antenna. One sensor structure 
comprised different elements, which were separated by gaps in the top metal layer and the substrate. The 
resonance frequency of each element is determined by the gap capacitance and the via inductance. Different 
fixed resonant frequencies can be used for identification purposes. The performance of this sensor was 
investigated using numerical simulations and experimental measurements. However, the linearity of sensor with 
applied strain is not discussed and further studies are required to quantify its performance. 

Another recent study on RFID tags for passive wireless strain measurement was presented by Yi et al. (2011a). 
The sensor consists of a folded rectangular microstrip patch antenna with an IC chip. This passive wireless strain 
sensor operates based on a change in the impedance of the patch antenna as a result of the applied strain, which 
introduces a mismatch between the antenna and the IC package. When the EM power is sent wirelessly from a 
remote interrogator, the patch antenna receives the power and transfers it to the chip. This transfer from the tag 
to the chip is maxima when the interrogation frequency matches with the resonance frequency of the patch 
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antenna. The effect of changes in the impedance of the microstrip line between the rectangular patch and the IC 
was not considered in the model. The strain measurement was based on the change in the transmitted power 
which could also be affected by other factors. Due to the lack of sharpness in the transmitted power trace the 
exact resonant frequency of the RFID tag was difficult to ascertain. Hence, the resonant frequency of the tag was 
extracted using curve fitting techniques for the wireless strain measurements. Effect of antenna substrate 
thickness on the interrogation distance and strain transfer rate is further studied by Yi et al. (2011b). 

Further investigations by Yi et al. (2012a) show that the shift in the resonant frequency of this sensor can be 
identified without the need for curve fitting for higher strain values (>4997 με). Also, this sensor can be used for 
monitoring crack growth when the crack propagates in one direction through the sensor. Yi et al. (2012b) 
implemented this sensor in an array to measure strain in different locations wirelessly. It is shown that, using the 
RFID tag protocols, different sensors in the array can be activated individually with minimum interference with 
other neighbouring sensors. 

 
Figure 15. The RFID folded patch antenna strain sensor (Yi et al., 2012a) 

 

Melik, Pergoz, Unal, Puttlitz, and Demir (2008) developed a passive on-chip RF-MEMS strain sensor for bio 
medical applications. As the material is stressed, the area of the sensor (spiral resonator) decreases thus its 
resonant frequency shifts. To make it completely wireless, two antennas of the same configuration were used for 
receiving and transmitting the signals. The micrograph of the fabricated sensor system is shown in Figure 16. 
This system is very small in size and has a very high quality factor. 

 
Figure 16. A plan-view micrograph of 270 μm × 270 μm on-chip sensor along with the on-chip antennas for 

communication (Melik et al., 2008) 

 

Melik, Unal, Perkgoz, Puttlitz, and Demir (2009a) published another paper which demonstrated the use of a 
metamaterial-based wireless strain sensor for bio-medical applications. Metamaterials are artificial materials 
engineered to provide properties which may not be readily available in nature. Since metamaterials are fabricated 
for specific requirements, they could have extremely useful electromagnetic properties. Split Ring Resonator 
(SRR) is one of the geometrical configurations used in the fabrication of metamaterials. Melik et al. (2009a) used 
SRRs instead of the spiral case (Melik et al., 2008) because they have more gaps between the rings. These gaps 
reduce during compression and increase during tension both changing the capacitance and thus shifting the 
resonant frequency. This sensor was designed to be used for monitoring fracture healing and other biomedical 
applications. Figure 17 shows the shift in the resonant frequency of the SRR sensor under compressive strain. 
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terminating impedance of the antenna from open to short circuit. This change in circuit provides a 180° phase 
change and thereby helps in distinguishing the antenna backscattering mode from the structural backscattering 
mode. When the backscattering is measured using a horn antenna, a light beam is also sent to activate the switch 
in order to implement a phase change. 

 
Figure 23. Passive antenna sensor with a light activated RF switch (Deshmukh & Huang, 2010) 

 

Deshmukh and Huang (2010) studied the theoretical wireless interrogation range using the power budget model. 
The interrogation distance is, 

2 2
11

max

( )

4
sd ds t h sD D S PG Gc

R
f NF SNR
 

   
                        (9) 

Where c is the speed of light; f is the frequency; Dsd and Dds are insertion losses due to the switch; |S11|is the 
scattering parameter; Pt is the transmitted power; NF is the noise factor; SNR is the signal to noise ratio; and Gh 
and Gs are gains of the horn and antenna sensor, respectively. This formula gives a good idea about the factors 
that affect the wireless interrogation range. The wireless range could be increased by increasing the transmitted 
power, antennas’ gain, and reducing the SNR. It is mentioned that by increasing the interrogation power to 30 
dBm and gain of the horn antenna to 20 dB, the interrogation distance could be up to 3.5 m. 

Deshmukh et al. (2009), Erdmann, Deshmukh, and Huang (2010) and Mohammad and Huang (2010) tried to 
employ the rectangular patch antenna for sensing of fatigue crack growth. The patch antenna was placed on the 
crack in a lap joint structure and the shift in the resonant frequency with respect to crack growth was investigated 
(Figure 24). The effect of the resonant frequency due to the plate on top of the antenna sensor was also studied.  

 
Figure 24. Shift of |S11| curves with crack growth (Erdmann et al., 2010) 

 

The concept of crack detection using microstrip patch antennas was followed by Mohammad, Gowda, Zhai, and 
Huang (2012). Numerical simulations and experimental measurements were employed to detect the direction of 
the crack in the structure in addition of its presence. It was shown that a normalized frequency ratio (ratio of 
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None of the above work on microstrip patch antenna strain sensors provided the answer for a passive wireless 
strain sensor which does not require additional integrated circuit units for wireless interrogation of the sensor. In 
the work by Deshmukh et al. (2009) and Tata et al. (2009a) the wireless interrogation of the rectangular patch 
antenna was achieved using an additional switch which requires wires or batteries. In the study of Deshmukh 
(2010) this switch was activated using a photo cell which further increases the complexity of the sensor unit and 
also requires a direct light source to activate the switch. In these works the resonant frequency of the patch 
antenna was read wirelessly; however, the strain was not measured. In other works on microstrip patch antennas 
a SMA connector was used to read the resonant frequency of the antenna sensor. 

Daliri et al. (2012b) developed a method for wireless interrogation of CMPA strain sensors without the need for 
additional circuit elements. The CMPA was excited using a linearly polarised double ridged horn antenna to read 
its resonant frequency. This concept was studied using computational simulations and experimental 
measurements. The strain in aluminium and CFRP panels was measured wirelessly using this technique. 
However, the interrogation distance was limited to 5 cm. This technique also enables measuring strain in any 
desired direction because the linear horn antenna excites the CMPA in the direction of its polarization. By 
rotating the horn antenna the strain can be measured in the corresponding direction. Daliri et al. (2012c) further 
increased the interrogation distance of the CMPA sensor up to 20 cm by using a high quality factor CMPA. The 
high quality factor CMPA was developed using a substrate with low loss and high permittivity. 

Regardless of the novelty and promising future of the discussed antenna sensor structures, there are certain key 
issues which have to be addressed to make these aforementioned works suitable for practical applications. 
Metamaterial sensors are very small and sensitive; however, they have not been employed to detect cracks till 
date and have practical limitations for monitoring strain in metallic structures. Moreover, there is not much 
information about the distance up to which these sensors could be wirelessly read. The work of Matsuzaki et al. 
(2009) involves the use of CFRP due to its good electrical conductivity. This technique cannot be extended to 
GFRP and other non-conducting structures. 

Microstrip patch antenna sensors have been very useful in predicting the strain along with its direction. However, 
it is essential to design the antenna to be very sensitive to strain such that the shift in the frequency is more 
detectable. The wireless interrogation distance of these sensors needs to be improved significantly in order to 
make these sensors suitable for practical applications. Once these issues are addressed, these sensors could be 
installed in an array on the host structure for wireless SHM. Table 2 summarizes the important techniques that 
are provided in this section. Table 3 compares the various techniques covered in this article in general and in 
terms of important design parameters based on the authors' understanding of the sensor types. It is clearly 
evident from this table that each sensor type has its own advantages and limitations and no single technique has 
all the desirable properties. 

 

Table 2. Various techniques investigated for use of resonators as strain sensors 

Authors Technique 

Melik et al., 2009 a 
& b, 2010 

Use of split rings, spirals and metamaterial based strain sensors whose resonant 
frequency changes due to the change in their dimensions. 

Matsuzaki et al., 
2009 

Use of carbon fibres in the structure as a dipole antenna. The crack reduces the 
length of the dipole thereby shifting its frequency. 

Tata et al., 2009 a & 
b; Deshmukh & 
Huang, 2010 

Use of rectangular microstrip patch antennas whose resonant frequency changes 
with change in its dimension due to strain. 

Daliri et al., 2010 a 
& b; 2011 a & b; 
2012 a & b 

Use of circular microstrip patch antennas whose resonant frequency changes 
with change in its dimension due to strain. 

Yi et al., 2011 a & b; 
2012 a & b 

Use of rectangular microstrip patch antennas in combination with IC chips to 
form a RFID strain sensor whose resonant frequency changes with change in its 
dimension due to strain. 
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Table 3. Comparison of various types of sensors based on design parameters 

Parameter MEMS sensors LC/RC circuit sensors Antenna sensors 

Power supply 
Need battery for 

wireless monitoring. 

LC circuits could receive power 
wirelessly. RC circuits need 

cables/wires. 

Can receive power 
wirelessly from a transmitter 

antenna. 

Active/Passive 
Could be active and 

passive. 
Could be active and passive Passive. 

Ability to 
detect strain 

direction 

Could be designed 
to detect strain in 

any direction. 
Generally unidirectional. 

Could be designed to detect 
strain in any direction. 

Wireless 
range 

Can transmit signals 
over long distances. 

Can transmit signals and receive 
power effectively only over few 

centimetres. 

Has a small wireless range 
(< 1m). 

Design 
complexity 

Highly complex due 
to integration of 

various 
components. 

Complex due to presence of 
inductor and capacitor integration. 

Simple design due to the 
presence of only the 

antenna. 

Size and 
weight 

Large in size and 
heavy due to 

presence of battery 
and antenna. 

Moderately large in size and less 
heavy compared to MEMS. 

Smaller in size and much 
lighter compared to other 

sensors. 

 

4. Conclusion 
Structural health monitoring has been an important research area for the last few decades. The cumbersome use 
of wires to connect sensors with base stations has prompted researchers to investigate the feasibility of wireless 
SHM by incorporating various electromagnetic theories to overcome the limitations of the wired sensors.  

Significant amount of research has been done in the field of MEMS systems and their application to SHM. 
Several different types of architectures with different specifications of microprocessors have been investigated. 
In order to address the power requirements of these sensing systems, few power harvesting techniques have also 
been investigated for effective functioning of these sensor systems. However, the design of such sensor units are 
relatively more complicated due to the incorporation of the sensing unit, signal conditioning unit, antennas and 
power harvesting devices. Thus, these sensors become expensive and the performance of these sensors has to be 
monitored regularly. In recent years, researchers have started using resonators and antennas as strain sensors 
where the resonant frequency of the resonator shifts due to the change in their dimensions during a structural 
deformation. These devices could be made small and simple which becomes elegant to install and read 
wirelessly. Moreover, the use of metamaterial based resonators could make these sensors very small thereby 
providing the feasibility for an array of sensors for damage monitoring. 

In the use of patch antennas, along with the strain, the spatial orientation of the strain could also be wirelessly 
estimated which becomes crucial in terms of crack direction and growth prediction. However, the work on the 
use of resonators and antennas as sensors in SHM is presently at the embryonic stage. More effort towards these 
sensors could prove fruitful, especially work directed towards effective wireless SHM with good damage 
discrimination, sensitivity and linearity. It is envisaged that once these resonators or antennas can be designed to 
exhibit linear frequency shifts with strain, its utility can be extended to assess damage in structures, irrespective 
of the dielectric properties of the host structure. Given the comparative parameter-based assessment of the 
technologies discussed in this paper (in Table 3), it might be that the way ahead in wireless SHM should consist 
of a combination of the technologies discussed in this paper, since no single technique had all the desirable 
properties. 
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