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Abstract 

The paper represents an efficient multigrid algorithm without the problem-dependent components for solving the 
Navier–Stokes equations in primitive variables formulation on structured grids. The algorithm consists of Vanka 
smoother, pressure decomposition and robust multigrid technique. Detailed description of the proposed approach 
and results of numerical experiment are given.  
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1. Introduction  

Let N be a bounded, connected domain with a piecewise smooth boundary  . Navier-Stokes equations 
governing flow of a Newtonian, incompressible viscous fluid can be written in the following operator form  

( )V P F

V G

  


 




,                                      (1) 

where is a nonlinear convection-diffusion operator, P is a pressure gradient, F and G are source terms. Given 
a boundary data, the problem is to find the velocity field V


and pressure P . In follows we assume that the 

boundary conditions are included in the operators and source terms.  

Discretization of (1) using the finite differences or the finite elements and Picard or Newton linearization result 
in a generalized saddle point system  

0

T fA B

gB




    
    

    
,                                 (2) 

in which and  represent the discrete velocities and discrete pressure, respectively. Here nonsymmetric A is a 
block diagonal matrix, where each block corresponds to a discrete convection-diffusion operator  with 
appropriate boundary conditions. The rectangular matrix TB represents the discrete gradient operator 
while B represents its adjoint, the divergence operator.  

The saddle point problem (2) can be solved by the preconditioned Uzawa algorithm defined as 
( 1) ( ) ,m T mA f B                                      (3a) 

( 1) ( ) ( 1) ,m m mQ Q B g                                  (3b) 

where matrix Q  is a preconditioner. Substitution of ( 1) 1 ( )( )m T mA f B    from (3a) into (3b) gives 
( 1) 1 1 ( ) 1 1( ) ( ).m T mI Q B A B Q B A f g          

It is result to the following estimation 
( 1) 1 1 ( ) ,m T mI Q B A B                

where  is an exact solution. Choice of the preconditioner Q  so  
1 1 1TI Q B A B q      
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leads to the Uzawa iteration convergence 
( ) (0) .m mq          

Preconditioning has been and remains a most active area of research, some the most widely used and promising 
methods are described in Benzi (2005). Total efforts needed for solving the Navier-Stokes equations by Uzawa 
method are sum of efforts for the algorithm adaptation to the given problem (choice of the preconditioner Q , 
problem-dependent components for the matrices A  and Q inversion, etc.) and efforts for solution of the saddle 
point problem (2). Optimal adaptation of the algorithm to the given problem is difficult question, but it 
guarantees high computational efficiency of the Uzawa solver.  

On the other hand, the algorithms with the least number of the problem-dependent components seem to be more 
preferable for practical applications because of reduction of efforts for their adaptation. However in this case it is 
difficult to obtain high computational efficiency.  

The goal of this paper is to present and test an iterative robust solver for the Navier-Stokes equations on 
structured grids. The method is based on the problem-independent components: Vanka smoother, pressure 
decomposition and robust multigrid technique. Special attention is paid to robustness and efficiency of the 
offered algorithm. 

2. Vanka Smoother 

Two-dimensional steady Navier-Stokes equations (1) can be written as: 

a) continuity equation 

0
u

x y

  
 

,                                      (4a) 

b) X-momentum 

2 2 2

2 2

( ) ( ) 1

Re

u u p u u

x y x x y

                
,                        (4b) 

c) Y-momentum 

2 2 2

2 2

( ) ( ) 1

Re

u p

x y y x y

                  
,                        (4c) 

where Re is a Reynolds number. 

Discrete linearized continuity and momentum equations can be written as:  

a) discrete continuity equation 

1 1 0i j ij ij ij

x y

u u

h h

   
  ,                                 (5a) 

b) discrete linearized X-momentum 

1 1 1 1

1
1 1 1 1

w e s n
ij i j ij i j ij ij ij ij ij ij

ij i jNE NW SE SW u
ij ij ij i j ij ij ij i j ij

x

A u A u A u A u A u

p p
A A A A s ,

h
   

   


   

    


     

               (5b) 

c) discrete linearized Y-momentum 

1 1 1 1

1
1 1 1 1

w e s n
ij i j ij i j ij ij ij ij ij ij

ij ijNE NW SE SW
ij i j ij ij ij i j ij ij ij

y

A A A A A

p p
A u A u A u A u s .

h


       


   

    


     

    

                    (5c) 

Coefficients in the momentum equations (excepting discrete pressure gradients) are functions of the velocity 
components. Stencils for the approximation of the continuity (4a) and momentum (4b)-(4c) equations on a 
staggered grid are shown on Figure 1. 
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Figure 1. Stencils and the control volumes for discretization of the Navier-Stokes equations on the staggered 

grids: X-momentum (left), Y-momentum (centre), continuity equation (right) 
 

Vanka-like procedures solve for four velocity components 1, ,ij i j iju u  and 1ij  (at the four cell faces) and the 
pressure ijp (at the center of the cell) simultaneously for each cell (Figure 1, right) Vanka (1986). The discrete X 
and Y-momentum equations (5b)-(5c) for the four cell faces together with the continuity equation (5a) can be 
written as  

1

1
11 1 1 1

1

1
11 1 1 1

1 1 1 1

( )

( )

( )

( )

( ) ( ) ( ) ( ) 0

e SE NE
ijij ij ij ij x

w SW NW
i ji j i j i j i j x

NW NE n
ijij ij ij ij y

SW SE s
ijij ij ij ij y

ijx x y y

uA A A A h b

uA A A A h

A A A A h

A A A A h

ph h h h







   




   

   

   
  
  
   
  
  
       

   
   

1

2

3

4

0

b

b

b

 
 
 
 
 
 
 
 

,                   (6) 

where the components of the right-side vector are given by  

1
1 1 1 1 1 1 1

1
2 1 1 2 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1

i ju w s n NW SW
ij ij i j ij ij ij ij ij i j ij i j

x

i ju e s n NE SE
i j i j i j i j i j i j i j i j i j i j i j

x

w e s
ij ij i j ij i j ij ij i

p
b s A u A u A u A A ,

h

p
b s A u A u A u A A ,

h

b s A A A A

 

 

  


     


             

  

      

      

        1
1 1 1

1
4 1 1 1 1 1 1 1 1 2 1 1 1 1 1

ijSE SW
j i j ij ij

y

ijw e n NE NW
ij ij i j ij i j ij ij ij i j ij ij

y

p
u A u ,

h

p
b s A A A A u A u .

h
   


  


             

 

      



    

 

The system (6) can be solved by Gaussian elimination. Accounting nonlinear nature of the momentum equations, 
the velocity components and pressure can be updated using underrelaxation as 

new old new old

1 1 1 1

1 1 1 1

ij ij u ij ij

i j i j u i j i j

ij ij ij ij

ij ij ij ij

ij ij p ij ij

u u u u

u u u u

p p p p








    
    



   

   

          
          
          
                      
          
          

           

 . 

In practice the underrelaxation parameters are taken as u    and 1p   (Thompson & Ferziger, 1989). If 
a starting guess is not close to the solution, it is recommended values 0.2 0.8u     in the first iterations. 

Vanka method has no the problem-dependent components (preconditioners, artificial boundary conditions for 
pressure, relaxation parameters (if a starting guess is close to the solution) etc.), but slow convergence rate is 
observed and the rate depends strongly on the unknown ordering. As a result, the method requires different 
acceleration techniques. Since Vanka-like methods have very good smoothing properties, often the approach is 
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used in multigrid algorithms as smoother.  

3. Pressure Decomposition  

In partial cases the fluid flows can be described by the simplified Navier-Stokes equations. Basic assumption is 
that the pressure is not changed across the flow. Numerical solution of the simplified Navier-Stokes equations 
can be reduced to solution of series of the saddle point problem (2) with zero block of the least size in the 
coefficient matrix. This fact allows develop very efficient algorithms for solving the simplified Navier-Stokes 
equations. Unfortunately these algorithms cannot be applied for solving the full Navier-Stokes equations because 
the pressure is changed in all spatial directions. However algorithms developed for the simplified Navier-Stokes 
equations can be used for convergence acceleration of the iterative methods for the full Navier-Stokes equations.  

For the given purpose, it is necessary to artificially extract «one-dimensional parts of pressure» from the pressure 
field by adding and subtracting items ( )xp t ,x , ( )yp t , y  and ( )zp t ,z which depends only on one spatial 
variable, i.e. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ( )x y z x y zp t ,x, y,z p t ,x p t , y p t ,z p t ,x p t , y p t ,z p t ,x, y,z       , 

where superscripts x, y, z and xyz  indicate dependence of the components on the spatial coordinates. Let us 
introduce a new variable  

( ) = ( ) ( ) ( ) + ( )xyz x y zp t ,x, y,z p t ,x p t , y p t ,z p t ,x, y,z   . 

Finally the pressure can be represented as 

( ) ( ) ( ) ( ) ( )x y z xyzp t ,x, y,z p t ,x p t , y p t ,z p t ,x, y,z    .                  (7) 

Basic idea of the method consists in application of the efficient numerical methods developed for the simplified 
Navier–Stokes equations for computation of «part of pressure» (i.e. for ( ) ( ) ( )x y zp t ,x p t , y p t ,z  ). Fast 
computation of the «part of pressure» results in reduction of total computational efforts needed for the full 
Navier–Stokes equations. 

In spite of simplicity of the representation (7), it is necessary to comment the principle of formal decomposition 
of pressure:  

Remark 1. All items ( )xp t ,x , ( )yp t , y , ( )zp t ,z  and ( )xyzp t ,x, y,z in (7) have no physical meaning, but 
physical meaning has their sum. In follows, the items ( )xp t ,x , ( )yp t , y and ( )zp t ,z will be called as 
«one-dimensional components of the pressure», and ( )xyzp t ,x, y,z as «multidimensional component». The 
quotes «» will indicate absence of the physical meaning of the «pressure components».  

Remark 2. In N  dimensional case ( 2 3N , ) pressure is represented as sum of 1N   «components», 
therefore the method requires N  extra conditions for computation of «the one-dimensional components». The 
convergence acceleration technique uses N  mass conservation equations as a priori information of physical 
nature.  

Remark 3. In spite of representation of the pressure as sum of 1N   «components», all momentum equations 
have only two «pressure gradients». For example, for X-momentum we obtain 

 ( ) ( ) ( ) ( )
x xyz

x y z xyzp p p
p t ,x p t , y p t ,z p t ,x, y,z

x x x x

        
   

. 

Remark 4. Efficiency of the acceleration technique depends strongly on the flow nature. For directed fluid flows 
(for example, flows in nozzles, pipes etc.) gradient of one of «one-dimensional components of 
pressure» ( )xp t ,x , ( )yp t , y or ( )zp t ,z  is dominant. In this case impressive reduction of computational work is 
expected as compared with traditional algorithms ( = = =0x y zp p p ), i.e. 

( ) + ( ) + ( ) ( ) ( ) 0x y z xyzp t ,x p t , y p t ,z p t ,x, y,z p t ,x, y,z    efforts . 

However for strongly rotated flows (for example, flow in a driven cavity) the approach shows the least 
efficiency.  

Remark 5. In 3D case the method will be more efficient than in 2D case.  

Remark 6. Velocity components and corresponding «one-dimensional components of pressure» in (7) are 
computed only in coupled manner. Velocity components and «multidimensional component» ( )xyzp t ,x, y,z in (7) 
can be computed in decoupled or coupled manner.  
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Remark 7. Gradients of the «one-dimensional components» can be obtained in analytical form for the explicit 
schemes. Implicit schemes require an auxiliary problem for determination of the «one-dimensional components» 
in (7). 

The pressure decomposition can be used for fast computation of a starting guess close to the solution of the full 
Navier-Stokes equations or built-in in some basic solver (SIMPLE, Uzawa or Vanka method, etc.).  

Similarly to Vanka method, the convergence acceleration technique does not require the problem-dependent 
components. Detailed description of the approach and its applications for solving benchmark and applied 
problems are given in Martynenko (2009; 2011).   

4. Model Problem 

For clearness of the multigrid algorithm representation, we consider problem about 2D steady fluid flow in unit 
cavity. Geometry of the problem is shown on Figure 2. Boundary conditions for the velocity components in (4) 
are given by 

100 (0 2 ) 0 2
(0 )

0 0 2

y . y , y .
u , y

, y .

 
  

,  (1 ) ( 0) ( 1) 0u , y u x, u x,   , 

100( 0 8)(1 ) 0 8
( 1)

0 0 8

x . x , x .
x,

, x .


  
  

,  (0 ) (1 ) ( 0) 0, y , y x,     . 

Convergence acceleration based on the pressure decomposition (7) requires two mass conservation equations. 
Integration of the continuity equation (4a) over the control volumes 1V and 2V shown on Figure 2 gives 

1 1

0 0 0

( ) (0 ) ( 1)
x

u x, y dy u , y dy , d      ,                        (8a) 

1

0 0

( ) (0 )
y

x, y dx u , d    .                              (8b) 

The mass conservation equations (8a) and (8b) will be used for fast computation of the «one-dimensional 
components of pressure» in (7). 

X

0.2

1 X

0 1

Y

1 0.8

V1

1
Y

X

0 1

2V

Y
1

 
Figure 2. Geometry of the model problems and the control volumes 1V and 2V  

 

5. Robust Multigrid Technique 

Robust multigrid technique (RMT) has been developed as a variant of the geometric multigrid methods with the 
problem-independent transfer operators Martynenko (2006). To overcome problem of robustness, RMT consists 
of two parts: analytical (adaptation of the boundary value problems to RMT) and computational (solution of the 
adapted problems by original multigrid algorithm). RMT is intended for solving a large class of nonlinear 
applied problems on the structured grids with almost optimal convergence rate. Really the smoothing procedure 
is single problem-dependent component of RMT.  

 



www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 6; 2012 

78 
 

5.1 Analytical Part: Adaptation of the Navier-Stokes Equations to RMT 

Adaptation of the Navier-Stokes equations (1) to RMT consists of representation of the solution as sum of two 
functions  

V

ˆV C V 
 

 and P
ˆP C P  ,                                 (9) 

where the functions 
V

C   and PC  will be coarse grid corrections to velocity and pressure, and the functions V̂


 
and P̂  will be approximations to the solution in the following multigrid iterations. 

Representation (9) is called  -modification of the solution. Substitution of (9) into (1) yields the following 
 -modified form of the Navier-Stokes equations (1) 

( ) ( )

( )

PV

V

ˆ ˆC V C P F

ˆC V G

    

   

 





 . 

Since the nonlinear convection-diffusion operator can be represented as 

( )= ( )+ ( )
V V

ˆ ˆC V C V   
 

, 

we obtain the  -modified form of the Navier-Stokes equations  

( ) ( )

( )
PV

V

C C F

C G

 



  
  

 


, 

where the source terms take the form 

( ) ( )ˆ ˆF F V P   


 and ( )ˆG G V  


. 

Convergence of RMT means reduction of the corrections 
V

C   and PC , therefore the approximations to the 
solution V̂


 and P̂  will satisfy to the Navier-Stokes equations (1) i.e. 

0 ( )+ ( )0

0 0 ( )

V

P

ˆ ˆC V P FF
ˆC G V G





           




 .  

Two-dimensional steady Navier-Stokes equations (4) can be rewritten in the -modified form as: 

a)  -modified continuity equation 

( ) = 0uuc c
R x, y

x y
 

 
 

,                                (10a) 

b)  -modified X-momentum 

2 2 2

2 2

( ) ( ) ( ) ( ) ( ) 1
2 ( )

Re
p uu u u u u u

cˆˆ ˆc uc uc c c c c c
R x, y

x x y y y x x y
          

                 
,    (10b) 

c)  -modified Y-momentum 

2 2 2

2 2

( ) ( ) ( ) ( ) ( ) 1
2 ( )

Re
pu u

cˆ ˆûc c c c c c c c
R x, y

x x x y y y x y
               

                 
 ,    (10c) 

where discrete analogues of the functions uc , c  and pc  will be coarse grid corrections for velocity 
components u ,   and pressure p and discrete analogues of the functions û , ̂  and p̂  will be 
approximations to the solutions in the following multigrid iterations.  

The source terms in the  -modified Navier-Stokes equations coincide with non-modified ones: 

( ) =u ˆû
R x, y

x y
  

 
,                                  (11a) 
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2 2 2

2 2

( ) ( ) 1
( ) =

Re
u ˆˆ ˆ ˆ ˆ ˆu u p u u

R x, y
x y x x y

                
,                   (11b) 

2 2 2

2 2

( ) ( ) 1
( ) =

Re

ˆ ˆ ˆ ˆˆ ˆu p
R x, y

x y y x y
                   

 .                  (11c) 

Additional convection terms in  -modified momentum equations (10b) and (10c) are result of nonlinear nature 
of the convection-diffusion operator  (i.e.   ). Approximation of the source terms (11) in Eq. (10) 
defines the accuracy, monotonicity and conservatism of the numerical solutions. Approximation of other terms in 
(10) affects only on the multigrid convergence rate.  

Boundary conditions for the velocity components are  -modified in the same manner. Since the Dirichlet 
boundary conditions are given for the model problem, we obtain zero Dirichlet boundary conditions for the 
velocity corrections uc and c .  

Also the mass conservation equations (8) should be rewritten in the  -modified form: 
1 1 1

0 0 0 0

( ) ( ) (0 ) ( 1)
x

u
ˆc x, y dy u x, y dy u , y dy , d         ,               (12a) 

1 1

0 0 0

( ) ( ) (0 )
y

ˆc x, y dx x, y dx u , d        .                   (12b) 

For clearness the pressure decomposition (7) will be used for fast computation of a starting guess. First of all it is 
necessary to formulate an auxiliary problem, we hope that the solution of the auxiliary problem will be close to 
the solution of the Navier-Stokes equations (4) as compared with zero starting guess. Pressure decomposition for 
the 2D steady Navier-Stokes equations in «corrections-residuals» variables formulation (10)-(11) is written as  

( ) ( ) ( )x y
p p pc x, y c x c y  .                            (13) 

Formulation of the auxiliary problem is based on replacement of the  -modified continuity equation (10a) by 
the  -modified mass conservation equations (12). Accounting (13), we obtain: 

a)  -modified X-momentum (10b) and  -modified mass conservation equations (12a) 

2 2 2

2 2

1 1 1

0 0 0 0

( ) ( ) ( ) ( ) ( ) 1
2 ( )

Re

( ) ( ) (0 ) ( 1)

x
p uu u u u u u

x

u

dcˆˆ ˆc uc uc c c c c c
R x, y

x x y y y dx x y

ˆc x, y dy u x, y dy u , y dy , d

 

  

        
                  


    


   
,    (14a) 

b)  -modified Y-momentum (10c) and  -modified mass conservation equations (12b) 

2 2 2

2 2

1 1

0 0 0

( ) ( ) ( ) ( ) ( ) 1
2 ( )

Re

( ) ( ) (0 )

y
pu u

y

dcˆ ˆûc c c c c c c c
R x, y

x x x y y dy x y

ˆc x, y dx x, y dx u , d

     



 

  

        
                  


   


  
,    (14b) 

where the braces mean that the momentum and mass conservation equations are solved only in coupled manner. 

Let us summarize the main features of the auxiliary problem (14):  

1) due to (13), the momentum equations in the auxiliary problem (14) are not pressure-linked. Systems (14a) and 
(14b) can be solved by line (2D) or plane (3D) Seidel method coupled with secant iterations. Previously similar 
algorithm had been proposed by Briley (1967) for solving the simplified Navier-Stokes equations.  

2) solution of the auxiliary problem satisfies to the mass conservation equations (12), but not satisfies to the 
continuity equation (10a). It gives us a reason to hope that solution of (14) will be an accurate starting guess for 
the Navier-Stokes equations (4).  
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To illustrate abovementioned deduction, Figures 3 and 4 represent comparison of the solutions of the auxiliary 
problem (14) and the Navier-Stokes equations for the model problem (Re=100, grid 101´101). Good agreement 
is observed in the stream function behavior, but agreement in pressure is not accurate because of only «part of 
pressure» ( x yp p ) is computed in the auxiliary problem (14).  
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Figure 3. Isolines of the stream function: solution of the auxiliary problem (14) (left) vs. solution of the 
Navier-Stokes equations (4) (right) 
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Figure 4. Isobars: solution of the auxiliary problem (14) ( x yp p , left) vs. solution of the Navier-Stokes 
equations (4) (right) 

 

5.2 Computational Part 

First stage of the computational part of RMT consists of the finest grid generation in domain for the following 
control volume approximation of the modified equations. The finest grid 0

1G  consists of two sets v (0;1)G and 
f (0;1)G  of the grid points defined as 

v v v 0 0(0;1)={ ( 1) 1 2 H 1 1 H }i i x xG x | x i h, i , ,..., , h /     ,  

f f f v v 0
1(0;1)={ 0 5( ) 1 2 H }i i i i xG x | x . x x , i , ,...,   . 

The finest grid 0
1G  with 0H 8x   is shown on Figure 5. 

x
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1xG (0;1)v v

1 2x 3x 4x x 5

32 xxv v
4x 5xv v

f ff f f
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v
87x x6
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9xv
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Figure 5. Staggered grid in X direction 
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Coarsening in RMT is based on representation of the finest grid 0
1G  as union of three coarse grids 1

1G , 1
2G  

and 1
3G  as shown on Figure 6. It is easy to see the following properties of the coarse grids: 

1) the coarse grids 1
1G , 1

2G  and 1
3G  have no common points, i.e. 

1 1
n mG G , n m.    

2) the finest grid 0
1G  is the union of the coarse grids 1

1G , 1
2G  and 1

3G , i.e. 
3

0 1
1

1
k

k

G G


 . 

3) all grids are similar to each other, but a mesh size on the coarse grids is three times as large as than the mesh 
size on the finest grid. 

4) the discrete functions can be assigned to the grid points vx  or to the grid points fx , but in both cases the 
control volume on the coarse grids is union of three control volumes on the finest grid (Figure 7). 
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Figure 6. Coarsening in RMT 

 
Properties 1, 2, and 4 give efficient parallelism, problem-independent prolongation operator and 
problem-independent restriction operator, respectively.  

The finest grid forms the zero level and three coarse grids form the first level. The coarse grid generation is 
further recurrently repeated: each grid 1 2 3l l

iG , i , ,...,  of a current level l  is considered to be the finest grid 
for the coarse grids 1 11 2 3l l

jG , j , ,...,   of the next level 1l  . Nine coarse grids derived from the three grids of 
the first level form the second level, etc. The coarse grid generation is finished when no further coarsening can 
be performed. The grid hierarchy will be called a multigrid structure (Figure 8). 

on the coarse grid
control volume

on the coarse grid

on the finest grid
control volumes

control volume

on the finest grid
control volumes

 

Figure 7. Control volumes on the finest and coarse grids  
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Figure 8. Multigrid structure 

 
Note that the classical multigrid methods use the reverse numbering of levels.  

Since N -dimensional grid ( 2 3N , ) can be represented as product of N  one-dimensional grids, similar triple 
coarsening is performed independently in each spatial direction. Therefore thl  level consists of 3Nl  grids in 
multidimensional case. 

The number of levels can be computed in advance. Assume that majority of the coarsest grids has three grid 
points. Then the number of the finest grid points is 0H 1x   or 13L  , where L  is number of the coarsest 
level. Therefore 

0
0 1 lg(H 1)

H 1 3 1
lg3

L x
x L

    
     

 
, 

where square brackets mean integer part. 

In 3D case the finest grid 0 0 0(H 1) (H 1) (H 1)x y z      with the mesh sizes 0
x1 Hxh / , 0

y1 Hyh /  and 
0
z1 Hzh / has different coarsest levels 

00 0(H 1)(H 1) (H 1)
1 1 1

lg3 lg3 lg3
yx z

x y z

lglg lg
L , L , L  

     
         

      
. 

Each level { }x y zl l ,l ,l consists of the computational grids x y z

x y z

l l l

k k kG , 1 2 3 xl
xk , ,..., , 1 2 3 yl

yk , ,..., , 

1 2 3 zl
zk , ,..., with mesh size 3 3 3yx z

ll l
x y zh , h , h , where x y zh , h , h  are the mesh sizes of the finest grid 000

111G and 

min{ ; }x xl l L , min{ ; }y yl l L , min{ ; }z zl l L . Control volume on the grid x y z

x y z

l l l

k k kG is an union of 

3 x y zl l l  control volumes on the finest grid.  
An example of the coarse grid generation (two level structure) for the finest grid with 0H 30x   is shown on 
Figure 9. Let us define the mapping of indices to simplify operations with the multigrid structure. The notion «a 
grid of the thl  level» means the one-to-one mapping of indices of the coarse grid points onto the indices of the 
finest grid points. In the rest of the paper, the braces {} will denote the mapping. The mapping of indices of the 
grid points from the sets vG  and fG  is written as v

{ }ix  and f
{ }ix  respectively, where i and {i} are the coarse 

and finest grid indices. For example, for grid 1
1G  shown on Figure 9 we obtain 

v v v v v v v v
{1} 3 {2} 6 {3} 9 {4} 12x x , x x , x x , x x , ....    , 

f f f f f f f f
{1} 4 {2} 7 {3} 10 {4} 13x x , x x , x x , x x , ....     

The mapping of indices gives a close-to-the-finest-grid notation. For example, the second order derivative of the 
discrete function assigned to the grid points vx on the multigrid structure is approximated as 
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O h

x h
    


. 

Figure 9 shows that the approximation in the grid points v 1
{2} 1x G (marked by circle) is expressed as  

v
{ }

2
{1} {2} {3} 3 6 9

2 2 22

2 2

93 x
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xxx

u u u u u uu

x hh

     


.  

10

3

the domain boundaries

(1;1)

(0;1)

(0;1)

(1;2)

(1;2)

(1;3)

(1;3)

(1;1)

G

fG
vG

vG

vG

G

f

vG

f

fG

-1

0

-2

-2 -1

-1-2 2

10

0 1

1

32

2 3

3 4

-2-4-6-8

-3

-2

-2

-1

-1

-3 -2

-9

-9

-6

-5-7

-8
-7

-3

-4
-3-5

102 64 80

0

0 1

1

-1 0

2

2

3

3

21

-1

0-2
-1

3

2
3

1

1

7

6

5

4
5

9

8
97

36

35

12

12

8

54

4 5

5 6

76

76

7 8

98

9 10

9 10

10 11

11 12

11 12

23

22

2216 18 2012 14

5

4

4

5

5

4

6

6 7

7

6 7

16

17

13

13

12

11

11

15

14
15 19

19

18
17

21

20
21

3428 323024 26

10

8

8 9

9

8 9

11

1110

10 11

29
26

25

24
2523

29

28
27

27

32

3331

30
31

35

34
33

fi
r s

t l
ev

el

G 1

12 13

13 14

13 14

G 3
1

2

th
e 

fi
ne

st
 g

ri
d

4038

13

13

12
1G 1

39

38

37

36
37

41

40
39

1
0G

 

Figure 9. Coarse grids of the first level and the index mapping 

 
5.2.1 Multigrid Iterations  

Multigrid cycle of RMT for solving linear problems is shown on Figure 10. Computations start on the coarsest 
level. When the coarsest level solution has been obtained, the transfer to the next finer level is performed. It 
should be emphasized that the transfer does not add any interpolation errors to the correction c  as shown on 
Figure 11. It means that RMT has problem-independent prolongation operator. Smooth parts of the error are 
deleted on all grids of the next finer levels in the same manner (computation of the coefficient matrix and 
right-hand side vector and the smoothing iterations). The coarse grid correction to be added to û  on the finest 
grid is c ( ˆ ˆu u c  ). The multigrid iterations repeatedly improve the approximation to the solution û  until the 
current approximation becomes accurate enough. In particular applications the finest grid should be 
reconstructed after each multigrid iteration for their adaptation to the solution singularities. 

In RMT more computational work must be spent on coarse grids in order to allow for the best approximation to 
the solution on the finest grid. Smoothing before coarse grid correction (pre-smoothing) is deleted in RMT to 
simplify solution of nonlinear problems (like a sawtooth cycle in classical multigrid). It is clear that RMT takes 
the intermediate place between classical and cascadic multigrid algorithms. 

For nonlinear problems when no a priori information of the solution is available to assist in the choice of the 
initial guess on the finest grid, it is obviously wasteful to start the computation of the finest grid as shown on 
Figure 12. It is similarly to nested iterations in classical multigrid methods. Main difference consists of 
formulation of discrete problems of the coarse grids. 
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convergence
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STOP
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Figure 10. Multigrid cycle for the linear problems 
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Domain boundary Domain boundary  
Figure 11. Prolongation operator of RMT 

 

The coarsest grids

The finest grid

 
Figure 12. Multigrid cycle for the nonlinear problems 

  
5.2.2 Control Volume Approximation of the  -modified Equations on the Multigrid Structure 

Integration of the -modified X-momentum (10b) over the control volume  

f f v v
{ } { 1} { } { 1} { 1}{( , ) | ; }ij i i j jV x y x x x y y y        

on some coarse grid gives 

{ } { 1 }e w n s

{ 1 } { } { 1 } { 1} { } { 1}

2 22 2 { }

( ) ( )

3 33

( ) 2( ) ( ) ( ) 2( ) ( )1 1

Re Re3 3

x y x

x x

u u u u
p ij p i j

l l l
x xy

u i j u ij u i j u ij u ij u ij u
l l ij

x x

c cJ J J J

h hh

c c c c c c
R

h h



   

 
   

   
  

’ 

where convective fluxes are given by 

w e2 2
w w w e e e{ } { }

( ) 2( ) ( ) 2( )u u
u u u uij ij

ˆ ˆJ c c u , J c c u    ’ 

s s

s s s s{ } { }
( ) + ( ) ( )u

u uij ij
ˆˆJ c u c c c ,    

n n

n n n n{ 1} { 1}
( ) + ( ) ( )u

u uij ij
ˆˆJ c u c c c 

 
  ’ 

and the source term 
f v
{ } { 1}

f v
{ 1} { }

2 2 2

2 2{ }

1 1 ( ) ( ) 1

Re3 3

i j

x y

i- j

x y

u
l lij

x y x y

ˆˆ ˆ ˆ ˆ ˆu u p u u
R dy dx

x y x x yh h

                     
           (15) 

is an averaged residual of the X-momentum equation.  

Indices w,e,n and s denote values on western, eastern, northern and southern faces of the control volume. The 

convection terms with the exception of the coefficients 
w

{ }ij
û , 

e

{ }ij
û , 

s

{ }ij
û , 

n

{ }ij
û , 

s

{ }ij
̂  and 

n

{ }ij
̂ can 

be approximated by upwind differences.  
The coefficients 

w

{ }ij
û , 

e

{ }ij
û , 

s

{ }ij
û , 

n

{ }ij
û , 

s

{ }ij
̂  and 

n

{ }ij
̂   
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are average values of approximations to the velocity components on the control volume faces. To overcome 
problem of robustness, all integrals should be evaluated on the finest grid. As an example, we consider 
evaluation of the integral 

f
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f
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1
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i

x

li
x

q q x dx
h



   

in domain [0,1]  . The function ( )q x  can be redefined as  
0,

( )
( ),

x
q x

q x x


  


. 

Further we define a characteristic function ( )x  as 
0,

( )
1,

x
x

x
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Now the coefficient 
{ }i

q can be rewritten as  
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where 
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l

i
q
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and { }
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i  are given by 
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{ }
l
i is the number of control volumes on the finest grid forming the real part of the control volume on the given 

grid. Computation of 
{ }

l

i
q


 starts from the finest grid ( 0, { }l i i  ) where the integral  
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is computed by some method (trapezoids, rectangles etc.), and  
f

f
1

v
0

v

0,1
( )

1,

i

i

x
l i
i

ix

x
x dx

h x


       
 . 

After that 
{ }

l

i
q


 and { }
l
i  are computed by the recursive equation 

-1 -1

-1 -1

1 1 1

{ } { }-3 { } { }+3

1 1 1
{ } { }{ }-3 { }+3

l l

l l

l l l l

i i i i

l l l l
i ii i

q q q q
  

  

   


     

   
,   1, 2,...,l L .                (16) 

Scheme of the integral evaluation on coarse grids 1
1G  and 2

1G is shown on Figure 13. Virtual nodes and faces 
on each grid are intended only for the computational procedure. 



www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 6; 2012 

86 
 

-0.5 0 0.5 1 1.5

q
i

q q

x
1 q x dx=

Domain boundaries

i
=0l 0= i

=0l

i -1x f
h

(  )

f

G

G

1
2

1
1

G

=i
=0l 0

1
0

 
Figure 13. Scheme of the integral evaluation in domain [0,1]   

 
As an example, we consider computation of the average value 

v
{ 1}

v
{ }

e f
{ }{ }

1
( )

3

j

y

j

y

ilij
y y

ˆ ˆu u x , y dy
h



   

on the control volume faces, where ˆ( , ) x yu x y e  . Figure 14 represents the finest uniform staggered grid and 
location of the control volume, the function û  is assigned to the grid points  . 

jyjy

v
jy

x v
i   -1 1-x f

i
v
ix x f

i x+i   1
vx x i   -1

v

yv
j

xx1-i
f

i
v xi

f
+i   1

v

+
v

f

yj 1 yv
1j+

f

 
Figure 14. Finest staggered grid (left) and computation of the average value 

e

ij
û (right) 

 
The average value on the control volume face on the finest grid can be computed as 

 
v

1

v

e f
1

1 1
( )

2

j

j

y

i ij i jij
y y

ˆ ˆ ˆ ˆu u x , y dy u u
h



   ,                        (17) 

as shown on Figure 14. Exact average value 
exact

{ }ij
û on the control volume faces 

f f v v
{ } { 1} { } { 1} { 1}{( , ) | ; }ij i i j jV x y x x x y y y        is given by 

v
{ 1}

v
{ }

v v
exact { 1} { }f f

{ } { } v v{ }
{ 1} { }

( ) ( )1
( ) ( )

3

j

y

j

y
j j

i ilij
j jy y

exp y exp y
û exp x y dy exp x

y yh







  

 , 

where v v
{ 1} { } 3 yl

j j yy y h   . Since the coarse grid points can be located outside the domain [0,1]   (i.e. 

v
{ } 0jy   or v

{ 1} 1jy   ), the integral should be redefined as 
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exact f
{ }{ }

( ) ( )
( )iij

exp b exp a
û exp x

b a




,                           (18) 

where v
{ }max(0, )ja y  and v

{ 1}min(1, )jb y  . 

Six-level ( 5L  ) multigrid structure with 1001 ´ 1001 finest grid ( 1/1000x yh h  ) is used for the numerical 
experiment. Computation of the average value 

e

ij
û  on the finest and coarse grids is performed as Eqs. (16) and 

(17), respectively. Error of the computation is given by 
exact

{ } { }
ˆ ˆErrMAX= max | |

e

ij ijij
u u , 

where 
exact

{ }
ˆ

ij
u  is the exact value (18). Results of the numerical experiment are 

                      LevelX = 5  LevelY = 5   ErrMAX = .261E-06 

                      LevelX = 4  LevelY = 4   ErrMAX = .207E-06 

                      LevelX = 3  LevelY = 3   ErrMAX = .391E-06 

                      LevelX = 2  LevelY = 2   ErrMAX = .473E-06 

                      LevelX = 1  LevelY = 1   ErrMAX = .574E-06 

                      LevelX = 0  LevelY = 0   ErrMAX = .388E-06 

where LevelX ( xl ) and LevelY ( yl ) are numbers of grid levels in X and Y directions, respectively. It easy to see 

that the error of the integral computation weakly depends on the mesh size on the coarse grid ( 3 3 yx
ll

x yh ,h ). Note 

that the computational procedure is based on the additivity property of the integrals and, as a result, the 

procedure is problem-independent component of RMT.  

Source term (17) is computed in the same manner. At first, the source term is computed on the finest grid as 

2 2
1 1 1 1 1e w n s

2 2

2 2( ) ( ) ( ) ( ) 1 1

Re Re
ij i j i j ij i j ij ij iju

ij
x y x x y

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p u u u u u uˆ ˆˆ ˆ ˆ ˆu u u u
R

h h h h h

           
      . 

Values of the approximations to the velocity components û  and ̂  on the control volume faces can be 
approximated by high order schemes. Such different representation of the convection terms in both sides of the 
modified momentum equations is similar to the defect correction procedure Hackbusch (1981). Finally the 
source term on the coarse grids is evaluated as a double integral. The abovementioned averaging is a restriction 
operator of RMT.  

6. Numerical Experiments 

In the application of the algorithm to the cavity problem shown on Figure 2, a number of flow Reynolds numbers 
and computational grid nodes have been considered. Computations have been made for Reynolds numbers of 
100 and 500 with computational grids consisting of 101´101 and 1001´1001 nodes. The residuals are defined 
as 

f fmax | ( , ) |u
u i j

ij
r R x y
  , 

v fmax | ( , ) |u
u i j

ij
r R x y , 

f vmax | ( , ) |i j
ij

r R x y
  , 

where u uR , R and R  are given by Eq. (11). In addition, the residuals of the mass conservation equations (8) 
are defines as 

N N

1 N 1
1 1 1

ˆˆ ˆmax
y y

y

i

u y ij y j x k
i

j j k

r h u h u h 


  

      , 

N

1
1 1

ˆ ˆmax
x j

x ij y k
j

i k

r h h u 

 

    . 

The auxiliary problem (14) has been used for fast formulation of the starting guess for the solution of the full 
Navier-Stokes equations. Figure 15 represents convergence history of RMT obtained with four smoothing 
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iterations on each grid. 
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Figure 15. Convergence history of RMT  

 
7. Convergence Analysis of RMT for Linear Problems 

Convergence analysis of RMT is performed for linear boundary value problem 
L ( )u f , 

where the linear operator L and right-hand side function f include the boundary conditions. The problem can 
be rewritten in the  -modified form 

L( ) L( )ˆc f u  . 

Discrete analogue of the  -modified boundary value problem on some grid l
kG  (  1,2,..., 3Nlk , 

 0,1,...,l L ,  2,3N ) is written as 

  0
1

( )

0
l l l
k k k

n
G G G G

a c R b Au , 
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where 0
1

l
kG G

R is a restriction operator, i.e. the operator transfers the residual  ( )nb Au  from the finest grid 

0
1G on the current grid 

l
kG . Previously it was shown that the operator is problem-independent component of 

RMT.  

Since all grid of the same level have no common nodes and control volume faces, discrete equations on all grids 
of the same level can be written as 

 
 

 







      
               
        
     

 

0
1 11 1

02 2 1 2

3 3 0
1 3

( )

0

( )

0

( )

0

... ... ...

ll l

l l l

l l
Nl Nl

l
Nl

n
G GG G

n
G G G G

nG G
G G

R b Aua c

a c R b Au

a c
R b Au

, 

or 
   ( )

0 0

n
l l lAc R b Au ,                              (19) 

where lA is a block diagonal matrix, the number of blocks is equal to the number of grids forming the level (i.e. 
3 , 0,1,2,...,Nl l L ).  

Transfer to the level consisting of the finer grids is abbreviated as  

   1 1l l l lc P c . 

Accordingly to Figure 11, the permutation matrix  1l lP corresponds to the problem-independent prolongation 
operator.  

Smoothing iteration for (19) can be written as 

     
   ( ( ( ) (

0 0
( )l l ln

l l l l l lW c c R b Au Ac  
or 

     
   ( 1 ( 1 ( )

0 0
( )l l n

l l l l l lc I W A c W R b Au ,                   (20) 

where matrix lW defines the smoothing procedure and  l is number of the smoothing iterations.  

Convergence analysis of RMT is based on the following assumptions: 

Assumption 1. Smoothing procedure is convergent iterative method, i.e. 
   1 1l l lS I W A q , 

where lS  is a matrix of the smoothing iterations.  

Assumption 2. Eq. (20) is solved exactly on the coarsest grids ( l L ): 

   


 1 ( )
0 0

n
L L Lc A R b Au . 

Eq. (20) can be written as 
    ( (0( )l l

l l l l lc c S c c ,                               (21) 

where lc  is an exact solution of Eq. (19) 

 
 1 ( )

0 0

n
l l lc A R b Au . 

Since the starting guess (0
lc is obtained by “prolongation” of approximation to the solution from coarse grids 

 
  (0 (
1 1

l
l l l lc P c , 

we obtain 
   

       (0 ( ) (
1 1 10

( )ln
l l l l l l lc c d b Au P c c , 

where 
 

      1 1
0 1 1 0 1l l l l l l ld A R P A R . 

It results in the recursive form of Eq. (21) 

     
       ( ( ) (
1 1 10

( )l l l ln
l l l l l l l l lc c S d b Au S P c c .               (22) 
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Assume that the grid visiting order corresponds to order shown on Figure 10. The recursive Eq. (22) should be 
written for each level of the multigrid structure. Accounting the Assumption 2, Eq (22) takes the form 

 
 

 ( L
L Lc c  

for the level consisting from the coarsest grids ( )l L .  

For the next level  ( 1)L consisting of the finer grids, we obtain the following form of Eq. (22) 

    
   


     1 1

( ( )
1 1 1 1 0

L L n
L L L Lc c S d b Au . 

Continuing this procedure for each level    ( 2, 3,..., 0)l L L of the multigrid structure, we can conclude  
     ( ( )

0
l l n

l l l lc c S d b Au , 
where 

 

     

  
   

  
     

       

1
1 1 1

1 1
1 0 1 1 0

, 1, 2,..., 0

, 1

l
l l l l l

l

L L L L L L

d P S d l L L
d

A R P A R l L
. 

Finally the multigrid iterations of RMT is written as 

     0( 1) ( ) 1
0 0 0( )n nu Mu A S d b , 

where the matrix of the multigrid iterations takes the form 

 
 

 
 

   
 

0

1

0 0 1 0
1 1

k

lL

k k k l
l k

M S d P S d A . 

To estimate the matrix norm, it is used the assumption: 

Assumption 3 (approximation property)  
 

        11 1
0 1 1 0 1 0l l l l l l l Ad A R P A R C A , 

where the constant AC  is independent on l . 

Accounting the approximation property and Assumption 1, the matrix norm can be estimated as 

 
 

 

       
0

1

0
1 1

1
1

1
k

LlL

A k A
l k

q
M C q q C q

q
,   where 

 


1
max l

ll L
q q . 

The estimation shows that convergence of the multigrid iterations ( 1)M can be obtained by performing 
sufficient number of the smoothing iterations on the multigrid structure. In addition, smoothing on the finer grids 
has more influence on the convergence of RMT.  

Note the estimation does not account the smoothing properties of used iterative methods. As a result, 
convergence rate of RMT cannot be studied theoretically using the estimation. Computational cost of the 
multigrid iterations is proportional to N lgN arithmetical operations, where N is the number of the finest grid 
nodes Martynenko (2006). The problem-independent prolongation operator of RMT leads to the multiplier lgN . 
In sense of the computational work RMT loses to the problem-adapted classical multigrid methods required 
N arithmetical operations for solving the boundary value problems.  

8. Conclusions  

Proposed algorithm based on the problem-independent components (Vanka smoother, pressure decomposition 
and robust multigrid technique) makes it possible to solve many boundary value problems for the Navier-Stokes 
equations to within truncation error at a cost of NlgNc  arithmetic operations, where N is the number of 
unknowns and c is a constant which depends on the problem. 
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