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Abstract 

t-test is a classical test statistics for testing the equality of two groups. However, this test is very sensitive to 
non-normality as well as variance heterogeneity. To overcome these problems, robust method such as Ft and S1 
tests statistics can be used. This study proposed the use of a robust estimator that is trimmed mean as the central 
tendency measure in Ft test and median as the central tendency measure in S1 test when comparing the equality of 
two groups. The performance of the S1 test with MADn was able to give the most convincing result than the other 
methods. The Ft with MADn showed comparable results with the conventional methods. This study has shown 
some improvement in the statistical solution of detecting differences between location parameters. These modified 
methods may serve as alternatives to some other robust statistical methods which are unable to handle either the 
problem of non-normality, variance heterogeneity or unbalanced design. 
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1. Introduction 

In recent years, numerous methods for locating treatment effects or testing the equality of central tendency 
(location) parameters by simultaneously controlling the Type I error and the power to detect treatment effects are 
being studied. Progress has been made in terms of finding better methods for controlling the Type I error and the 
power of the test that detects treatment effects in one-way independent group designs (Babu, Padmanabhan & Puri, 
1999; Othman et al., 2004; Wilcox & Keselman, 2003). Through a combination of impressive theoretical 
developments, more flexible statistical methods, and faster computers, serious practical problems that seemed 
insurmountable only a few years ago can now be addressed. These developments are important to applied 
researchers because they greatly enhance the ability to discover true differences between groups while maximizing 
the chance of detecting a genuine positive effect. 

One way to overcome the problems of controlling Type I error rates is by using robust statistics. There are several 
definitions of robust statistics that have been found in the literature and these unfortunately lead to the 
inconsistency of its meaning. Most of the definitions are based on the objective of the particular study by different 
researchers (Huber, 1981).  

A statistical method is considered robust if the inferences are not seriously invalidated by the violation of such 
assumptions, for instance non-normality and variance heterogeneity (Scheffe, 1959). Huber (1981) defined 
robustness as a situation which is not sensitive to small changes in assumptions while Brownlee (1965) reported 
slight effects on a procedure when appreciable departures from the assumptions were observed.  

The theory of robust statistics deals with deviations from the assumptions on the model and is concerned with the 
construction of statistical procedures which is still reliable and reasonably efficient in a neighborhood of the model 
(Ronchetti, 2006). Hampel, Ronchetti, Rousseeuw and Stahel (1986), stated that in a broad informal sense, robust 
statistics is a body of knowledge, partly formalized into “theories of robustness” relating to deviations from 
idealized assumptions in statistics. As mentioned by Hoel, Port and Stone (1971), a test that is reliable under rather 
strong modifications of the assumptions on which it was based is said to be robust. Hence in this thesis, a statistical 
method is considered robust when it has estimators which cannot be influenced by the deviations from the given 
assumptions when hypothesis testing is being conducted.  

Robust statistics has widely been used for many years now. Ronchetti (2006) reported that research in robust 
statistics has been conducted since 40 years ago and this area of research is still being actively studied today. In 
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Ronchetti’s (2006) quick search in the Current Index of Statistics, 1617 papers on robust statistics were found 
between 1987 and 2001 in statistics journals and related fields. 

The goal of this study is to search for alternative methods in testing for the equality of central tendency measures 
by simultaneously controlling Type I error and improving power rates in the one-way independent group design 
under skewed distributions. The proposed procedures to be adopted in this study are among the latest procedures in 
robust statistics. The procedures are modified Ft and modified S1 which were proposed by Md Yusof et al. (2007) 
and Syed Yahaya (2005) respectively. These two procedures are for testing the equality of the central tendency 
measures. The Ft uses trimmed mean while S1 uses median as the central tendency measures. The performance of 
these methods in terms of type I error rates for the case of two groups are determined and compared. The 
performance of the methods was further demonstrated on real education data. 

2. Method 

This paper focuses on the modified Ft and S1methods, which combines Ft and S1 statistics with one of the scale 
estimators suggested by Rousseuw and Croux (1993).  

These methods were compared in terms of Type I error under conditions of normality and non-normality which 
will be represented by skewed g- and h- distributions.  

2.1 Ft Statistic 

Lee and Fung (1985) introduced a statistical procedure that is able to handle problems with sample locations when 
non-normality occurs but the homogeneity of variances assumption still applies. This statistic was named trimmed 
F statistic, Ft. Their work focused on the best trimming percentages used to produce trimmed means which are able 
to control Type I error and to provide good power rates of the statistical procedure. 

They recommended the trimmed F statistic with 15% symmetric trimming as an alternative to the usual F test 
especially when the distribution is long tailed symmetric. This method is simple and easy to program. 

To further understand the Ft method, let 
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= the jth group trimmed mean, and tjSSD  = the g-Winsorized sum of squared deviations. Ft(g) will follow 
approximately an F distribution with (J - 1, H - J) degrees of freedom. Modification on Ft was done on the 
calculation of trimmed mean.  

2.1.1 Trimmed Mean 

Let jnjj j
XXX )()2()1( ,...,,  be an ordered sample of group j with size nj. MOM trimmed mean of group j is calculated 
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jj

j

gn

gi
ji

jjj

tj X
ggn

2

1 1
)(

21

1                              (2) 

where 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 5; May 2012 

Published by Canadian Center of Science and Education 29

jg1 =number of observations jiX )( such that   jji MX


)( -K (MADn) 

jg2 =number of observations jiX )( such that   jji MX


)(  K (MADn) 

jM


 = median of group j, K = 2.24 (multiplier of scale estimator),     nj = group sample sizes 

For the equal amounts of trimming in each tail of the distribution, the Winsorized sum of squared deviations is 
defined as 
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When allowing different amounts of trimming in each tail of the distribution, the Winsorized sum of squared 
deviations is then defined as, 
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2.2 S1 Statistic

 

To understand S1, consider the problem of comparing location parameters for skewed distributions. Let 
)...,,,( 21 jnjjij j

YYYY   be a sample from an unknown distribution Fj and let Mj be the population median Fj: j = 1, 
2, …, J. For testing JMMMH  ...: 210 versus ji MMH :1  for at least one pair of (i, j), the S1 statistic is 
defined as 
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jM̂  is the sample median from the jth group, of group j 

j  is the squared mean absolute deviation from sample median jM̂  

jn  is the sample size for group j. 

Modification on S1 was done by substituting the default scale estimator, ĵ  with the well known robust scale 
estimator, MADn.  

2.3 MADn 

MADn is the median absolute deviation about the median. It demonstrates the best possible breakdown value of 
50%, twice as much as the interquartile range and its influence function is bounded with the sharpest possible 
bound among all scale estimators (Rousseeuw & Croux, 1993).  

This robust scale estimator is given by 

                                 i in j jMAD b med x med x                                 (6) 

where the constant b = 1.4826 is needed to make the estimator consistent for the parameter of interest, 

ni xxxx ,...,, 21  and ji   

However, there are drawbacks in this scale estimator. The efficiency of MADn is very low with only 37% at 
Gaussian distribution. Rousseeuw and Croux (1993) carried out a simulation on 10,000 batches of Gaussian 
observations to verify the efficiency gain at finite samples. They compared the variance of the standard deviation 
with the variance of MADn based on the finite samples. MADn also takes a symmetric view on dispersion and does 
not seem to be a natural approach for problems with asymmetric distributions. 
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2.4 Bootstrap Method 

The bootstrap is a Monte Carlo method that can be used to estimate the standard error of any estimator 


 and was 
introduced by Efron (1979). The advantage of bootstrapping is its simplicity. This method is straightforward to 
apply to derive estimates of standard errors and confidence intervals for complex estimators of complex 
parameters of the distribution, such as percentile points, proportions, odds ratio, and correlation coefficients. 
Staudte and Sheather (1990) in their study stated that bootstrap is used to indicate that the observed data are used 
not only to obtain an estimate of the parameter but also to generate new samples. Bootstrap can routinely answer 
questions far too complicated for traditional statistical analysis. They work the same way (without formulae) for 
many different statistics in many different settings. In addition, bootstrapping can help in increasing accuracy of 
the test statistic.  

When the sampling distribution of the estimator of interest is unknown, a pseudo sampling distribution of the 
estimator can be estimated using bootstrap. With the establishment of the pseudo sampling distribution, we can 
now access variability of an estimator, bias of an estimator and significance of a test involving the estimator (Efron, 
1979). 

Bootstrap method is known to yield a better approximation than the one based on the normal approximation theory 
(Babu & Padmanabhan, 1996; Babu et al., 1999). Othman, Keselman, Padmanabhan, Wilcox and Fradette (2003) 
listed out two practical advantages of using bootstrap methods as detailed below: 

i) Theory and empirical findings indicate that they can result in better Type I error control than non-bootstrap 
methods. 

ii) There are some bootstrap methods which do not require the knowledge of the sampling distribution of the test 
statistic. This makes hypothesis testing quite flexible. 

Westfall and Young (1993) suggested that Type I error control could be improved by combining bootstrap 
methods with methods based on trimmed means. The bootstrap seems preferable for general use if the goal is to 
avoid Type I error probability greater than the nominal level (Wilcox, 1998). The strategy behind the bootstrap is 
to use the shifted empirical distributions to estimate an appropriate critical value (Othman et al., 2003). Keselman, 
Wilcox and Lix (2003) stated that, further improvement in Type I error control is often possible by obtaining 
critical values for test statistic through bootstrap methods.  

In this study, the methods of bootstrap and non-bootstrap are compared. The bootstrap procedures on S1 statistic 
and approximate procedures on Ft statistic  

3. Empirical Investigation 

This paper only focused on unequal sample sizes and heterogeneous variances for two groups with small samples. 
A group of size N = 40 was chosen. The sample were set at n1 = 15 and n2 = 25.  

Each method will be tested under two types of distributions with g = 0.0 and h = 0.0 (normal) and g = 0.5 and h = 
0.5 (skewed leptokurtic). The g- and h- distributions were first proposed by Hoaglin (1985). These distributions are 
transformations of the standard normal distribution. By manipulating the g- parameter one can transform the 
standard normal distribution into a skewed distribution. In addition to this, one can also transform the standard 
normal distribution into a heavy tailed distribution by changing the h- parameter. For this study, 5000 datasets 
were simulated for each of the procedure. The random samples were drawn using SAS generator RANNOR (SAS 
Institute Inc, 1999). 

To test the Type I error, the group means were (0, 0, 0, and 0). For each design, 5000 datasets were simulated. For 
S1 statistic 599 bootstrap samples were generated. 

 

Table 1. Design specification  

Pairing Group Sizes Group Variances 
 1 2 1 2 

Positive 15 25 1 36 
Negative 15 25 36 1 

 

4. Simulation Results  

The robustness of a method is determined by its ability in controlling the Type I error. By adopting Bradley’s 
liberal criterion of robustness (Bradley, 1978), a test can be considered robust if its empirical rate of Type I error, is 
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within the interval 5.0 and 5.1 . If the nominal level is  = 0.05, the empirical Type I error rate should be in 
between 0.025 and 0.075. Correspondingly, a test is considered to be non-robust if, for any particular condition, its 
Type I error rate is not within this interval. We chose this criterion since it was widely used by most robust statistic 
researchers (e.g. Keselman et al., 2000; Othman et al., 2004; Syed Yahaya et al., 2004; Wilcox et al., 2000) to 
judge robustness. Nevertheless, for Guo and Luh (2000), if the empirical Type I error rate do not exceed the 0.075 
level, it is considered robust. The best procedures are those procedures that can produce Type I error rates closest 
to the nominal (significance) level. 

The Type I error rates for two groups case is presented in Table 2. The second column of the table displays the 
pairing categories. Positive pairing refers to the case in which the largest sample size is associated with population 
having the largest variance and the smallest sample size is associated with the population having the smallest 
variance. While negative pairing refers to the case in which the smallest sample size is associated with the 
population having the largest variance, and the largest sample size is associated with the population having the 
smallest variance. 

 
Table 2. Type I error rates  

Distribution Pairing Methods 

  S1 with 
MADn 

Ft with 
MADn 

t-test Mann Whitney

N(0.1) - normal 

 

+ve 0.0524 0.0460 0.0270 0.0508 

-ve 0.0564 0.2068 0.1290 0.1244 

 Average 0.0544 0.1264 0.0780 0.0876 

g = 0.5 and h = 0.5 - 
extremely skewed 

+ve 0.0294 0.0142 0.0140 0.0420 

-ve 0.0314 0.1446 0.1020 0.1080 

 Average 0.0304 0.0794 0.0580 0.0750 

Discription: As shown in Table 2, the Type I error rates produced by S1 with MADn are robust across the two types 
of distributions, while Mann-Whitney produced robust value for positive pairing only. However, for the Ft with 
MADn and t-test the Type I error rates are robust only under one condition i.e. positive pairing under normal 
distribution.  

 

5. Analysis on Real Data 

The performance of the modified S1 and Ft methods were demonstrated on real data. The following sections 
discuss the performance of both methods. We also compare the methods with the parametric and non parametric 
methods. 

Two classes (groups) of Statistical Distribution Theory (2nd Semester 2010/2011) were randomly chosen. The final 
marks were recorded and tested for the equality between the classes. The sample sizes for Class 1 and 2 were 48 
and 46 respectively. The descriptive statistics for each of the groups and the results of the test in the form of 
p-values are given in Table 3 and Table 4 respectively. 

 

Table 3. Descriptive statistics for each group  

Group 

Sample 
size 

(N) 

Mean of 
the 

marks 

Std. 
Deviation 

Std. 
Error

95% Confidence 
Interval for Mean 

Minimum Maximum
Lower 
Bound 

Upper 
Bound 

1 48 62.89 20.258 2.924 -14.249 1.0845 21 96 

2 46 69.47 16.941 2.497 -14.222 1.0572 34 98 

 

 

 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 5; May 2012 

                                                          ISSN 1913-1844   E-ISSN 1913-1852 32

Table 4. Results of the test using different methods 

Methods p-value 

S1 with MADn 0.0133 

Ft with MADn 0.0915 

t-test 0.0920 

Mann-Whitney 0.1430 

Discription: Table 4 shows that only S1 with MADn method produce significant result (reject the null hypothesis). 
This indicate that this method able to detect the difference which exists between the groups. When testing using 
ANOVA, Mann-Whitney and Ft with MADn methods the result fails to reject the null hypothesis such that the 
performance for all groups is equal. Based on the p-values, the Mann Whitney procedure can least detect the 
difference (large p-value). The results (real data) are consistent with the simulation data result with S1 produced 
consistent and robust result as compared to the other three methods.  
 

6. Discussion and Conclusions 

The goal of this paper is to find the alternative procedures in testing location parameter for skewed distribution by 
simultaneously controlling the Type I error and power rates. Classical method such as t - test and ANOVA is not 
robust to non-normality and heteroscedasticity. When these problems occur at the same time, the Type I error will 
increase causing wary rejection of the null hypothesis and power of test can be substantially reduced from 
theoretical values, which will result in differences going undetected. Realizing the need of a good statistic in 
addressing these problems, we integrate the S1 statistic by Babu et al. (1999) and Ft statistic introduced by Lee and 
Fung (1985) with the high breakdown scale estimators of Rousseuw and Croux (1993) and these new methods are 
known as the modified S1 and Ft methods. This study has shown some improvement in the statistical solution of 
detecting differences between location parameters.   

In controlling the Type I error rate, the study reported in this study leads us to formulate the following conclusions 
and recommendations. For both distributions (normal and extremely skewed), the robust methods (S1 with MADn 
and Ft with MADn) showed comparable results with the conventional methods (t - test and Mann-Whitney).  
However, the demonstration on real data showed that S1 with MADn method was able to give the most convincing 
result than the other methods. 

It is our impression that applied researchers would prefer a method that compared treatment performance across 
groups with a measure for the typical score which was based on as much as the original data as possible. Modified 
S1 will be the best choice for this purpose because when working with two groups’ case, the researchers can work 
with the original data without having to worry about shape of the distribution.   
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