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Abstract  
The aim of this paper is to solve the portfolio problem when security returns are birandom variables. Two types of 
portfolio selection based on chance measure are provided according to birandom theory. Since the proposed 
optimization problems are difficult to solve by traditional methods, a hybrid intelligent algorithm by integrating 
birandom simulation and genetic algorithm is designed. Finally, two numerical experiments are provided to illustrate 
the effectiveness of the algorithm. 
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1. Introduction 
The theory of portfolio selection was initially provided by Markowitz (1952, p.77) and has been greatly developed since 
then. It is concerned with selecting a combination of securities among portfolios containing large number of securities to 
reach the goal of obtaining satisfactory investment return. In his path-break work, Markowitz proposed a principle that 
when making investment decision, an investor should always strike a balance between maximizing the return and 
minimizing the risk, i.e., the investor maximize return for a given level of risk, or one should minimize risk for a 
predetermined return level. More importantly, Morkowitz initially quantified investment return as the expected value of 
returns of securities, and risk as variance from the expected value. After Maokowitz’s work, scholars have been showing 
great enthusiasm in portfolio management, trying different mathematical approaches to develop the theory of portfolio 
selection. Traditionally, returns of individual securities are assumed to be stochastic variables, and many researchers were 
focused on extending Markowitz’s mean-variance models and on developing new mathematical approaches to solve the 
problems of computation. Peng (2007, p. 433) proposed concept of birandom variable and the framework of birandom 
programming. However, investors may come across birandom returns in portfolio selection situations. For example, 
security returns are usually regarded to be normally distributed random variables, but the expected value may be still 
random variable, thus investors have to face random returns with random parameters, to deal with this type of uncertainty, 
we propose the security returns could be regarded as birandom variables. As a general mathematical description for this 
kind of stochastic phenomenon with incomplete statistical information, birandom variable is defined as a mapping with 
some kind of measurability from a probability space to a collection of random variables. 
In general, there are three types of stochastic programming models for optimization problems in uncertain environment. 
The first is expected value model (EVM), which optimizes the expected objective function subject to some expected 
constraints. The second chance-constrained programming (CCP) was proposed by Charnes and Cooper (1965, p.73) and 
developed by many scholars as means of dealing with uncertainty by specifying a confidence level at which the uncertain 
constraints hold. We try to do something in this area. In this paper, returns of securities are assumed to be birandom 
parameters instead of stochastic ones. The portfolio will be selected according to the second type of programming models 
for optimization problems. 
The rest of this paper is arranged as follows. After reviewing some necessary knowledge about birandom variable in 
section 2, in section 3, one type of single-objective birandom chance measure model and one type of birandom CCP 
model are proposed. To provide a general method for solving the new models, in section 4, a hybrid intelligent algorithm 
integrating genetic algorithm and birandom simulation is designed. To better illustrate the modeling idea of the paper and 
demonstrate the effectiveness of the proposed algorithm, two numerical examples are provided in section 5.  
2. Preliminaries 
Birandom variable theory was introduced by Peng in 2007. To better understand the chance measure and the CCP model 
for portfolio selection, let us briefly review some necessary knowledge about birandom variable. 

Definition 1 A birandom variable ξ  is a mapping from a probability space Pr),,( ΑΩ to a collection of random 
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variables such that for any Borel subset B  of the real line R , the induced function })(Pr{ B∈ωξ is a measurable 
function with respect toω . 

Example 1 Let },{ 21 ωω=Ω , and 2/1}Pr{}Pr{ 21 == ωω . Assume that ξ  is a function on Pr),,( ΑΩ as follows. 
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where 1ξ  is a uniformly distributed random variable on ]1,0[  and 2ξ  is a normally distributed random variable with 
mean 0  and variance 1 , i.e., ]1,0[~1 Uξ  and )1,0(~2 Nξ . Then ξ  is a birandom variable according to the 
definition. 
The definition of the primitive chance of birandom event as follows. 

Definition 2 Let ),,,( 21 nξξξξ L=  be a birandom vector on Pr),,( ΑΩ , and mn RRf →:  be a vector-valued Borel 
measurable function. Then the primitive chance of birandom event characterized by 0)( ≤ξf is a function from ]1,0(  
to ]1,0[ , defined as  
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The following are the definitions of optimistic value and pessimistic value of birandom variableξ . 

Definition 3 Let ξ  be a birandom variable, and ]1,0(, ∈δγ , then  

})}({ch|sup{),(sup δγξδγξ ≥≥= xx  

is called the ),( δγ -optimistic value to ξ , and  

})}({ch|inf{),(inf δγξδξ ≥≤= xxr  

 is called the ),( δγ -pessimistic value to ξ . 

3. Birandom chance-constrained portfolio selection  
Let ix  denote the investment proportions in security i , iξ  the birandom return for the thi  security, ni ,,2,1 L=  , 
respectively, if the investor wants to maximize the chance of the total investment return no less than R  at the 
confidence level α ,where R  is the predetermined total return and α is the predetermined confidence level,  then 
the model is  
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In the following, we provide a spectrum of birandom chance-constrained programming (CCP) of portfolio selection. 
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where γ  and δ are the predetermined investment levels that the investor feels satisfactory, and fmax is the 
),( δγ -optimistic value to the security return with respect to primitive chance. 

4. Hybrid intelligent algorithm  
Since the two-fold uncertainty of birandom variable, it is difficult to analytically solve the models (1) and (2). To 
provide a general solution to the models, we design a hybrid intelligent algorithm integrating genetic algorithm (GA) 
and birandom simulation. Roughly speaking, in the proposed hybrid intelligent algorithm, the technique of birandom 
simulation is applied to compute the chance measure and ),( δr -optimistic value of the return function, then birandom 
simulation and GA are integrated for solving the birandom models.  
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4.1 Birandom simulation  
In this section, we mainly discuss the calculation of the chance measure of birandom variables and ),( δr -optimistic 
value of birandom variables.   
Let iξ  be birandom variables and ix  decision variables, ni ,,2,1 L= , respectively. Write  
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where ),,,(),,,,( 2121 nnxxxx ξξξξ LL == . In order to solve the proposed models, we must handle the following two 
types of uncertain function. 
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)(1 xU may be estimated by the following procedure. 

Algorithm 1 (birandom simulation for )(1 xU ) 

Step 1 Generate Nωωω ,,, 21 L  from Ω  according to the probability measure Pr. 

Step 2 Compute the probability }))(,(Pr{ Rxf nn ≥= ωξβ  for Nn ,,2,1 L= , respectively, by stochastic simulation. 

Step 3 Set N ′  as the integer part of Nα . 

Step 4 Return the th'N  largest element β  in  

},,,{ 21 Nβββ L . 

Algorithm 2 ( birandom simulation for )(2 xU ) 

Step 1 Generate Nωωω ,,, 21 L  from Ω  according to the probability measure Pr. 

Step 2 Find the largest value nf  such that  

δωξ ≥≥ }))(,(Pr{ nfxf  

for Nn ,,2,1 L= ,respectively, by stochastic simulation. 

Step 3 Set 'N as the integer part of Nγ . 

Step 4 Return the th'N  largest element in },,,{ 21 Nfff L . 

4.2 Genetic algorithm 
Representation structure: A solution ),,,( 21 nxxxx L=  is represented by the chromosome ),,,( 21 nvvvV L= , 
where the genes nvvv ,,, 21 L  are randomly generated in the interval ]1,0[ , and the relation between x  and V are 
formulated as follows: 

nivvvvx nii ,,2,1),/( 21 LL =+++= , 

which ensures that  
nixxxx in ,,2,1,0,121 LL =≥=+++  always holds. 

Initialization process: sizepop _  number of chromosomes are initialized randomly by generating 

points ),,,( 21 nvvv L  from the hypercube n]1,0[  pop-size times. Since the constraint required that 
),,,( 21 nxxxx L= satisfy 121 =+++ nxxx L , based on the relation between x  and V , the feasibility of the 

randomly generated chromosomes is obvious. 
Evaluation function: Evaluation function, denoted by )(Eva V , is to assign a probability of reproduction to each 
chromosome V so that its likelihood of being selected is proportional to its fitness relative to the other chromosomes in 
the population. That is, the chromosomes with higher fitness will have more chance to produce offspring by using 
roulette wheel selection. 
One well-known evaluation function is based on allocation of reproductive trial according to rank rather than actual 
objective values. We can rearrange the pop-size chromosomes according to their objective values to make better 
chromosome take smaller ordinal number. That is, after rearrange, among pop-size chromosomes sizepopVVV _21 ,,, L , 
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1V  is the best chromosome, and sizepopV _  the worst one, then a parameter )1,0(∈a in the genetic system is given. We 
can define the rank-based evaluation function as follows: 

sizepopiaaV i
i _,,2,1,)1()(Eva L=−= . 

Note that 1=i  means the best individual, sizepopi _=  the worst one. 

Selection process: Firstly, calculate the cumulative probability iq  for each chromosome iV , 

sizepopiVEvaqq
i

ij ji _,,2,1,)(,00 L=== ∑ =
 

Secondly, generate a random number r in ],0( _ sizepopq , and select the chromosome iV  if r  satisfies ii qrq ≤<−1 . 

Repeat the second and third steps sizepop _ times and obtain sizepop _  copies of chromosome. 

Crossover operation: A parameter cp  of a genetic system as the probability of crossover is defined first. The parents 
for crossover operation are selected by doing the following process repeatedly from 1=i  to sizepop _ : Generating a 
random number r  from the interval ]1,0[ , the chromosome iV  is selected as a parent if cpr < , the selected parents 
are denoted by L,,, 321 VVV ′′′  and divided into the pairs: L),,(),,(),,( 654321 VVVVVV ′′′′′′ . The crossover operation on 
each pair is illustrated by ),( 21 VV ′′ . At first, we generate a random number c from the open interval )1,0( , then the 
operator on 1V ′  and 2V ′  will product two children X  and Y  as follows: 

2121 )1(,)1( VcVcYVcVcX ′+′−=′−+′= . 

If both children are feasible, then we replace the parents with them. If not, we keep the feasible one if it exists, and then 
redo the crossover operator by regenerating a random number c  until two feasible children are obtained or a given 
number of cycles is finished. In this case, we only replace the parents with the feasible child . 
Mutation operation: A parameter mp  of a genetic system as the probability of mutation is defined first. This 
probability gives us the expected number of sizepoppm _⋅  of chromosomes undergoing the mutation operations. We 
repeat the following steps from 1=i  to sizepop _ : Generating a random number r  from the interval ]1,0[ , the 
chromosome iV  is selected as a parent if mpr < . For each selected parent iV , we mutate it in the following way. Let 

M be an appropriate large positive number. We choose a mutation direction d  in nR  randomly. If dMV ⋅+  is not 
feasible, then we set M  as a random number between 0 and M until it is feasible. If the above process cannot find a 
feasible solution in a predetermined number of iterations, then we set 0=M . Anyway, we replace the parent iV  with 
its feasible child dMV ⋅+ . 
The following is the hybrid intelligent algorithm integrating birandom simulation and genetic algorithm. 
Algorithm 3 (hybrid intelligent algorithm) 
Step 1 Initialize sizepop _ chromosomes. 

Step 2 Calculate the objective values for all chromosomes by birandom simulation. 
Step 3 Given the rank order of the chromosomes according to the objective values, and the values of the rank-based 
evaluation function of the chromosomes. 
Step 4 Compute the fitness of each chromosome according to the rank-based evaluation function. 
Step 5 Select the chromosomes by spinning the roulette wheel. 
Step 6 Update the chromosomes by crossover and mutation operations. 
Step 7 Repeat the second step to the sixth step for a given number of cycles. 
Step 8 Take the best chromosomes as the solution of portfolio selection. 
5. Numerical examples 
To illustrate the modeling idea and to test the effectiveness of the designed hybrid intelligent algorithm, let us consider 
two numerical examples. The two examples are both performed on a personal computer by using C++ programming 
language. The parameters in the HIA are set as follows: the probability of crossover 3.0=cp , the probability of 
mutation 2.0=mp , the parameter 05.0=a in the rank-based evaluation function. 

Example 2 Assume that there are 5 securities, the returns of securities are all birandom variables. 
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Where  

)1,(~ 11 µξ N  with )1,1(~1 Nµ , )1,(~ 22 µξ N  with )2,2(~2 Nµ , )1,(~ 33 µξ N  with )2,3(~ 2
3 Nµ , 

)2,(~ 44 µξ N  with )3,4(~ 2
4 Nµ , )1,(~ 55 µξ N  with )3,5(~ 2

5 Nµ  and 2.321=R , 9.0=α . 

Here, ),( 2σµN  represents the normally distributed random variable with mean µ  and standard varianceσ . A run of 
the hybrid intelligent algorithm with 3000 generations shows that among 5 securities, in order to gain maximum chance 
measure of the total securities return no less than the predetermined total return R  at the confidence levelα , the 
investor should assign his money according to the optimal solution: 

3747.0,1672.0,2456.0,2125.0,0 *
5

*
4

*
3

*
2

*
1 ===== xxxxx . 

Example 3 Consider the following CCP birandom portfolio selection, 
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where 4321 ,,, ξξξξ are birandom variables representing the securities returns defined as follows, 

)1,(~ 11 µξ N  with )1,0(~1 Uµ , )1,(~ 22 µξ N  with )2,1(~2 Uµ , )1,(~ 33 µξ N  with )3,2(~3 Uµ  

)2,(~ 44 µξ N  with )1,0(~4 Nµ . 

A run of the HIA 5000 cycles shows that the optimal solution is  

0857.0,4561.0,3217.0,1365.0 *
4

*
3

*
2

*
1 ==== xxxx  

The corresponding )95.0,95.0( optimistic value is 

9782.1* =f . 
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