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Abstract 

Image classification is becoming ever more important as the amount of available multimedia data increases. 
With the rapid growth in the number of images, there is an increasing demand for effective and efficient image 
indexing mechanisms. For large image databases, successful image indexing will greatly improve the efficiency 
of content based image classification. One attempt to solve the image indexing problem is using image 
classification to get high-level concepts. In such systems, an image is usually represented by various low-level 
features, and high-level concepts are learned from these features. PSO has recently attracted growing research 
interest due to its ability to learn with small samples and to optimize high-dimensional data. Therefore, this paper 
will introduce the related work on image feature extraction. Then, several techniques of image feature extraction 
will be introduced which include two main methods. These methods are RGB and Discrete Cosine 
Transformation (DCT). Finally, several experimental designs and results concerning the application of the 
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proposed image classification using modified PSO classifier will be described in detail. 

Keywords: Artificial bee colony algorithm, Data mining, Image classification 

1. Introduction 

Image classification is an attempt to label (often textual) an image with appropriate identifiers. These identifiers 
are determined by the area of interest, whether it is general classification for arbitrary pictures (for instance, from 
the internet), or a specific domain, for instance, medical x-ray images or geographical images of terrain. Image 
classification is related to image annotation, although image annotation generally uses a larger vocabulary (that 
is, number of classes) than image classification. Image classification is the process of assigning all pixels in a 
digital image to particular classes according to their characteristics. This characterised data may then be used to 
produce thematic maps of the image itself. The objective of image classification is to identify and portray, as a 
unique grey level (or colour), the features occurring in an image. Image classification is perhaps the most 
important part of digital image analysis. It is very nice to have a pretty picture, or an image, showing a 
magnitude of colours illustrating various features of the images, but it is quite useless unless you know what the 
colours mean. Therefore, it is essential to extract the features of the images efficiently, without losing important 
colour information, and reduce redundant colour information. This can be done in two main approaches of image 
classification: supervised and unsupervised image classification.  

Unsupervised image classification does not rely on a training set. Instead, it uses clustering techniques which 
measure the distance between images, and groups the images with common features together. This group can 
then be labelled with different class-identifiers. Unsupervised classification can be defined as the identification 
of natural groups or structures within the data. It clusters pixels in a data set based only on their statistics, 
without using previous knowledge about the spectral classes present in the image. Some of the more commonly 
used unsupervised classification methods are: Isodata (Witten & Frank, 2005) and k-Means (Witten & Frank, 
2005). Moreover, unsupervised classification is a method which examines a large number of unknown pixels and 
divides them into a number of classes based on natural groupings present in the image values. Unlike supervised 
classification, unsupervised classification does not require analyst-specified training data. The basic premise is 
that values within a given colour pixel should be close together in the measurement space (i.e. have similar grey 
levels), whereas data in different classes should be comparatively well separated (i.e. have very different grey 
levels) (Lillesand & Kiefer, 1994).  

Besides that, supervised classification uses training sets of images to create descriptors for each class. The 
training sets are carefully manually selected to represent a common picture set of that class. The classifier 
method then analyses the training set, generating a descriptor for that particular class based on the common 
features of the training set. This descriptor could then be used on other images, which determines if that image is 
a part of that class. Supervised image classification is a subset of supervised learning. Supervised learning can 
generate models of two types. Most commonly, supervised learning generates a global model that inputs objects 
to desired outputs. In some cases, however, the map is implemented a set of local models. These local models are 
treated as inputs in such algorithms. Such algorithms are often implemented using neural networks, decisions 
trees, support vector machines and Bayesian statistical methods. The support vector machines and Bayesian 
statistical methods show a great promise in this area.  

Moreover, supervised classification is a process of using samples of known identity (training data) to classify 
pixels of unknown identity (Lillesand & Kiefer, 1994). The training data is used to train the classifier, which is 
tested with testing samples to evaluate the accuracy of the classifier. However, we have used some supervised 
classifiers in the experimental design. These include traditional classifiers such as K-NN, Naϊve Bayes, SVM, 
and Decision Tree. The proposed methods such as ABC for image classification are in the category of supervised 
classifiers. This paper will deal with supervised classification, so unsupervised techniques will not be further 
explored. The rest of this paper is organized as follows. Section 2 presents a brief overview of image feature 
extraction. Section 3 describes the proposed image classification using modified PSO. Section 4 is dedicated to 
experimental setup and results. Conclusions are given in Section 5. 
2. Image feature extraction 

Development of classification of signals (or images, patterns) is significant in various fields of signal processing 
applications such as acoustic, speech, radar, communication, biomedical and multimedia systems (e.g. (Desai & 
Shazeer, 1991; Etemad & Chellappa, 1998; Leraned, 1992)). To construct effective classification systems, 
feature extraction of signals is an essential process. In application systems, the signals are not always expressed 
as ideal forms. The observed signals are distorted by the effect of noise and measurement, and some ambiguous 
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signals are difficult to classify into a class by binary logic. Moreover, when the feature extraction process is very 
sensitive to distortions, the classification algorithm does not work well. 

To perform successful classification of images, characteristics that describe the images are important, so these 
characteristics must be extracted by suitable algorithms and stored as features. Features define what 
characteristics of the images will be relevant to the database so that the database can be relied on to distinguish 
and classify images. These features allow access only to some characteristics of the images that are selected a 
priori. After image transformation, features can be derived from images. To classify images, this large class of 
features is seen as a vector of continuous measurements on the images S = {x1, …, xn}, where n is the size of 
the dimensional metric space. 

Features that are derived from an image are generally represented in a vector space. The difference between two 
images can be measured by performing a difference function on the two images’ vectors (x – y) on which a 
definition of distance can be based on (Gong, 1998). 

Several types of point features, such as colour, are commonly used. These point features can be represented in 
terms of histograms. Histograms provide a “too-synthetic” description of the feature’s values in the image, which 
is a problem in image classification systems. To solve this problem, detection of regions is employed. With this 
solution, histograms can provide a more accurate description. The use of point features and region features will 
be further discussed in the sub-sections. 

Moreover, feature extraction is to extract the features which are a good representation of the content of the 
images. In the proposed method, the content of the images are represented using a colour histogram. A colour 
histogram denotes the joint probabilities of the intensities of the three colour channels (Smith & Chang, 2005).  

Moreover, the most common colour space used in classification is RGB and YUV. However, the RGB colour 
space does not exhibit perceptual uniformity and the component values are correlated and depend on change in 
light intensity; prior work (Smith & Chang, 2005) suggested YUV colour space. 

2.1 Colour space 

Colour is one of the major features in an image. This is why many image classifications utilise colour feature 
extraction for classification purposes. Colour can be utilised as a feature by employing a colour space, which is 
then divided into n cells, and creating a histogram with n bins, where each bin contains the number of pixels in 
each cell (Gong, 1998). A system will compare the query image’s histogram with each model image’s histogram 
based on a similarity metric function (Gong, 1998). Images can be transformed into representations of different 
colour spaces. Images can represent different information in different colour spaces, thus, the use of different 
colour spaces can pose different effects on the image classification results. In the following section 2.2 and 
section 2.3, RGB and YUV colour spaces will be discussed. Then, section 2.4 will introduce the concept of DCT 
coefficients. 

2.2 RGB colour space 

RGB is the most popular colour space. Its acronym stands for Red-Green-Blue. RGB are considered the primary 
colours because a colour can be produced by adding these three predominant colours. For example, pure red and 
green light produce yellow; red and blue make magenta; blue and green combine to make cyan; and all three 
together, when mixed at full intensity, create white.  

A common use of RGB is for the display of computer graphics on the monitor. Each pixel is represented by red, 
green and blue values. There are a total of 24 bits of information in a pixel: 8 bits from each colour. This means 
each colour has a range of 256 possible values. Therefore, RGB values can be specified using three integers 
between 0 and 255, where each integer represents red, green and blue intensities respectively. 

2.3 YUV colour space 

YUV, which is also known as YCbCr and YPbPr, is a colour space where the Y stands for the luminance 
component (the brightness), and U and V are chrominance (colour) components. The Y component is more 
important than the other two components to the human eye because the human eye can detect brightness better 
than colour. YUV signals can be created by the conversion of RBG values. The weighted values of R, G and B 
are added together to produce a single Y signal, representing the overall luminance of that pixel, whereas the U 
signal is created by subtracting the Y from the blue value of the RGB, and V by subtracting the Y from the red 
value. The YUV values can be calculated from RGB values as follows (Wikipedia): 

Y = 0.299*Red + 0.587*Green + 0.114*Blue Equation 1 
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U = -0.147*Red - 0.289*Green + 0.436*Blue Equation 2 

V = 0.615*Red - 0.515*Green - 0.100*Blue Equation 3 
2.4 Discrete Cosine Transform (DCT) 

Classification is widely used for image in Discrete Cosine Transform (DCT), subband, and wavelet transform 
coding systems. Chen and Smith (Chen & Smith, 1977) proposed a classification method for DCT coding. In this 
method, each DCT block is classified into one of the four equally populated classes based on its AC energy, and 
an adaptive quantiser is used in each class being coded. Woods and O’Neil (Woods, 1986) applied a 
classification method to subband coding. Tse (Tse, 1992) improved the classification performance by having 
different size classes. Joshi, Fischer and Bamberger (Joshi, 1994) investigated this type of classification 
technique. They optimized the classification method by maximising classification gain (Joshi, 1994), and applied 
this technique to subband coding. Jafarkhani, Farvardin and Lee (Jafarkhani, 1994) modified the Chen-Smith 
classification method for the discrete wavelet transform coding of images. 

The Chen-Smith classification method (Chen & Smith, 1977) and its modified versions mentioned above belong 
to block classification; a whole block of DCT coefficients or data in each subband is classified into one of the 
predesigned classes according to block energy. Four classes are usually used. The simple formulation of block 
classification actually restrains its classification performance. Mohd Yusof and Fischer’s (Mohd Yusof & 
Fischer, 2003) simulation results showed that the four-class block classification for DCT image coding can only 
achieve minimal improvement of the peak signal-to-noise ratio (PSNR) in their entropy-coded lattice vector 
quantisation systems. Entropy coding is often needed to exploit most of the advantages of the non-stationary 
nature of images in the variable-rate coding systems with block classification. 

Moreover, DCT is a mathematical transformation which is in a class of mathematical operations (Nelson & 
Gailly, 1995). The famous Fast Fourier Transform is one of these mathematical operations (Nelson & Gailly, 
1995). The basic operation of these transforms is to take a signal and transform it from one type of representation 
into another representation (Nelson & Gailly, 1995). From Figure Figure 3, it shows that the DCT is performed 
on an NxN square matrix of pixel values to obtain an NxN square matrix of coefficients. This DCT 
transformation is also reversible, which is shown in Figure 2 (Nelson & Gailly, 1995).   

In addition to that, each image’s colour feature is represented by a colour histogram in the database. Basically, 
there are five types of histograms tested in the proposed system. One is the RGB colour histogram and the other 
four are the histograms based on DCT coefficients. For each image, its colour feature is extracted in RGB colour 
space. This creates the RGB colour histogram for the corresponding image by pixel counting. For constructing 
DCT coefficients, RGB values are converted into YUV colour space using the conversion formula stated in 
section 0 of this paper. The image is further divided into 8x8 blocks and DCT is performed on each block to 
obtain the DC and AC components. Then the four different combinations of DCT coefficients, which are used to 
create four histograms, are constructed using the DC and AC components. There are a total of four different 
types of DCT coefficients as image features that have been extracted for proposed modified PSO classifier in the 
experiments used in section . The four DCT coefficients that are used in the system are described below:  

S1 -> [DC] 

S2 -> [AC01; AC10; AC11] 

S3 -> [DC; AC01; AC10; AC11] 

S4 -> [DC; AC01; AC02; AC10; AC11; AC12; AC20; AC21; AC22] 

Furthermore, there are 800 images in JPEG format. These images are then converted into RAW format. Each of 
the five histograms (RGB and DCT coefficients - S1, S2, S3 and S4) consists of three colour bins which are: 

1. Primary bins (8 colour bins) 

2. Secondary bins (8 colour bins) 

3. Third bins (8 colour bins) 

Each of the colour bins consists of 8 feature vectors. Therefore, the total number of feature vectors is 24 feature 
vectors which make 24 dimensions. Each vector represents the pixel values in each image. These vector values 
have been resulted from the transformation using the DCT algorithm and RGB colour space. 

3. The proposed modified PSO for Image Classification 

In this section, we will introduce the proposed image classifier using modified PSO which was developed by our 
research team (Yeh, Chang, & Chung, 2009). It belongs to the category of Swarm Intelligence methods; it is also 
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an evolutionary computation method inspired by the behaviour of natural swarms such as bird flocks and fish 
schools. In PSO, a solution is encoded as a finite-length string called a particle or individual. All of the particles 
have fitness values which are evaluated by the fitness function to be optimized. Each particle flies in the search 
space with a velocity that can be dynamically adjusted according to its own previous flying experience and its 
companions’ flying experience. The ith particle’s position is represented as )...,( 21 iniii xxxX  . The best 
previous position (the position with the best fitness value) of the ith particle called pbest is represented as

)...,( 21 iniii pppP  . The global best position attained by any particle so far (called gbest) is also recorded and 
stored in a particle denoted by )...,( 21 iniii gggG  . The coordinates x(i,j) of these particles have a rate of change 
(velocity) v(i,j), d = {1, 2, . . . , n}. After finding the two best values, the particle updates its velocity and position 
with the following equation: 
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Equation 5 

In Equation 4, the first part is the previous velocity of the particle; in Equation 5 is the “cognition” part, 
representing the private thinking of the particle itself, where c1 is the individual factor; the third is the “social” 
part, representing the collaboration among the particles, where c2 is the societal factor (Kennedy & Eberhart, 
1995). The acceleration constant, the individual factor (c1) and social factor (c2) represent the weighting of the 
stochastic acceleration terms that pull each particle toward pbest and gbest positions. Low values allow particles 
to roam far from target regions before being tugged back, while high values result in abrupt movement toward, 
or past, target regions. The value of (c1 + c2) is usually limited to 4 (Kennedy & Eberhart, 1995). Particles’ 
velocities on each dimension are limited to a maximum velocity, Vmax. It determines the size of the steps through 
the solution space each particle is allowed to take. If Vmax is too small, particles may not explore sufficiently 
beyond locally good regions. They could become trapped in local optima. On the other hand, if Vmax is too high, 
particles might fly past good solutions. Equation 4 is used to calculate the particle’s new velocity according to its 
previous velocity and the distances of its current position from its own best experience (position) and the group’s 
best experience. Then the particle flies toward a new position according to Equation 5. The performance of each 
particle is measured according to a pre-defined fitness function (Kennedy & Eberhart, 1995). 

To apply PSO, several parameters including the number of population (m), cognition learning factor (c1), social 
learning factor (c2), inertia weight (w), and the number of iterations or CPU time should be determined properly. 
We conducted the preliminary experiments, and the complete computational procedure of the PSO algorithm can 
be summarized as follows. 

Input: 

m: the swarm size; c1, c2: positive acceleration constants 

w: inertia weight 

MaxV: maximum velocity of particles 

MaxGen: maximum generation 

MaxFit: maximum fitness value. 

Output: 

gbest: Global best position. 

Compared with other EAs, such as the GA, PSO converge faster. The convergence efficiency of PSO is 
influenced little by the number of dimensions. However, a huge number of dimensions may cause some other 
problems, such as local optimization. It means particles prematurely converge at local optimal positions and stop 
searching for the real global optimum. Therefore, there have been many researchers working on this through 
parameter adjusting, diversity increases and algorithm variation in order to improve PSO’s globally optimal 
ability. 

3.1 Individual Updates 

The underlying principle of the traditional PSO is that the next position of each particle is a compromise of its 
current position, the best position in its history so far, and the best position among all existing particles. Equation 
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4 and Equation 5 are very easy and efficient ways to decide next positions for the problems with continuous 
variables, but not trivial and well-defined for the problems with discrete variables and sequencing problems. To 
overcome the drawback of PSO for discrete variables, a novel method to implement the PSO procedure has been 
proposed based on the following equation after Cw, Cp, and Cg are given: 

         

 

Equation 6 

The proposed individual update process is described below: 

1) Initialise: Initialise parameters and population with random position and velocities. 

2) Evaluation: Evaluate the fitness value (the desired objective function) for each particle. 

3) Find the gbest: If the fitness value of particle i is better than its best fitness value (pbest) in history, 
then set current fitness value as the new pbest to particle i. 

4) Find the gbest: If any pbest is updated and it is better than the current gbest, then set gbest to the 
current value. 

5) Update position: For every dimension of a particle, generate a random variable called R that is between 
0 and 1. If 0 ≤ R < Cw is true then the original individual will be kept, else if Cw ≤ R < Cp is true then the original 
dimension will be replaced by pbest’s corresponding one, else if Cp ≤ R < Cg is true then the original individual 
will be replaced by gbest’s corresponding one, else if Cg ≤ R < 1 is true then the original dimension will be 
replaced by a new value which is generated randomly. 

6) Stopping criterion: If the number of iterations or CPU time is met, then stop; otherwise go back to Step 
2. 

3.2 Comparison 

In the traditional PSO, each particle needs to use more than two equations, generate two random numbers, four 
multiplications, and three summations in order to move to its next position. Thus, the time complexity is O (6nm) 
for the traditional PSO. However, the proposed modified PSO does not need to use the velocity, it only uses one 
random, two multiplications, and one comparison after wC , pC  and gC  are given. The main reason why 
velocity is not used is because it reduces the processing time and decrease the complexity of the algorithm. 
Therefore, the proposed modified PSO is more efficient than the other PSOs.  

 
 

 

Figure Figure 8 is the flow diagram to explain the proposed process of individual update. 

3.3 Encoding 

A classification rule contains two parts: the antecedent and the consequent. The former is a series of logical tests, 
and the latter gives the class while an instance is covered by this rule. These rules take the following format: 

where feature is the attribute of a dataset, lower bound and upper bound are the feature’s lowest and highest 
value respectively. Each clause (dimension) is composed of a feature, its lower bound and upper bound. The 
position representation of each individual (particle) contains N clauses (dimensions) except the last cell, ClassX, 
which is the predictive class of the rule.  

3.4 Fitness Function 

The fitness function that has been used for the proposed modified PSO algorithm for image classification is 
shown in Equation 7.  
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In Equation 7, N is the total number of records which belong to the class predicted by the rules. The prediction 
strategy balanced the effect of fitness value and cover percentage for the final predicted class. We need to choose 
the value of α and β carefully since they will affect the classification accuracy. 

3.5 Rule Discovery 

The goal of classification rule mining is to discover a set of rules with high quality (accuracy). To achieve this, 
appropriate lower bound and upper bound for each attribute (feature) are searched for. In the initial stage, for 
each attribute we set its position of upper bound between a randomly chosen seed example’s value and that value 
added to the range of that feature. Similarly, the value of lower bound is initialised at a position between the seed 
example’s value, and that value minus the range of that feature. The procedure is defined as: 

Lower bound = k1 * (S – R) Equation 8 

Upper bound = k2 * (S + R) Equation 9 

where S is the corresponding attribute value of a randomly chosen instance; R is the range of corresponding 
attribute value for all training instances; k1 and k2 are two random numbers between 0 and 1. 

This seeding strategy may generate the upper or lower bound outside the range from training instances. The 
purpose of this is to enlarge the search space because the original range from training instances may not benefit 
the validation instances. For those attributes only containing nominal variables, we set its lower bound equal to 
the upper bound. 

3.6 Rule Pruning 

After a rule has been generated, it is put into a rule pruning procedure. The main goal of rule pruning is to 
remove irrelevant clauses that might have been unnecessarily included in the rule. Moreover, rule pruning can 
increase the predictive power of the rule, helping to improve the simplicity of the rule. The process of rule 
pruning is as follows:  

1) Evaluate a rule’s quality. 

2) Tentatively remove terms from each rule and see if each term can be removed without the loss of rule 
quality. If yes, remove it. Then move onto the next term and eventually the next rule. This process is repeated 
until no term can be removed. 

3.7 Prediction Strategy 

After we generate a rule set, a series of testing instances are used to measure its classification accuracy. For each 
instance, it will go through every element in a rule set and get a prediction value for the corresponding class 
when it is covered by a rule. The prediction function is defined as follows: 

Prediction value = * rule quality +  *rule cover percentage Equation 10 

where   and   are two parameters corresponding to the importance of rule quality and rule cover 
percentage,   [0, 1] and β  = 1- . The prediction value for each class is cumulative and the result is the 
class with the highest prediction value..  

4. Experimental Design and Results 

To thoroughly investigate the performance of the proposed modified PSO algorithm, we have conducted 
experiments with it on a number of datasets. The datasets are taken from extracting image datasets from two 
methods which are RGB Histogram and DCT coefficients. Basically, there are 800 images in the datasets which 
are in JPEG format. We have categorized these 800 images into five categories: 1) Building 2) Airplane 3) Bottle 
4) Camel 5) Flower. Table2 shows the sample images for each category. Each of the images has been resized 
160x160 with 24 dimensions for RGB and DCT. In Table 1, the selected data sets are summarised in terms of 
the number of instances, and the number of the classes of the dataset. These datasets have been widely used in 
other comparative studies.  

4.1 Pre-processing Datasets 

The pre-processing of the experiment datasets is done using different types of colour space. In this experiment, 
the image features are in two methods. Moreover, there are, in total, two different extracted features have been 
tested in the proposed modified PSO for classification accuracy. The two feature extraction algorithms used in 
the experiments are RGB Histogram and DCT coefficients 

For image extraction for the RGB Histogram and DCT coefficient, each image’s colour feature is represented by 
a colour histogram in the database. Basically, there are five types of histograms tested in the proposed system. 



www.ccsenet.org/mas                     Modern Applied Science                    Vol. 5, No. 5; October 2011 

Published by Canadian Center of Science and Education 157

One is the RGB colour histogram and the other four are the histograms based on DCT coefficients. For each 
image, its colour feature is extracted in RGB colour space. This creates the RGB colour histogram for the 
corresponding image by pixel counting. For constructing DCT coefficients, RGB values from JPEG images are 
converted into YUV colour space using the conversion formula stated in Equation 1, Equation 2 and Equation 3. 
The image is further divided into 8x8 blocks, and DCT is performed on each block to obtain the DC and AC 
components as described in Figure 3. Then the four combinations of DCT coefficients, which are used to create 
four histograms, are constructed using the DC and AC components.  

4.1.1 Experiment 1: RGB and DCT Coefficients Dimensionality Testing 

4.1.1.1 Experimental Setup 

The purpose of this test is to obtain the classification accuracy results based on different dimensions of the 800 
images’ histograms. These histograms are based on RGB values and DCT coefficients. The dimensions tested 
are 15, 18, 21, and 24. This test is performed based on five traditional classification algorithms (K-NN, Naϊve 
Bayes, SVM, and C4.5) using two DM software which are Weka (Mark, et al., 2009) and Orange (J. & B., 2005). 
As a result, the test would determine the effect of different dimension sizes on the accuracy of the results and 
their suitability for classification, and find the optimum dimension for higher classification accuracy.  

4.1.1.2 Results and Discussions  

Based on the results in Table 3 to Table 7, it is found that image datasets that are extracted using 24 dimensions 
for RGB and DCT coefficients (S1, S2, S3, and S4) have the highest classification accuracy. However, images 
that are extracted with 15 dimensions have the lowest accuracy for RGB Histogram and DCT coefficients (S1, 
S2, S3, and S4). Therefore, it is concluded that the optimal dimensions for gaining the highest classification 
accuracy is 24 dimensions. If we use less than 24 dimensions, the classification accuracy will dramatically 
decrease. 

Besides that, Table 8 shows that among the DCT coefficients with 24 dimensions that have the highest 
classification accuracy is DCT coefficient S3, with an average of 94.40% among the five classifiers that have 
been tested. This is mainly because DCT coefficient S3 has the optimal coefficients compared to other DCT 
coefficients. Therefore, it can be concluded that DCT coefficient S3 is the optimal coefficient and can be used as 
a comparison to the proposed modified PSO classifier in the next phase. 

4.1.2 Experiment 2: Testing of the Proposed modified PSO for the Image Data Classification 

4.1.2.1 Experimental Setup 

The experiment was carried out to compare predictive accuracy of discovered rule lists by well-known 10-fold 
cross-validation procedures. Each data set is divided into 10 partitions, each method is run 10 times, using a 
different partition as the test set, and the other nine partitions as the training set each time. The two parameters 
  and β  in Equation 10 are important to the final validation accuracy. Slight adjustment could change the 
results significantly. In our experiment, we set   = β  = 0.5. Moreover, we have used DCT coefficient S3 in 
this experiment because, according to Table 8, it has the highest classification accuracy compared to other 
coefficients.  

After the cross-validation of two data sets, we get the average validation accuracy of each data set. The result of 
these two image features using the proposed modified PSO is shown in Table 9. We compare these results with 
the other five algorithms in Table 10. We have used Weka’s (Mark, et al., 2009) software to implement the C4.5 
classifier on the two different image features. Furthermore, we have also used Orange’s (J. & B., 2005) software 
to implement a traditional classifier such as K-NN, Naϊve Bayes, and SVM. The results are shown in Table 10. 

4.1.3 Results and Discussions 

According to Table 9, RGB datasets has the highest average validation accuracy with 98.28%. The lowest 
average accuracy would be the DCT datasets that would give 91.44% validation classification accuracy. As for 
training accuracy, DCT datasets has the highest average training accuracy with 96.35%, whereas RGB has the 
lowest average training accuracy with 94.78%. Furthermore, we have compared proposed modified PSO against 
these algorithms as they are considered industry standards. The results of the five algorithms are shown in Table 
10. According to Table 10, the highest average classification accuracy would be the proposed modified PSO 
with average classification accuracy 93.23%. Nevertheless, proposed modified PSO classifier also has the 
highest accuracy for RGB Histogram and DCT Coefficient (S3), with 98.28% and 91.44% respectively. The 
main reason why proposed modified PSO performed well for those datasets is because it has the ability to 
produce highest optimal solutions and thus reduce misclassified problems. In conclusion, the comparison clearly 
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states the competitiveness of the proposed modified PSO with other algorithms. 

5. Conclusion 

In this chapter, we have introduced the proposed modified PSO algorithm that provided a mechanism of 
classification rule mining based on PSO and effective feature extraction processes on image datasets. Moreover, 
we have conducted experiments on the process of image feature extraction using two main methods which are 
RGB Histogram and DCT coefficients. After image feature extraction process, both datasets have been produced. 
These two datasets have been used as testing datasets in the next experiments which involve testing the accuracy 
of the proposed modified PSO algorithm. In testing the proposed modified PSO for data classification, it is found 
that the rule discovering procedure and the accuracy rate of datasets is higher compared to the other five 
traditional algorithms. 
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Table 1. Datasets used in the data mining experiment 

 

Dataset Features Instance Class 

RGB 24 800 5 

DCT 24 800 5 

 

Table 2. Five classes of images 

 

Class 

Number 
1 2 3 4 5 

Class 

Name 
Building Airplane Bottle Camel Flower 

Sample 

Image 

  

Number 

of Images 

in Class 

60 50 240 350 100 

 

Table 3. Average K-NN classification accuracy (%) by image dimension sizes 

 

K-NN Classifier 

Dimension Size RGB S1 S2 S3 S4 Average 
Accuracy by 
Dimension 

Size 

24 dimensions 83 94 90 95 92 90.8 

21 dimensions 53 45 46 50 48 48.4 

18 dimensions 43 41 36 39 37 39.2 

15 dimensions 34 17 20 24 21 23.2 

Average accuracy RGB and DCT 
coefficients 53.25 49.25 48 52 49.5 
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Table 4. Average Naϊve Bayes classification accuracy (%) by image dimension sizes 

 

Naϊve Bayes Classifier 

Dimension Size RGB S1 S2 S3 S4 Average 
Accuracy by 
Dimension 

Size 

24 dimensions 81 92 90 93 91 89.4 

21 dimensions 51 44 46 49 47 47.4 

18 dimensions 42 42 32 38 35 37.8 

15 dimensions 36 19 21 25 20 24.2 

Average accuracy RGB and DCT 
coefficients 52.5 49.25 47.25 51.25 48.25  

 

Table 5. Average SVM classification accuracy (%) by image dimension sizes 

 

SVM Classifier 

Dimension Size RGB S1 S2 S3 S4 Average 
Accuracy by 
Dimension 

Size 

24 dimensions 83 96 89 94 91 90.6 

21 dimensions 53 44 46 50 48 48.2 

18 dimensions 43 41 36 37 36 38.6 

15 dimensions 33 17 22 24 21 23.4 

Average accuracy RGB and DCT 
coefficients 53 49.5 48.25 51.25 49  

 

Table 6. Average C4.5 classification accuracy (%) by image dimension sizes 

 

C4.5 Classifier 

Dimension Size RGB S1 S2 S3 S4 Average 
Accuracy by 
Dimension 

Size 

24 dimensions 81 95 90 93 92 90.2 

21 dimensions 53 45 43 50 48 47.8 

18 dimensions 41 42 36 38 37 38.8 

15 dimensions 36 17 20 22 21 23.2 

Average accuracy RGB and DCT 
coefficients 52.75 49.75 47.25 50.75 49.5  
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Table 7. Average modified PSO classification accuracy (%) by image dimension sizes 

 

Proposed Modified PSO Classifier 

Dimension Size RGB S1 S2 S3 S4 Average 
Accuracy by 
Dimension 

Size 

24 dimensions 87 94 90 97 95 92.60 

21 dimensions 56 45 46 50 48 49.00 

18 dimensions 42 41 38 39 37 39.40 

15 dimensions 37 17 20 22 21 23.40 

Average accuracy RGB and DCT 
coefficients 

55.50 49.25 48.50 52.00 50.25 
 

 

Table 8. Average classification accuracy for each DCT coefficient with 24 dimensions 

 

Classifier S1 S2 S3 S4 

K-NN 94 90 95 92 

Naïve Bayes 92 90 93 91 

SVM 96 89 94 91 

C4.5 95 90 93 92 

Modified PSO 94 90 97 95 

Average DCT 
coefficients 

94.20 89.80 94.40 92.20 

 

Table 9. Ten-fold cross-validation for six datasets using modified PSO classifier 

 
 

RGB 

 

DCT (S3) 

Number 
of Fold 

Training 
accuracy

Validation 
accuracy

Training 
accuracy

Validation 
accuracy 

1 95.05 98.28 97.92 95.33 

2 94.21 98.71 97.44 92.57 

3 95.05 98.71 96.96 91.71 

4 94.74 97.85 95.96 94.43 

5 95.67 97.85 99.92 85.31 

6 95.05 98.71 98.94 89.00 

7 94.12 97.85 98.68 90.33 

8 95.05 98.71 80.21 79.50 

9 94.43 97.42 98.34 97.75 

10 94.42 98.71 99.10 98.43 

Average 94.78 98.28 96.35 91.44 
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Table 10. Comparison results of data classification experiment 

 

 

Data Set 

 

Proposed 

Modified 

PSO (%) 

 

C4.5 (%) 

 

K-NN(%) 

 

SVM(%) 

 

Naϊve 

Bayes(%) 

RGB 

Histogram 
98.28 93.70 96.63 96.06 97.07 

DCT Coefficient 

(S3) 
91.44 65.43 69.65 69.16 70.22 

Average Classification 

Accuracy 
93.23 85.63 87.59 84.76 86.04 
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Figure 1. The Discrete Cosine Transform 
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Figure 2. The Inverse Discrete Cosine Transform 
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Figure 3. DCT on a JPEG image showing more important components 
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Figure 4. Standard PSO algorithm 
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Figure 6. The form of encoding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Rule discovery procedure 
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Figure 8. The flowchart of the individual update 

  


