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Abstract 

With the increase in power demand and limited power sources has caused the system to operate at its maximum 
capacity. Therefore, the ability of determine voltage stability before voltage collapse has received a great attention 
due to the complexity of power system. In this paper a prediction of voltage stability index (VSI) based on radial 
basis function neural network (RBFNN) for the Iraqi Super Grid network, 400KV. Learning data has been 
obtained for various settings of load variables using load flow and conventional FVSI method. The input data was 
performed by using a 135 samples test with different bus voltage (Vb), Bus active and reactive power (Pb, Qb), bus 
load angle (δb) and FVSIij. The RBFNN model has four input representing the (Vb, Pb, Qb and δb), sixteen nodes at 
hidden layer and one output node representing FVSIij have been used to assess the security on line. The proposed 
method has been tested in the IEEE 30 and a practical system. In Simulation results show that the proposed method 
is more suitable for on-line voltage stability assessment in term of automatically detection of critical transmission 
line when additional real or reactive loads are added.  

Keywords: Voltage stability index, Radial basis function neural network, Voltage collapse 

1. Introduction 

Recent year’s voltage stability is considered as an important concern in to power system operation and planning 
since the heavily loaded systems are mostly operated closer to the reactive power limits of the transmission 
network (Suthar and Balasubramanian, 2007). The voltage problems are often associated with contingencies like 
unexpected line and generator outages, insufficient local reactive power supply and increased loading of 
transmission lines. However, stability assessment has been performed mainly off-line by system planners 
because the computational burden is too high for online stability assessment. Consequently, in tradition, system 
planners determine the stability limits of transmission corridors for operators to monitor system. System planners 
also developed operating guidelines to help operators to mitigate the problems.  

Over the last few decades, a number of direct methods for assessment on-line transient stability have been 
identified and investigated. This gives more and higher requirements for new models and tools for voltage stability 
analysis (Zhao et al., 2009). The voltage instability can occur when a power system is heavily loaded in 
transmission lines and/or lacks in local reactive power sources (Joong, 2007). Although the voltage stability 
problem is in its nature a dynamic one, a great deal of the research work has been devoted to the static methods in 
real-time applications. ( Haque, 2003) used the results of power flow study and the system admittance matrix to 
find the parameters of the Thevenin’s equivalent of the system, looking from various load buses. (Lee and Lee, 
2002) introduced a criterion for static voltage stability enhancement and used accurate models for excitation 
systems, tap changer and other equipment for analysis of dynamic voltage stability. The voltage stability problem 
can be considered as a non-issue in distribution systems. However, in modern distribution systems, as they become 
more complex and large, the issue can be one of the critical problems. There have been some attempts to use ANN 
for online voltage stability assessment (Kamalasadan et al., 2006) and comes out with voltage stability margin at 
the system level. In addition, various other methods for voltage stability assessments of power systems have been 
documented using static and dynamic methods in small radial network was performed by (Hasani and Parniani,  
2005). Some advantages of dynamic simulation of this phenomenon were shown by (Deuse and Stubbe, 1993). 
(Taylor, 1994 and Kundur, 1994) proposed different static methods and dynamic simulation with appropriate 
models for voltage stability assessments. However, methods based on the dynamic approach are exceptionally 
time consuming in terms of computer time for the online environment. An especially attractive means for solving 
the aforementioned problem is found in artificial neural networks (ANNs) (Fischl, 1996). Mohammad and Hadi 
(2008) attempts have been made to set up a direct mapping between the operating states of the system and the VSM 
index using supervised neural networks (NNs).  

In this paper, a new intelligent application is developed to improve the voltage stability for Iraq super grid power 
systems. First, definitions and issues of voltage stability indices are presented. Secondly, the problem has been 
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formulated as by a conventional approach based on the Fast voltage Stability Index (FVSI) and FVSI have been 
obtained for various line outages and for various reactive power control variables and loading conditions and using 
these results a RBFNN ANN is trained.  Finally, the tests were carried out on the eastern part of the high-voltage 
power system of former Iraqi super grid 400KV to demonstrate its favorable performance by using MATLAB 10 
neural network toolbox. 

2. Related Work 

A) Conversional Fast Voltage Stability Index 

Fast voltage stability index (FVSI) is formulated in this study as the measuring instrument in predicting the 
voltage stability condition in the system. The proposed index made used the same concept as the existing ones 
(Moghavemmi and Omar, 1998 and Mohamed et al., 1989) in which discriminate is set to be greater or equal 
than/to zero to achieve stability. If the discriminate is small than zero, the roots for the voltage or could cause 
instability in the system. The mathematical formulation is very simple that could speed up the computation. The 
condition of voltage stability in a power system can be characterized by the use of voltage stability index 
referred to line. Generally, it started with the current equation to form the power or voltage quadratic equations. 
The criterion employed in this paper was to set the discriminate of the roots of voltage or power quadratic 
equation to be greater than zero. When the discriminate is less than zero, it causes the roots of the quadratic 
equations to be imaginary which in turn causing the voltage instability that may cause voltage collapse in the 
system. The line index that is evaluated close to 1.00 will indicate the limit of voltage instability. 

Fig.3. illustrates a 2-bus power system model where the proposed FVSI is derived from the symbols are 
explained as follows: 

Vi, Vj = Voltage on sending and receiving buses 
Pi, Qi = Active and reactive power on the sending bus 
Pj, Qj = Active and reactive power on the receiving bus 
Si ,Sj = Apparent power on the sending and receiving buses 
δij = δi – δj 
  = Angle difference between sending and receiving buses  
The line impedance is noted as Zij= Rij+jXij with the current that flows in the line IS given by 

 
ViVj δi -δj – Vj

2 δj = (Rij+jXij) (Pj-jQj)  (5) 

Separating the real and imaginary parts yields, 

ViVjcosδij– Vj
2= RijPj+XijQj (6) 

And, 
- ViVj sin  = XijPj–RijQj (7) 
Rearranging (7) for Pj and substituting into (6) yields a quadratic equation of Vj; 

Vj
2 – ( sin δij + cosδij) ViVj+ (Xij+ 

2

i j

i j

R

X
 ) Qj = 0 (8) 

The roots for Vj will be; 

   (9) 
To obtain real roots for Vj, the discriminate is set greater than or equal to ‘0’; i.e.: 
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 (10) 
Since δij is normally very small then, 
δij ≈ 0, Rij sin  ≈ 0, and Xijcos  ≈ Xij 
Taking the symbols ‘i’ as the sending bus and ‘j’ as the receiving bus. Hence, the fast voltage stability index, 
FVSI can be defined by: 

FVSIij = 
2

2

4
i j j

i i j

Z Q

V X
 (11) 

Where:  Zij= line impedance 

Xij = line reactance 

Qj = reactive power at the receiving end 

Vi = sending end voltage 

The value of FVSI that is evaluated close to 1.00 indicates that the particular line is closed to its instability point 
which may lead to voltage collapse in the entire system. To maintain a secure condition the value of FVSl should 
be maintained well less than 1.00. 

B) Radial Basis Function Neural Network  

RBFNN have increasingly attracted interest for engineering applications due to their advantages over traditional 
multilayer perceptions, namely faster convergence, smaller extrapolation errors, and higher reliability. Over the 
last few years, more sophisticated types of neurons and activation functions have been introduced in order to 
solve different sorts of practical problems (Kumar, 2005; Kurban and Beşdok, 2009). In particularly, RBFNN 
have proved very useful for many systems and applications (Kumar, 2005). RBFNN is defined as a kind of ANN 
that has radial activation functions on its intermediary layer. RBFNN were robust used in the context of neural 
networks as linear and nonlinear function estimators and indicated their interpolation capabilities by Broomhead 
and Lowe (Broomhead and Lowe, 1988). (Hartman et al., 1990; Park and Sandberg, 1993) proved that RBFNN 
are capable of approximating any function with arbitrary accuracy. The neural network is a mapping between its 
inputs and outputs based on a number of known sample input-output pairs. In general, the more samples 
available to train the network, the more accurate the representation of the real mapping will be. These samples 
are obtained by solving the direct problem (times), in its simplest form, a RBFNN consists of three layers of 
neurons, Fig.1. The first layer acts as the input layer of the ANN. The second layer is hidden layer as a 
high-scale dimension, which promotes a linear transformation of input space dimension by computing radial 
functions in their neurons. Third layer, the output layer, outputs the ANN response, promoting a linear 
transformation of the intermediary layer high-scale dimension to the low-scale dimension (Pandya , 1995). 

3. Material and Method 

A) RBFNN Model for FVSI 

Several types of ANN structures and training algorithms have been proposed. The basic form of RBFNN 
architecture involves entirely three different layers. The input layers is made n, of source nodes while the second 
layer is hidden layer of high enough dimension which senses a different purpose from that in a multilayer 
perception. 

The output layer supplies the response of the network to the activation patterns applied to the input layer. The 
transformation from the input layer to the hidden layer is nonlinear whereas the transformation from the hidden 
layer to the output layer is linear. 

From above analytical methods involve considerable computational effort and hence cannot be used directly for 
online monitoring and initiation of preventive control actions to enhance system voltage stability. The major steps 
of the RBFNN design and training to determining the voltage instability problem are summarized by the following 
steps: 

a. A set of realistic system loading patterns a regenerated by varying the real power and reactive power loadings at 
various line outages and for various reactive power control variables and loading conditions. 

b. For each of the loading patterns generated in step (a) the load flow and modal analysis of the reduced Jacobian 
matrix are done and FVSI was calculated for each line in the system to identify the most vulnerable few load buses 
from the voltage stability point of view. 

c. The RBFNN is designed and trained by the input patterns (Vb, δb, Pb, Qb) for each bus is generated as shown in 
Fig.4. 
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d. The RBFNN, the target output is FVSI to show distance to voltage collapse for each input pattern is computed 
by running the contour program. 

e. Finally, training of these RBFNN using the input/output patterns developed in Steps 3 and 4 is carried out. 

B) Iraqi super grid network  

The transmission level in the Iraqi electrical network consists of the 400KV network (the super grid network) and 
part of the 132 kV network connected to it. The aim of this work is limited to the study of only the 400KV network 
with all its bus-bars and transmission lines.  

The network under consideration consists of 24 bus bars and 30 transmission lines (the total transmission line 
3664.6Km) and configuration of this network shown in Fig.2. 

4. Results and Discussion  

To demonstrate the effectiveness of the proposed technique for online voltage stability monitoring for different 
types of contingencies including variable load and line outage has been applied to the Iraqi super grid network 
24-bus test system. For generating training data for the RBFNN, active and reactive power set the load buses are 
varied within 5, 10, 15, 20, and 25% of the base case values. For each operating condition, bus operating parameter 
selected transmission lines are recorded as the input features. Contingency analysis is performed for all line 
outages and the MW margins to voltage instability are recorded by using Matlab 10 and table (1, 2) shows the bus 
data and transmission line data. A flow chart describing the modal analysis procedure adopted is presented in Fig.5. 
The experiment results were used to train the neural network which have been constructed and trained using 135 
data samples from the experimental data and 16 samples were used for generalization test of the trained neural 
network. 

From the analysis of the results in Table 3 show the FVSI for five load change. As mentioned above that system 
will unstable when FSVI near to 1 therefore it is clear that the system is unstably with increasing the load change 
and increasing of FSVI depend on the bus type for example the Transmission line connect to Gen. Bus or 
Reference bus are more stable because they near to source. In addition, for a given operating condition, the most 
critical transmission line in the system has been identified and appropriate algorithms i.e. TL6-15 is unstable under 
25% load change. 

From the analysis of the results in Table 4, it is observed that the accuracy of the RBFNN method was slightly 
superior when compared to the CFVSI on account of both maximum error and mean average error (MAE) for both 
load change.  

5. Conclusion 

In this study voltage stability assessment of power systems by using RBFNN has been explored, and this was 
obvious from the generalization test. The simulation data from FVSI test has been used for training and testing. 
Using this approach, for a given operating condition, the most critical transmission line of the system has been 
identified and appropriate algorithms, which directly employ the designed NN architecture, have been suggested to 
evaluate on-line the previously considered control strategies. The difference of FVSI between prediction by 
RBFNN and CFSVI test is considered almost negligible; this means that it can solve many problems that have been 
costly and time consuming. The effectiveness of the proposed approach has been tested on Iraqi super grid power 
system. 
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Table 1. Bus data for Iraq Super Grid 

Bus 
No. 

Bus 
Code 

Bus 
Voltage 

Bus 
Angle

Load 
MW 

Load 
Mvar 

Gen
MW

Gen 
Mvar 

1 1 1.025 0 0 0 0 0 
2 2 1 -6.422 0 0 998 0 
3 0 0.9872 -36.681 776.24 274.967 0 0 
4 2 0.99 -36.664 0 0 956 0 
5 2 1 -43.189 173.326 61.1221 260 0 
6 0 0.951 -57.640 672.525 284.514 0 0 
7 0 0.980 -61.037 0 0 0 0 
8 0 0.972 -61.892 963.482 349.459 0 0 
9 0 0.982 -61.661 533.953 184.268 0 0 

10 2 0.99 -61.705 0 0 0 0 
11 0 0.976 -61.567 124.763 53.8677 0 0 
12 0 0.956 -59.090 64.2869 173.375 0 0 
13 0 0.972 -60.382 105.411 20.2787 0 0 
14 0 0.934 -88.740 340.817 109.199 0 0 
15 2 1 -49.758 254.445 72.1922 0 0 
16 0 0.994 -51.535 129.545 41.4657 0 0 
17 2 1 -60.064 214.376 68.0632 1200 0 
18 2 1 -59.904 0 0 500 0 
19 0 0.991 -62.103 401.600 77.3193 0 0 
20 0 0.976 -65.806 264.633 183.590 0 0 
21 2 1 -79.779 457.697 221.117 840 0 
22 0 0.957 -94.941 319.107 168.702 0 0 
23 2 0.99 -94.286 177.971 88.0291 400 0 
24 2 1 -94.710 742.511 262.080 0 0 
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Table 2. Transmission Line for Iraqi Super Grid 

Bn1 Bnr Rline Xline 

1 2 0.00072 0.005885

2 3 0.0021 0.017185

3 4 2.00E-05 0.0002 

3 6 0.002415 0.021965

3 15 0.00345 0.03132

4 5 0.0018 0.01635

5 13 0.004247 0.038612

6 9 0.00093 0.00847

6 12 0.000616 0.005608

6 15 0.00485 0.04405

7 11 0.000215 0.00197

7 12 0.000964 0.008772

7 17 0.00122 0.01015

7 18 0.001094 0.009106

7 20 0.00308 0.02795

8 9 0.00029 0.00262

8 11 0.00041 0.003745

8 13 0.000435 0.00394

9 10 7.50E-05 0.00069

11 14 0.02744 0.22904

14 21 0.00432 0.03928

14 22 0.00479 0.04354

15 16 0.00292 0.02391

17 18 0.000125 0.001043

17 19 0.000405 0.003365

19 20 0.001165 0.009675

20 21 0.00383 0.03485

21 24 0.00439 0.03993

22 23 0.00145 0.0132 

23 24 0.00059 0.00538
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Table 3. FVSI for five steps load change 

Load 
Change

5% load 
10% 
load 

15% 
load 

20% 
load 

25% 
load 

1 -0.02928 0.029523 0.05396 0.054856 0.056353 

2 -0.26344 -0.27432 -0.291 -0.31469 -0.34741 

3 0.006403 0.007643 0.010081 0.014095 0.020486 

4 -0.48051 -0.50529 -0.53133 -0.55882 -0.58809 

5 0.147592 0.26318 0.392607 0.53882 0.706606 

6 0.085468 0.166893 0.256578 0.355925 0.467017 

7 -0.03611 -0.03783 -0.03955 -0.04127 -0.04299 

8 -0.05673 -0.06099 -0.06559 -0.07058 -0.07607 

9 -0.04877 -0.05244 -0.05639 -0.06068 -0.06541 

10 0.221753 0.397349 0.596469 0.825077 1.092725 

11 -0.00503 -0.00533 -0.00565 -0.00597 -0.00631 

12 -0.07227 -0.0766 -0.08108 -0.08573 -0.0906

13 0.097303 0.141227 0.189549 0.243011 0.303139 

14 0.047124 0.071517 0.098034 0.127058 0.159348 

15 -0.25074 -0.26294 -0.27559 -0.28876 -0.30258 

16 -0.01686 -0.018 -0.0192 -0.02046 -0.02178 

17 -0.0097 -0.01036 -0.01105 -0.01178 -0.01254 

18 -0.00387 -0.00414 -0.00441 -0.0047 -0.005 

19 0.024478 0.025135 0.026291 0.028054 0.030616 

20 -2.11093 -2.19694 -2.28684 -2.3812 -2.48112 

21 0.24773 0.360203 0.488359 0.634559 0.834146 

22 -0.63028 -0.65967 -0.69051 -0.72298 -0.76485 

23 -0.04077 -0.04271 -0.04465 -0.04659 -0.04853 

24 0.005207 0.007812 0.010576 0.013527 0.016722 

25 -0.01176 -0.01232 -0.01288 -0.01344 -0.014 

26 -0.08505 -0.08839 -0.09178 -0.09521 -0.09871 

27 0.200307 0.289762 0.390785 0.505018 0.653784 

28 0.363884 0.384151 0.405753 0.428776 0.754945 

29 -0.02122 -0.00687 0.008332 0.024468 -0.07312 

30 0.050021 0.052807 0.055776 0.058941 0.105906 
Max. 
FVSI 

0.363884 0.397349 0.596469 0.825077 1.092725 
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Table 4. Comparison between CFVSI and RBFNN for 5, 25 % load change 

 

Load 
Change

Conventional FVSI RBFNN-FSVI Error 

5%  
Load 

25% 
load 

5% load
25% 
load 

Error 5%
Error  
25% 

1 -0.02928 0.056353 -0.02455 0.06196 0.047241 0.056073 

2 -0.26344 -0.34741 -0.26045 -0.34659 0.029812 0.008164 

3 0.006403 0.020486 0.012300 0.02305 0.058969 0.02564 

4 -0.48051 -0.58809 -0.47611 -0.57854 0.043949 0.095552 

5 0.147592 0.706606 0.14810 0.714054 0.005163 0.074476 

6 0.085468 0.467017 0.08567 0.47178 0.002033 0.047627 

7 -0.03611 -0.04299 -0.03458 -0.04008 0.015268 0.029092 

8 -0.05673 -0.07607 -0.04834 -0.07079 0.083786 0.052825 

9 -0.04877 -0.06541 -0.04508 -0.05959 0.036912 0.058202 

10 0.221753 1.092725 0.22698 1.094931 0.052284 0.022061 

11 -0.00503 -0.00631 0.00144 0.000586 0.064787 0.068951 

12 -0.07227 -0.0906 -0.07183 -0.08733 0.004274 0.032619 

13 0.097303 0.303139 0.10248 0.307986 0.051774 0.048462 

14 0.047124 0.159348 0.04795 0.166177 0.008305 0.068299 

15 -0.25074 -0.30258 -0.24672 -0.29906 0.040145 0.035181 

16 -0.01686 -0.02178 -0.00884 -0.01788 0.08011 0.039044 

17 -0.0097 -0.01254 -0.00203 -0.00537 0.076634 0.071709 

18 -0.00387 -0.005 0.002518 -0.00135 0.063913 0.036528 

19 0.024478 0.030616 0.03245 0.039859 0.079811 0.092438 

20 -2.11093 -2.48112 -2.10326 -2.48029 0.076653 0.008266 

21 0.24773 0.834146 0.25051 0.842448 0.027813 0.083025 

22 -0.63028 -0.76485 -0.62799 -0.76041 0.022801 0.044388 

23 -0.04077 -0.04853 -0.03977 -0.04169 0.009908 0.068407 

24 0.005207 0.016722 0.00791 0.018799 0.027112 0.020777 

25 -0.01176 -0.014 -0.01043 -0.01393 0.01326 0.000631 

26 -0.08505 -0.09871 -0.07843 -0.08891 0.06612 0.097965 

27 0.200307 0.653784 0.21012 0.662961 0.098187 0.091776 

28 0.363884 0.754945 0.37157 0.758552 0.076918 0.036073 

29 -0.02122 -0.07312 -0.01831 -0.06618 0.029043 0.069436 

30 0.050021 0.105906 0.05470 0.107131 0.046892 0.012251 

   Max. Error 0.044663 0.049865 
   MAE 0.098187 0.097965 
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Figure 1. Radial Basis Function Neural Networks 

 

Figure 2. Iraqi super Grid network, 400KV 
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Figure 3. General Bus Power System Model 

 

Figure 4. RBFNN FVSI Predication model 

 
Figure 5. Online voltage stability monitoring algorithm 


