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Abstract 
Based on the nonlinear mixed model technique, four base height-diameter models were evaluated for black spruce. The 
Chapman-Richard model was chosen. Top height and basal area were incorporated into the base model. Comparison of 
the base and expanded models showed that, although the goodness-of-fit measures on the modelling data were 
improved with the inclusion of top height and basal area, the predictive accuracy of the expanded models at the 
subject-specific level where the predominant interest of nonlinear mixed models lies, was reduced when tested on the 
model validation data. This has important practical implications because more accurate individual tree height 
predictions can be better achieved using the base height-diameter model without requiring the addition of other 
variables. It also reaffirms that determining the adequacy of a model on model fitting statistics alone can be misleading. 
A fitted model is best judged on separate validation data. 
Keywords: Individual tree height prediction, Height-diameter model, Nonlinear mixed model, Model validation, Local 
prediction, Error distribution 
1. Introduction 
Total tree height (H) and tree diameter at breast height (DBH) are two of the most fundamental variables in forestry. 
The estimation of tree volume and biomass, the description of stand conditions and their changes over time, as well as 
the development of growth and yield projection systems all rely heavily on the availability of a complete set of tree 
heights and diameters. 
However, since measuring tree height is time consuming and costly, typically in various data collection programs in 
forest management, all trees are measured for diameter but only a portion of the trees are measured for height. 
Predicting the “missing” tree heights is therefore routinely required in forest research and operations (Curtis 1967, 
Wykoff et al. 1982, Arabatzis and Burkhart 1992, Huang et al. 1992).  
Although different options exist, the most commonly used method of predicting tree heights is to develop 
height-diameter models. From the trees that have both height and diameter measured, a height-diameter model can be 
developed to express tree height as a function of tree diameter. This model can then be used to predict the “missing” 
heights from measured DBHs.  
In numerous studies related to the development of height-diameter models, it has been almost unanimously shown that 
the predictive ability and accuracy of the base height-diameter models can be improved if additional (statistically 
significant) tree and stand level variables are incorporated into the models. These variables may include tree or stand 
age, basal area per hectare (ha), stems per ha, crown ratio, crown competition factor, site index, dominant/co-dominant 
height, top height, crown class, wind speed, and different competition indices and species composition measures (e.g., 
Curtis 1967, Huang and Titus 1994, Huang 1999, Eerikäinen 2003, Temesgen et al. 2008, Meng et al. 2008). 
The conclusions reached in previous studies were mostly derived from the goodness-of-fit measures on the modelling 
data, which, as will be shown later, could be unreliable and even misleading sometimes if one is not careful. 
Furthermore, in the cases where the nonlinear mixed model (NLMM) technique was applied (Castedo Dorado et al. 
2006, Sharma and Parton 2007, Temesgen et al. 2008, Meng et al. 2008), no frequency-based comparison of the 
predictive performance between the base and expanded models was made on the plot-specific level where the main 
interest of NLMMs lie. 
The prime objectives of this study were to: (1) select the optimal base height-diameter model for black spruce (Picea 
mariana (Mill.) B.S.P.); (2) compare the predictive accuracy of the base model with that of the expanded models on 
both the model fitting and validation data sets; and (3) evaluate the impacts of including or not including statistically 
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significant stand level variables into the base model. The selection, comparison and evaluation were all conducted 
within the NLMM framework. 
2. Material and methods 
2.1 Data 
The black spruce data used in this study were collected by the Alberta Forest Service as a part of the provincial 
Permanent Sample Plots (PSP) database. The data encompass three key forest ecoregions (also called subregions) in 
Alberta: the lower foothills, the upper foothills, and the boreal mixedwood. The PSPs range in sizes from 200 to 2000 
m2, with the most common one being 1000 m2. Within each plot or subplot (usually a quarter of the full PSP), diameters 
(always at a breast height of 1.3 m above ground) were measured for all trees taller than 1.3 m, and heights were 
measured for approximately 10 to 20% of the representative trees in a random or systematic fashion. A detailed 
description of the data collection procedures is provided in Alberta Forest Service (2000). 
To avoid the potential serial correlation from repeated measurements of the same PSPs, only the initial measurements 
were retained in this study, which resulted in a total of 164 plots (1703 trees). The data were divided into two 
independent data sets by ecoregion: 93 plots (917 trees) from the lower foothills ecoregion were used as modeling data, 
and the other 71 plots (786 trees) from the boreal mixedwood and upper foothills ecoregions were used as model 
validation data. For the reasons discussed in Huang et al. (2002), we purposely avoided “random splitting” of the data. 
Summary statistics for the tree level variables H and DBH, and the plot level variables top height (i.e., mean height of 
the 100 largest DBH trees per ha) and stand basal area, are listed in Table 1. The data are also shown in Figure 1. 
2.2 Specification of base height-diameter models 
Based on a detailed examination of the height-diameter data shown in Figure 1, a large number of base height-diameter 
models were examined in preliminary analyses. Four promising candidate models were selected for further evaluation:  
(1) ( )1)/(DBHββexp1.3H 21 +++=  
(2) 2β

1DBHβ1.3H +=  
(3) ( )1)]ln(DBHβexp[β1β1.3H 321 ++++=  
(4) 3β

21 DBH)]βexp([1β1.3H −−+=  
where H is total tree height (m), DBH is tree diameter (cm) at breast height, and β1, β2 and β3 are model parameters. 
These models and their slight modifications have been ranked favorably among alternative models in other relevant 
studies, particularly the Chapman-Richards model (4) (e.g., Wykoff et al. 1982, Huang et al. 1992, Sharma and Parton 
2007, Temesgen et al. 2008).  
Following the NLMM technique (Davidian and Giltinan 1995, Vonesh and Chinchilli 1997), one or more parameters in 
the above models were assumed to be mixed (i.e., they consist of a fixed component and a random component). 
Likelihood ratio tests were conducted to determine if this assumption was true (at α = 0.05 throughout this study). It was 
found that the two parameters in (1) and (2) were both mixed, but parameter β2 in (3) and (4) was fixed. Hence, the 
NLMM formulations of the above base models are:  
(5) ( ) ijijiiij ε1))/(DBHb(β)b(βexp1.3H 2211 ++++++=  
(6) ijijiij εi +++= + )b(β

11
22)DBHb(β1.3H  

(7) ( ) ijijiiij ε1)])ln(DBHb(βexp[β1)/b(β1.3H 23211 +++++++=  
(8) ijijiij

i ε)]DBHβexp(1)[bβ(3.1H )b(β
211

23 +−−++= +  
where Hij and DBHij are observed height and DBH for the jth tree in the ith plot (subject), i = 1, 2, …m, j = 1, 2, …ni, m 
is the total number of plots in the population, ni is the number of trees in plot i, β1, β2 and β3 are fixed parameters 
common to all plots, b1i and b2i are random parameters specific to plot i, and ijε  is a normally distributed within-plot 
error term. Models (5)-(8) can be expressed in matrix forms. For example, the Chapman-Richards model [8] can be 
written for plot i as 
(9) iiii

i εDBHH +−−++= + )b(β
211

23)]βexp()[1b(β3.1  
where Hi and DBHi are vectors of observed heights and DBHs, respectively, for the ith plot with ni observations, and 

]ε,...,ε,ε[ n21i iiii=ε ′ is a vector of the within-plot errors. 
2.3 Expanded models 
Individual tree height-diameter relationship could be affected by many factors. Of which, site quality and stand density 
were found to be most common (Huang and Titus 1994, Sharma and Parton 2007, Meng et al. 2008). Typically, site 
quality is represented by site index or dominant/co-dominant height (Hdc), with the latter appeared more common, likely 
due to the fact that site index is often unobservable and must be predicted from site index models, which could bring in 



Modern Applied Science                                                                  April, 2009 

 5

additional prediction errors and artificially reduce the variation in site quality. The use of Hdc, however, is not without 
its problems. The definition of “dominant”/“co-dominant” is not always clear-cut in practice, and how many 
“dominants” and/or “co-dominants” are needed to get a stable Hdc for a stand is unclear. Nicholas at al. (1991) found 
that the reliability of tree crown position classification was very low, and “only 38% of dominant trees and 81% of 
co-dominant trees were similarly re-classified" during visits in the same growing season. 
In this study top height was used as an indicator of site quality. Top height is defined as the average height of the 100 
largest DBH trees per ha. Given a plot size, a fixed number of the largest DBH trees corresponding to the plot size were 
selected and the average height of these trees was obtained to represent the site quality of the plot. The use of top height 
removed the inconsistencies associated with the use of Hdc. 
For stand density, basal area per ha (BA, m2/ha) was used. Basal area per ha is a simple and objective measure of the 
degree of crowding within a stand. It is generally better than the stand density measure based on trees per ha because 
basal area combines tree number with tree size. 
Top height and basal area per ha were incorporated into the base H-DBH models. Different functional forms and 
various combinations of the variables and their transformations were tried and evaluated based on the standard NLMM 
goodness-of-fit measures such as -2 times log-likelihood (-2LL), Akaike Information Criterion, Schwarz’s Bayesian 
Information Criterion, significance of the parameters, and studentized residual plots (Littell et al. 2006). It was found 
that simple linear combinations were adequate. As examples, two expanded models, one with top height incorporated 
and the other with both top height and BA incorporated, were formed based on the Chapman-Richards base model (9): 
(10) iiiii

i εDBHH +−−+++= + )bβ(
2141

23)]βexp(1)[bTopHββ(3.1  
(11) iiiiii

i εDBHH +−−++++= + )bβ(
21541

23)]βexp(1)[bBAβTopHββ(3.1  
where TopHi is top height (m), BAi is basal area per ha (m2/ha), and β1-β5 are fixed parameters common to all plots, and 
b1i and b2i are random parameters specific to the ith plot. Attempts to relate β4 and β5 to additional random parameters in 
linear or nonlinear fashions failed to achieve convergence.  
2.4 Parameter estimation 
All base and expanded models can be written as a generalized NLMM of the form: 
(12) iiii f εbβxy += ),,(  
where ],...,,[ n21 iiiii yyy=y ′ is a vector of tree height measurements in plot i, xi is a known design matrix of the 
covariates (DBH, and where applicable also TopH and/or BA), β  is a vector of fixed parameters, ]b,b[ 21 iii =b ′ is a 
vector of random parameters, and ]ε,...,ε,ε[ n21i iiii=ε ′ is the error vector. The ib  and iε  are assumed to be 
uncorrelated and normally distributed with mean zero and variance-covariance matrices D and Ri, respectively, that is: 
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Furthermore, since no obvious pattern of unequal error variance was detected from studentized residual plots, which is 
typical of height-diameter models after the inclusion of random parameters (e.g., Castedo Dorado et al. 2006, Meng et 
al. 2008), Ri is assumed to be 

in
2Iσ , where 2σ  is the error variance and 

inI  is a ni × ni identity matrix, and D is 
assumed to be an unstructured covariance matrix that is the same for all i: 
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where 2
b1

σ  and 2
b2

σ  are the variances for random parameters b1 and b2, respectively, and 
21bbσ  is the covariance 

between b1 and b2.  
The parameters of the generalized NLMM (12) can be estimated using different methods (Davidian and Giltinan 1995, 
Vonesh and Chinchilli 1997). In this study we used the first-order (FO) method of Beal and Sheiner (1982) and the 
first-order conditional expectation (FOCE) method of Lindstrom and Bates (1990). We found that the FOCE method 
often failed to achieve convergence, and was less stable and more prone to floating errors than the FO method. In the 
cases where both FO and FOCE achieved convergence, the FO method was found to give more accurate predictions 
with smaller mean error and error variance. Therefore, we limited ourselves in this analysis to the FO method.  
The FO method employs a first-order Taylor series expansion of (12) around a *β  close to β  and a *

ib  set to zero, 
the expected value of the random-parameters (i.e., 0bb == )(E*

ii ), to approximate the nonlinear function (12), with 
the quadratics and cross-products dropped: 
(14) iiiiiiii f εbbZββXbβxy +−+−+≈ )()(),,( ****  
where the derivative matrices iX  and iZ  are defined by 
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i

* ),,( βX0βxyy iii f +−= , eq. (14) can be written 
as a standard linear mixed model: 
(16) iiiii εbZβXy ++=*  
Following the linear mixed model theory, the generalized least squares estimator β̂  of the fixed parameters β in (16) 
can be obtained as described in Fitzmaurice et al. (2004). The random parameters predictor ib̂  of the ib  is (Davidian 
and Giltinan 1995, Vonesh and Chinchilli 1997): 
(17) )],ˆ,([)ˆˆ(ˆˆ 1'' 0βxyRZDZZDb iiiiiii f−+= −  
where D̂  and iR̂  are estimates of D and Ri, respectively, and Zi is defined in (15). 
It is worthwhile to point out that eq. (17) is adequate only for the FO method. Had the FOCE method been used, we 
must use the following equation to predict the ib̂  and solve it iteratively (Lindstrom and Bates 1990, Schabenberger 
1994, Huang 2008, Temesgen et al. 2008, Meng et al. 2008): 

]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1''
iiiiiiiiii f bZbβxyRZDZZDb +−+= −  

Unfortunately, many forest modellers used eq. (17) to predict the ib̂  while implementing the FOCE method, without 
realizing that this could seriously bias the results.  
All base and expanded NLMMs were estimated using the SAS macro %NLINMIX, with the keyword EXPAND = 
ZERO for the FO method (Littell et al. 2006).  
2.5 Model prediction 
Since model fitting statistics alone can sometimes be unreliable, a fitted model is more appropriately judged through 
cross-validation or using separate model validation data (Picard and Cook 1984, Huang et al. 2002, Yang et al. 2004). 
To evaluate the predictive accuracy of the base and expanded H-DBH models fitted in this study on the validation data 
at plot- or subject-specific level where the main interest of NLMMs lies, the random parameters ib̂  must be predicted 
first based on eq. (17). Once the ib̂ are available, predictions for iy  are obtained by eq. (18), which is derived by 
equating (16) to the pseudo function *

iy  (Davidian and Giltinan 1995, Vonesh and Chinchilli 1997): 
(18) iiii f bZ0βxy ˆ),ˆ,(ˆ +=  
The errors (residuals) associated with the predictions are 

iii yye ˆ−=           or          ijijij yye ˆ−=  
where ijy  and ijŷ  are the jth observed and predicted values for subject i with ni observations. For a population of N 
observations from m subjects, where N = ∑ =

m
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Since in practice, many researchers (e.g., Fang and Bailey 2001, Calama and Montero 2004) have used the fixed 
parameters estimated as a part of a NLMM to represent the “typical” population-averaged responses, we also calculated 
such “typical” responses:  
(20) ),ˆ,(ˆ _ 0βxy ifixi f=  
where fixi _ŷ  are the “typical” population-averaged responses based on the fixed parameters β̂  only (with the ib̂  
set to zero). The associated “typical” population-averaged residuals are:  
(21) fixiifixi __ ŷye −=  
In addition to the overall mean bias averaged over all observations from all subjects (as in eq. (19)), which could be 
misleading sometimes because the positive and negative errors from individual subjects could cancel one another out, 
the mean bias (or simply bias) for each individual subject was also calculated one plot at a time, together with the 
standard deviation (SD): 
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where ie  is the bias for subject i with ni (or nij) observations, and all other variables are as defined before. Two other 
conventional goodness-of-fit statistics were also calculated by plot (subject). One is the percent bias (Bias% or %ei ) 
and the other is the root mean square error (RMSE): 
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where iy  is the average of the observed values for subject i, and all others are as defined before. 
Once the values of ie , Bias%i and RMSEi were calculated for each of the 71 plots of the validation data, their 
frequency distributions were examined and compared to assess the goodness-of-prediction of the base and expanded 
height-diameter models on the validation data. 
For a comparison, the biases for each of the 93 plots of the modelling data were also calculated following the same 
procedures outlined above and their frequency distributions were also examined.  
2.6 Maximum height-diameter relationship 
Subject-specific local predictions obtained from the NLMM technique attempt to “best” mimic the local data. 
Sometimes, due to the scarcity and the limited range of the data, as well as the flexibility of the specified model, local 
predictions may be unrealistic when extrapolated beyond the original data range (especially when more covariates are 
present). This is illustrated in Figure 2. To prevent the potential extrapolation errors due to data limitation, a maximum 
height-diameter curve was developed for black spruce based on all PSP data, plus the stem analysis data from sectioned 
trees (Huang et al. 1992). The combined data of 14,345 trees (Figure 2) were grouped by a 2-cm DBH class and the 
tallest tree in each DBH class was used to fit the Chapman-Richards model (4) by the ordinary nonlinear least squares 
method. This produced the “mean” maximum height-diameter curve for black spruce: 
(26) 0.9042

max )]0.04892DBHexp(34.3451[11.3H −−+=  
which, if necessary, would be used to constrain the height predictions beyond the observed data range. In the cases 
where negative predictions are obtained, which is possible for the FO method since eq. (18) is used to predict the 
response variable, negative values are set to zero to be biologically meaningful. 
3. Results and discussion 
3.1 Choice of the base and expanded models 
Table 2 lists the parameter estimates and relevant fit statistics for the base and expanded models, where all fixed 
parameters are highly significant at α = 0.05. The Akaike Information Criterion (AIC) and the Schwarz’s Bayesian 
Information Criterion (BIC) are computed by 
(27) 2P2LLAIC +−=  Pln(m)2LLBIC +−=  
where -2LL is -2 times the log-likelihood function of the model, P is the total number of effective parameters (includes 
fixed parameters, variance-covariance components of the random parameters, plus the residual variance component), 
and m is the number of effective subjects. 
Among the four base models, the Chapman-Richards model (9) has the smallest AIC and BIC values (Table 2), 
suggesting (9) is the most reasonable base model for black spruce. Therefore, only (9) is expanded to include top height 
and/or basal area. The two expanded models (10) and (11) have smaller AIC and BIC values than their counterparts 
from (9), suggesting (10) and (11) are better than the Chapman-Richards base model (9). 
Between the two expanded models, model (11), which included both top height and basal area, has smaller AIC and 
BIC values (Table 2). Hence, model (11) is considered better than model (10). This is expected because (10) included 
top height only. The estimated fixed parameters related to top height (β4) and basal area (β5) are both positive, 
indicating that in general, site quality and stand density have positive impacts on black spruce height growth. 
Following the standard model ranking and selection practice in regression analysis, models (9), (10) and (11) would be 
ranked 3, 2 and 1 (best), respectively. Model (11) would be selected as the best model among the three models. The base 
model (9) would be considered as the worst model. 
3.2 Predictive performance of the models 
To assess the predictive performance of the models in real-world applications, height predictions from the base and 
expanded models were made based on the validation data (as well as on the modeling data for a comparison). To 
illustrate the computations involved, an example plot was used. This plot has three height-diameter observations. They 
are listed in Table 3 and shown in Figures 3(a)-3(b). 
The height predictions based on the fixed parameters only are obtained directly from the models, with the random 
parameters set to zero. For instance, for the base model (9): 

3β̂
21_ )]β̂exp([1β̂3.1ˆ

ifixi DBHH −−+=  
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where the estimated fixed parameters 31 β̂-β̂  are given in Table 2. For the FO method, the derivatives of (9) with 
respect to the two random parameters are calculated by 
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The calculated results at the given DBHs are listed in Table 3. They constitute the iZ  matrix defined in (15). In 
addition, from Table 2, we also know the D̂  and iR̂  matrices. Therefore: 
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Having the fixi _Ĥ , iZ , D̂  and iR̂  values, the random parameters can be predicted from (17): 
)ˆ()ˆˆ(ˆˆ 1''

i_fixiiiiii HHRZDZZDb −+= −  = [-2.0180, 0.06947]′ 
Once the ib̂  are known, the predicted heights are obtained by (18): iii_fixi bZHH ˆˆˆ += . Results are listed in Table 3, 
along with the associated errors. The standard deviation of the errors and an overall accuracy measure (δ) combining 
bias and precision were also calculated (Cochran 1977):  
(28) δ = (mean bias)2 + (standard deviation of the errors)2 
Height predictions from the other models were obtained in a similar manner. Results are also listed in Table 3. Height 
prediction trajectories for all 71 plots of the validation data across the possible predictive range where future predictions 
are likely to be made, are shown in Figures 3(c)-3(d). These trajectories, sometimes referred to as "spaghetti plots" or 
“chow-mein plots” (Huang 2008), can be particularly useful in assessing the predictive behaviors of NLMMs within 
and beyond the observed data range. All trajectories for black spruce (Figure 3) were found to be within the bounds 
defined by the maximum H-DBH curve shown in Figure 2, rendering the constraint unnecessary for this data set. 
The results in Table 3 suggest that all three models over-predicted the height for the example plot (i.e., the mean biases 
are all negative). Among the three models, the expanded model (11) produced the largest bias (-0.633) and δ (1.156), 
whereas the base model (9) produced the smallest bias (-0.347) and δ (0.748). Note that this is completely opposite to 
the ranking of the models based on the goodness-of- fit measures on the modelling data (Table 2), where the expanded 
model (11) was the best and the base model (9) was the worst. 
Following the same procedure illustrated for the example plot, random parameters were calculated and height 
predictions were made for each of the 71 plots of the validation data. In addition, “typical” population-averaged (PA) 
height predictions were also made using the estimated fixed parameters only given in Table 2. For the purpose of 
comparison, similar predictions were made for each of the 93 plots of the modelling data. Summary statistics of the 
prediction biases from different models, by different methods, and on different data sets are provided in Table 4. 
For the PA predictions based on the fixed parameters only, the expanded models are more accurate with smaller values 
of δ and Bias% than those from the base model (Table 4). This implies that if we use the fixed parameters only to make 
the PA predictions, the inclusion of additional variables will improve the accuracy of the predictions. This is consistent 
with the traditional least squares regression, in which only fixed parameters are present, and additional variables may 
need to be incorporated into the base model to explain additional variations that may arise from the between-subject 
differences in, for instance, site quality and stand density.  
However, under the NLMM framework, or whenever the NLMM technique is applied, subject-specific local predictions 
become the predominant focus. The fixed parameters estimated as a part of a NLMM do not fully characterize the mean 
responses of the population, especially when the inter-subject variability is large (Hu et al. 1998, Davidian and Giltinan 
2003, Fitzmaurice et al. 2004, Young et al. 2007). As a consequence, they generally provide a biased partial 
representation of the true population mean responses, which, unfortunately, is hardly ever recognized in forest 
modelling, where many forest modellers used the predictions obtained from the fixed parameters only to represent the 
“unbiased” PA responses. Corrections (or separate fits by nonlinear least squares) are necessary to obtain the unbiased 
PA predictions unless it can be shown that the biases are of little or no practical consequence (Chiswell and Monahan 
2004, Kjellsson et al. 2004, Funatogawa and Funatogawa 2007, Huang 2008). The simplest and the most effective 
correction procedure for obtaining the unbiased PA predictions under the NLMM framework can be derived based on 
the ratio estimate method of Hartley and Ross (1954), which is frequently employed in sample surveys to obtain 
unbiased estimates of the population and subpopulation means. Since a correctly specified and fitted NLMM possesses 
the ability to closely follow the population-averaged and subject-specific trends exhibited by the data, the 
proportionality between the observed and predicted values can be assumed and the ratio estimate method can be used to 
adjust the predictions. Various ratio estimators can be formed of which the most common one, when calculated for the 
entire population based on the fixed parameters only, is 
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where y  and ŷ  are the grand mean of the observed ( ijy ) and predicted ( fixijy _ˆ ) values, respectively. The r defined 
in eq. (29) follows that: 1) if ŷ  = y , r = 1, indicating unbiased prediction; 2) if ŷ  > y , r < 1, indicating 
over-prediction; and 3) if ŷ  < y , r > 1, indicating under-prediction. Cochran (1977) showed that the expectation: 

( ) 0ˆ =⋅− yryE  
Therefore, in the case of over-prediction (r < 1), the ratio estimate will adjust the predicted values downward by the 
ratio y / ŷ  to remove the bias. When under-prediction occurs (r > 1), the ratio estimate will adjust the predicted values 
upward by the same ratio y / ŷ . In both cases, the adjusted (unbiased) predictor adjijy _ˆ , can be written as 

fixijadjij yry __ ˆˆ ⋅=  
Once the adjusted predictor is obtained, it can be used to generate an unbiased PA curve for the population. For the base 
model (9) fitted in this study, this unbiased PA curve is given by 

))]β̂exp([1β̂3.1(ˆ 3β̂
21_ iadji r DBHH −−+=  

where adji _Ĥ  are the adjusted unbiased PA predictions, and r is ratio estimate defined in eq. (29). 
For subject-specific predictions, the results in Table 4 suggest that the overall mean biases are much smaller than those 
for the PA predictions. This is expected because the PA predictions were based on the fixed parameters only, whereas 
each plot in the subject-specific predictions has its own localized curve obtained from both fixed and random 
parameters.  
The results in Table 4 also suggest that for subject-specific predictions, the mean bias and the standard deviation of the 
errors from the base model (9) are smaller than those from the expanded models. The bias (-0.023) and the SD (0.870) 
from the base model (9) are the smallest, whereas the bias (-0.068) and the SD (0.903) from the expanded model (11) 
are the largest. The values of the overall accuracy (δ) are 0.757, 0.798 and 0.820 for models (9), (10) and (11), 
respectively, indicating that as the number of variables incorporated into the base model increases, the accuracy of the 
predictions decreases. A similar trend is also observed on the modeling data (Table 4). Clearly, the height predictions 
from the base model are the most accurate. This is again entirely opposite to the ranking of the models based on the 
model fitting statistics. It is unexpected because the expanded models, which included one additional variable (top 
height) in (10), and two additional variables (top height and basal area) in (11), were supposed to provide incrementally 
more accurate predictions with smaller biases and SDs (to offset the incremental time and costs associated with 
measuring the additional variables).  
For subject-specific local predictions, the unbiasedness of the predictions is not guaranteed because, depending on many 
factors (e.g., number of subjects, inter-subject variability, observations per subject, approximation process, model 
specification, errors-in-variables, assumptions, etc.), a NLMM provides varying degrees of goodness-of-fits to 
individual subjects within the population (Huang 2008). In fact, the biases for many subjects of an appropriately fitted 
NLMM could still be substantial (e.g., |Bias%| exceeding ±2.5 or ±5.0% of the observed mean, see Tables 5-6). To 
ensure the unbiasedness of subject- specific local predictions, a ratio estimate can also be calculated for each subject 
within the population: 
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where iy  is the mean of ijy  for subject i and iŷ  is the mean of ijŷ  predicted from eq. (18). The calculated ir  
can be used to adjust the ijŷ  to obtain unbiased predictions for subject i:  

ijiadjij yry ˆˆ _ ⋅=  
Essentially, both the population-based and subject-specific correction procedures adjust the predicted values from a 
NLMM downward or upward by the calculated ratio estimates, such that the averages of the residuals (i.e., mean biases) 
are zero on both the population and subject-specific levels. To avoid a digression from the main objectives of this study, 
we did not demonstrate the correction procedures in the present study. Interested readers can find more details 
elsewhere (e.g., Huang 2008). 
3.3 Distributions of biases from the base and expanded models 
To determine the possible reasons for the lower accuracy from the expanded models, the frequency distributions of 
subject-specific biases from the base and expanded models were examined. Table 5 lists the summary statistics for the 
bias ( ie ), Bias%i and RMSEi calculated plot-by-plot. The calculations were done for 71 plots of the validation data, and 
as a comparison, for 93 plots of the modelling data as well. The plots where the Bias%i exceeded ±2.5% of the observed 
mean were identified and listed separately, where the ±2.5% threshold was chosen by dividing the one-sided 5% 
significance level commonly used in statistical inferences into two-sides. 
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The frequency distributions of the biases, Bias%s and RMSEs were examined. Here we only show the distributions of 
the Bias%s from the base model (9) and the expanded model (11) (Figure 4), as the distribution from the expanded 
model (10) was similar to that of (11), and the distributions of the other statistics showed similar patterns to those of 
Figure 4. Actual values and additional information related to the distributions are available, but here we only list those 
(Table 6) relevant to the validation data. 
The contrasts between the base and expanded models are obvious. For instance, when (9) was used, 18 out of 71 plots 
of the validation data produced biases exceeded ±2.5% of the observed mean (Tables 5-6). When (10) and (11) were 
used, 23 and 27 plots produced biases exceeded ±2.5% of the observed mean. The results on the modelling data were 
similar: 15 out of 93 plots had biases exceeded ±2.5% when (9) was used, and 30 and 37 plots had biases exceeded 
±2.5% when (10) and (11) were used. The frequencies of poor predictions from the expanded models are greater than 
those from the base model. 
The poorer performance of the expanded models can also be seen in Figure 4, where the biases are centered around zero 
but those from the expanded models are spread out more than those from the base model, suggesting larger prediction 
variations and lower accuracies from the expanded models. On the validation data, the standard deviations of the biases 
for (10) and (11) are 0.612 and 0.664, respectively (Table 5). Both are larger than that (0.399) for the base model (9). 
The δ value (0.159) of the base model is less than half of the δ values (0.386 and 0.447) of the expanded models, 
suggesting that the base model is more than twice as accurate as the expanded models. The same conclusion can also be 
reached on the modelling data (Table 5). 
It was generally taken for granted that the predictive accuracy of a base model would be improved if additional tree and 
stand level variables were incorporated into the model. This is true in the traditional least squares regression, and it may 
also be true in the biased PA predictions using only the fixed parameters under the NLMM framework. However, in 
terms of subject-specific predictions that the NLMM technique was developed for, we found that the addition of top 
height in (10), and top height and basal area in (11) both produced lower accuracy than the base model (9). In fact, 
judging from the results in Tables 4-5, the overall accuracy (δ) of the predictions is reduced as additional variables are 
added into the base model. This is true on the validation data, as well as on the modelling data. 
The possible reason that caused the base model to perform better in local predictions than the expanded models likely 
originated from the inclusion of subject-specific random parameters in the base model. Under the NLMM framework, 
the random parameters in the base model already allowed the plot level variations associated with different site-specific 
factors to be accounted for without actually requiring that they be identified or measured. This renders in a statistical 
sense (as oppose to biological) that the addition of other plot level variables such as top height and stand density, which 
also represent the same differences in site factors that the random parameters already represent, unnecessary.  
For the purpose of evaluating the biological implications of top height and basal area on black spruce height growth 
under the NLMM framework, it is still useful to look at the significance of these variables when entered into the base 
model. However, for subject-specific local predictions, the results of this study show that the addition of other variables 
beyond the base height-diameter model is unwarranted. Apparently, the random parameters in an aptly specified base 
model can take into account all or most of the other known and unknown factors on a given site, thereby eliminating the 
need to measure or to include other variables when subject-specific local predictions are made.  
4. Conclusions 
We examined four base height-diameter models for black spruce under the NLMM framework. We found that the 
Chapman-Richards base model was the best. We compared this base model with the expanded models that included top 
height and/or basal area as the additional predictors through the evaluation of the overall biases and the frequency 
distributions of the biases from individual plots. We found that the base model produced the most accurate 
subject-specific height predictions. For black spruce, optimal, subject-specific tree height predictions can be achieved 
using a simple height-diameter model fitted by the NLMM technique without including any other additional variables. 
We also found that the frequency distributions of the biases from individual plots where the main interest of a NLMM 
lies are more powerful in revealing the adequacy of the fitted NLMM than many other statistics. Such frequency 
distributions should be routinely examined in any future study involving NLMMs.  
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Table 1. Summary statistics for black spruce model fitting and validation data 

Data type Level Variable N Mean Min Max SD 

Model fitting Tree DBH (cm) 917 14.040 1.300 39.400 5.292 

  H (m) 917 13.092 2.300 26.200 3.997 

 Plot BA (m2/ha) 93 14.418 0.643 54.608 12.030 

  TopH (m) 93 15.759 5.500 23.550 3.986 

Validation Tree DBH (cm) 786 12.291 1.400 35.800 5.301 

  H (m) 786 10.673 2.000 27.400 4.277 

 Plot BA (m2/ha) 71 15.896 0.515 45.344 12.269 

    TopH (m) 71 15.350 7.067 27.400 4.605 

Note: DBH is tree diameter at breast height (1.3 m above ground), H is total tree height, BA is basal area per 
hectare, TopH is top height (i.e., average height of the 100 largest DBH trees per ha), N is sample size (i.e., 
number of trees at tree level, or number of plots at plot level). Min, max, and SD are minimum, maximum, and 
standard deviation, respectively. 
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Table 2. Parameter estimates and fit statistics for the base and expanded height-diameter models 

Parameter 
Base models   Expanded models 

    (5)     (6)   (7)   (9)     (10)     (11) 

β1 3.2418 1.6320 33.0854 25.4440 9.1617 8.9909

β2 -11.5278 0.7401 3.8144 0.04734 0.07668 0.07127

β 3   -1.1826 1.0748 1.2266 1.1617

β4     0.6745 0.6752

β5      0.03388
2
b1

σ  0.04409 0.3556 1053.65 10.7688 0.8135 1.1145

21bbσ  -0.4310 -0.05916 18.8578 0.2834 0.08974 0.1277
2
b2

σ  6.2356 0.01046 0.3426 0.02546 0.03450 0.02895
2σ  1.2736 1.3557 1.2704 1.2931 1.2864 1.2923

P 6 6 7 7 8 9

m 93 93 93 93 93 93

-2LL 3094.6 3104.2 3079.9 3075.5 2959.3 2948.7

AIC 3106.6 3116.2 3093.9 3089.5 2975.3 2966.7

BIC 3121.8 3131.4 3111.6 3107.2 2995.5 2989.5

Ranking [5] [6] [4] [3] [2] [1]

Note: β1-β5 are fixed parameters, 2
b1

σ  and 2
b2

σ  are the variances for random parameters b1 and b2, 
respectively, 

21bbσ  is the covariance between b1 and b2, σ2 is the residual (error) variance, P is the total 
number of parameters (includes fixed parameters, variance-covariance components of the random parameters, 
plus the residual variance component), m is the number of subjects (plots), -2LL is -2 times log-likelihood of 
the model, AIC is Akaike information criterion, and BIC is the Schwarz’s Bayesian information criterion (AIC 
and BIC are defined in eq. (27)), and ranking refers to the rank of the model by the AIC and BIC values 
(smaller is better). 
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Table 3. Height predictions for an example plot with three height-diameter (H-DBH) observations 

Model 
Observed Predicted 

δ Bias% 
DBH H H_fix   e_fix der_b1 der_b2  H_ss e_ ss 

(9) 7.9 7.8 8.577 -0.777 0.286 -8.475 7.411 0.389 0.748 -3.41 

 10.7 8.2 10.738 -2.538 0.371 -8.709 9.384 -1.184   

 20.3 14.5 16.455 -1.955 0.596 -7.306 14.745 -0.245   

 Mean 10.167 11.923 -1.756   10.513 -0.347   

 SD 3.758 4.071 0.897   3.796 0.792   

(10) 7.9 7.8 8.497 -0.697 0.380 -5.678 7.589 0.211 1.111 -5.68 

 10.7 8.2 10.597 -2.397 0.491 -5.394 9.730 -1.530   

 20.3 14.5 15.467 -0.967 0.748 -3.355 14.914 -0.414   

 Mean 10.167 11.520 -1.354   10.744 -0.577   

 SD 3.758 3.575 0.913   3.767 0.882   

(11) 7.9 7.8 8.454 -0.654 0.376 -6.029 7.731 0.069 1.156 -6.23 

 10.7 8.2 10.479 -2.279 0.482 -5.767 9.804 -1.604   

 20.3 14.5 15.244 -0.744 0.732 -3.741 14.862 -0.362   

  Mean 10.167 11.392 -1.226     10.799 -0.633    

 SD 3.758 3.486 0.913   3.668 0.869   

Note: H_fix is height prediction from fixed parameters, H_ss is height prediction from fixed and random 
parameters, e_fix and e_ ss are associated residuals, der_b1 and der_b2 are derivatives with respect to b1 and b2, 
SD is the standard deviation, δ is defined in eq. (28), and Bias% = 100 × mean bias / mean H. 

 
Table 4. Summary statistics for the overall height prediction biases 

Data Parameters used Model  N
Bias 

δ Bias% 
Mean Min Max SD

Validation Fixed & random  (9) 786 -0.023 -3.342 4.198 0.870 0.757 -0.216 

  (10) 786 -0.045 -3.799 4.183 0.892 0.798 -0.422 

  (11) 786 -0.068 -3.793 4.177 0.903 0.820 -0.637 

 Fixed only (9) 786 -0.804 -8.584 7.450 1.990 4.607 -7.533 

  (10) 786 -0.223 -4.910 4.490 1.221 1.541 -2.089 

  (11) 786 -0.350 -5.261 4.312 1.197 1.555 -3.279 

Modelling Fixed & random  (9) 917 -0.004 -5.247 4.140 1.074 1.153 -0.031 

  (10) 917 -0.002 -5.703 4.408 1.091 1.190 -0.015 

  (11) 917 -0.002 -5.643 4.403 1.097 1.203 -0.015 

 Fixed only (9) 917 0.451 -4.559 7.462 1.838 3.582 3.445 

  (10) 917 0.284 -6.109 4.706 1.395 2.027 2.169 

  (11) 917 0.109 -5.883 5.007 1.336 1.797 0.833 

Note: N is sample size, SD is standard deviation, δ is defined in eq. (28), and Bias% = 100 × mean bias / mean 
H (equals to 10.673 for the validation data, and 13.092 for the modelling data, see Table 1).  
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Table 5. A summary of plot-based height prediction biases from the base and expanded models.  

Model Type Variable 
Validation data Modelling data 

Freq Mean SD  δ Freq Mean SD  δ 

(9) All ie  71 -0.013 0.399 0.159 93 -0.011 0.270 0.073

   %ei  71 -0.615 3.304  93 -0.404 1.961  

   RMSEi 71 0.913 0.459  93 0.924 0.572  

  | %ei | > 2.5 ie  18 -0.097 0.759  15 -0.001 0.598  

  %ei  18 -2.088 6.236  15 -1.317 4.275  

  RMSEi 18 1.105 0.581  15 0.729 0.329  

(10) All ie  71 -0.105 0.612 0.386 93 -0.054 0.442 0.198

   %ei  71 -1.148 5.240  93 -0.286 2.952  

   RMSEi 71 0.990 0.563  93 1.002 0.605  

  | %ei | > 2.5 ie  23 -0.277 1.038  30 -0.185 0.735  

  %ei  23 -3.200 8.811  30 -1.161 4.897  

  RMSEi 23 1.265 0.712  30 1.111 0.667  

(11) All ie  71 -0.076 0.664 0.447 93 0.005 0.472 0.223

   %ei  71 -1.039 5.514  93 0.105 3.170  

   RMSEi 71 1.024 0.562  93 1.018 0.601  

  | %ei | > 2.5 ie  27 -0.154 1.060  37 -0.028 0.726  

  %ei  27 -2.223 8.767  37 -0.095 4.860  

  RMSEi 27 1.247 0.672  37 1.066 0.626  

Note: ie , %ei  and RMSEi are plot-specific bias, Bias% and root mean square error defined in eqs. (22), (24) 
and (25), respectively, freq refers to the number of plots, SD is standard deviation, and δ is an overall measure of 
accuracy defined in eq. (28). 
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Table 6. Frequency distributions of Bias% from the base and expanded models on the validation data 

Class 
Range Mid- 

point 

Base model Expanded models 

From To (9) (10) (11) 

    Mean Freq Mean Freq Mean Freq 

1 -∞ -10.5  -19.93 1 -23.85 2 -19.06 3 

2 -10.5 -9.5 -10   -9.64 1 -10.42 1 

3 -9.5 -8.5 -9   -8.89 2 -9.26 1 

4 -8.5 -7.5 -8   -7.58 1 -8.27 1 

5 -7.5 -6.5 -7 -7.08 3     

6 -6.5 -5.5 -6   -5.88 3 -6.04 2 

7 -5.5 -4.5 -5 -5.17 2 -5.00 2 

8 -4.5 -3.5 -4 -3.68 1 -3.97 2 -4.05 2 

9 -3.5 -2.5 -3 -3.13 3 -3.21 2 -2.82 3 

11 -2.5 -1.5 -2 -2.03 3 -1.91 8 -2.00 7 

12 -1.5 -0.5 -1 -0.87 17 -0.97 12 -1.01 14 

13 -0.5 0.5 0 -0.13 19 -0.01 13 -0.05 14 

14 0.5 1.5 1 1.16 13 0.91 10 0.94 3 

15 1.5 2.5 2 2.15 1 1.98 5 2.04 6 

16 2.5 3.5 3 2.92 5 2.93 5 2.98 2 

17 3.5 4.5 4 3.72 2 3.78 3 4.05 3 

18 4.5 5.5 5 4.96 1 4.93 1 5.06 3 

19 5.5 6.5 6     5.55 2 

20 6.5 7.5 7     6.77 1 

21 7.5 8.5 8       

22 8.5 9.5 9       

23 9.5 10.5 10   10.22 1   

24 10.5 ∞      12.61 1 

Total  71 71  71 

No. of plots where |Bias%| > 2.5  18 23  27 

% of plots where |Bias%| > 2.5  25.4 32.4  38.0 

Note: mean and freq refer to the mean bias and frequency (number of plots) associated with the defined class. 
The frequencies are displayed in Figures 4(a)-4(b).  
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Figure 1. Model fitting (a, b, c) and validation data (d, e, f). Summary statistics are listed in Table 1. 

 
Figure 2. Maximum height-diameter relationship (solid line in a and b) for black spruce. The relationship is defined by 
eq. (26). The localized curve (dashed line) from the two data points in (b) gives unrealistic predictions when 
extrapolated beyond a DBH of 26.5 (cm). Therefore, for DBH > 26.5, height predictions are constrained by the 
maximum relationship. 
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Figure 3. Height prediction curves from the base model (9) (a, c) and expanded model (11) (b, d), for an example plot  

(a, b) and for all 71 plots (c, d). Actual values for the example plot are listed in Table 3. 

 
Figure 4. Frequency distributions of Bias% from models (9) (a, c) and (11) (b, d) on the validation data  

(a, b) and modelling data (c, d). Actual values related to (a) and (b) are given in Table 6. 




