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Abstract 

Studying in this paper the stability of plane-parallel flows of an ordinary liquid can be naturally translated into 
the language of the theory of hydrodynamic resonances. Thus, resonant absorption of oscillations induces 
stability of the flows of an ideal liquid having a velocity profile without inflection points (Rayleigh theorem), 
while resonant emission leads to Rayleigh instability in the presence of an inflection point. The flow velocity 
profile has an inflection point. Thus, the presence of inflection points is a necessary condition for instability. If, 
however, the velocity profile has inflection points, the flow is stable (Rayleigh's theorem). Note that the sign of 
the jump depends on whether the neutral oscillations are regarded as the limiting cases of growing )0(Im  or 
damped )0(Im  oscillations. 
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1. Introduction 

Rayleigh has established in 1880 (Rayleigh, 1880), that plane-parallel liquid flows (Barston, 1991) of an ideal 
liquid, with velocity profiles that have no inflection points, are stable Rayleigh's theorem (Rayleigh, 1880). 

Rayleigh instability (Khenner, et al., 1999; Wolf, 1970a, 1997b; Kumar, et al., 1994) occurs when a heavy fluid 
is supported by a lighter fluid. Any perturbation of the interface grows and leads to spikes of the heavier fluid 
penetrating into the lighter one. 

It is known that vertical vibrations can lead both to the parametric excitation of waves at the interface and to the 
suppression of the Rayleigh–Taylor instability (Benjamin, et al., 1954; Miller, et al., 1983; Kumar, et al., 1994; 
Wolf, 1970), while the effects due to horizontal vibrations have been studied less. In experimental works by 
(Bezdeneznykh, et al., 1984; Piriz, et al., 2010) for a long horizontal reservoir filled with two immiscible viscous 
fluids, an interesting phenomenon was found at the interface: the horizontal vibrations lead to the formation of a 
steady relief. This formation mechanism has a threshold nature; it is noteworthy that such a wavy relief appears 
on the interface only if the densities of the two fluids are close enough, i.e. it does not appear for the liquid/gas 
interface. 

Recently, (Dou, 2002; Kuznetsov, et al., 2011) proposed a new mechanism for flow instability and turbulent 
transition in parallel shear flows. In this paper, based on the previous work (Dou, 2002; Kuznetsov, et al., 2011), 
it is demonstrated that the stability of plane-parallel flows of an ordinary liquid can be naturally translated into 
the language of the theory of hydrodynamic resonances. 

2. Basic Equations 

Rayleigh's theorem deals with oscillations of an ideal liquid. The result of the theorem is valid for the flows of a 
real liquid as sufficiently large Reynolds numbers, when the influence of viscosity can be neglected. In this 
approximation, the equation of motion takes the following form  

                                                    

p

dt

Vd 




                                                                           (1) 

Where p  is the pressure and   is the density of the medium. 

If the liquid is incompressible, the velocity V


 must also satisfy the equation 

0 V


. 

In the xy plane the last equation will be satisfied if )/;/( xyV  


, where   is the flow function. 
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Taking the z component of the curl  of (1) and expressing the velocity in terms of the flow current function, 
then 

                                               0
dt

d
                                                                                  (2) 

This equation is called the law of conservation of the velocity curl  in an ideal incompressible liquid 
(  0zV


). 

Linearizing (2) in terms of small perturbations, then becomes  
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It is assumed here that a small perturbation characterized by 1  is applied to a stationary flow having a velocity 
directed along y axis and varying along x axis.  

By using the following perturbation 
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Then we get 
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This equation is called Rayleigh equation. 

We shall follow (Lin, 1955). We multiply (4) by *
1  and subtract from the product of the complex conjugate 
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Integrating (5) from one boundary of the flow to the other 

                                 

xd
kV

Vk
kW

x

x

x
x 






2

1

2

1

2
12

0

0Im 




      

                                                    (6) 

We have introduced in (6) the real quantity )]/()/()[2/( 1
*
1

*
11 dxddxdikW   . It defines the so-called 

Reynolds stress 
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in the oscillations. 

Equation (5), which is the differential equivalent of (6), shows that at 0Im   the function W  is constant in 
the intervals and undergoes a jump at the resonant point. Note that the sign of the jump depends on whether the 
neutral oscillations are regarded as the limiting cases of growing )0(Im  or damped )0(Im  oscillations. 

The normal velocity component 11
ikVx   and with it the left-hand side of (6) vanish on the solid walls that 

bound the flow. For 0Im  , however, the right-hand side of this equation can vanish only if 0V   reverses sign 
in the interval ),( 21 xx , i.e., the flow velocity profile has an inflection point. Thus, the presence of inflection 
points is a necessary condition for instability. If, however, the velocity profile has now inflection points, the flow 
is stable (Rayleigh's theorem). 

3. Conclusions 

In this paper we study the basic laws determining the stability of plane-parallel flows of an ordinary liquid can be 
naturally translated into the language of the theory of hydrodynamic resonances. Thus, resonant absorption of 
oscillations induces stability of the flows of an ideal liquid having a velocity profile without inflection points 
(Rayleigh theorem), while resonant emission leads to Rayleigh instability in the presence of an inflection point. 

Note that at first glance Equation (6) applies equally well to growing )0(Im   and attenuating 
)0(Im  oscillations. One would therefore conclude from (6) that if some natural oscillations are in fact 
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analysis of damped oscillations )0(Im  calls for taking into account the viscosity, no matter how low, of the 
liquid. 

Therefore all the conclusions concerning oscillations with 0Im  , based on an analysis of the equation of an 
ideal liquid, are, generally speaking, incorrect. 
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