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Abstract 

When the assumptions of normality and homoscedasticity are met, researchers should have no doubt in using 
classical test such as t-test and ANOVA to test for the equality of central tendency measures for two and more than 
two groups respectively. However, in real life we do not often encounter with this ideal situation. A robust method 
known as Ft statistic has been identified as an alternative to the above methods in handling the problem of 
nonnormality. Motivated by the good performance of the method, in this study we proposed to use Ft statistic with 
three different trimming strategies, namely, i) fixed symmetric trimming (10%, 15% and 20%), ii) fixed 
asymmetric trimming (10%, 15% and 20%) and iii) empirically determined trimming, to simultaneously handle 
the problem of nonnormality and heteroscedasticity. To test for the robustness of the procedures towards the 
violation of the assumptions, several variables were manipulated. The variables are types of distributions and 
heterogeneity of variances. Type I error for each procedures were then be calculated. This study will be based on 
simulated data with each procedure been simulated 5000 times. Based on the Type I error rates, we were able to 
identify which procedures (Ft with different trimming strategies) are robust and have good control of Type I error. 
The best procedure that should be taken into consideration is the Ft with MOM - Tn for normal distribution, 15% 
fixed trimming for skewed normal-tailed distribution and MOM - MADn for skewed leptokurtic distribution. This 
is because, all of the procedures produced the nearest Type I error rates to the nominal level.  

Keywords: Type I error, Trimming, Robust scale estimator, Hinge estimator, Heterogeneity 

1. Introduction 

The classical tests of group equality such as the t test and analysis of variance (ANOVA) are always misrepresented 
due to variance heterogeneity and nonnormality. When the problems of nonnormality and variance heterogeneity 
arise simultaneously, Type I error rates are usually inflated resulting in spurious rejection of null hypotheses and 
reduction in the power of the test statistics. These problems could be overcome by (i) applying transformation to 
the data and proceed with the procedures or (ii) selecting an alternative procedure which is insensitive (robust) to 
the problems. When data are non normal and variances are heterogeneous, it is often possible to transform the data 
so that the new scores are normal with equal variances. Although transformation is capable of normalizing skewed 
data, the method still has some drawbacks. According to Wilcox (2002), transformation (e.g. square root of the 
mean and log of the mean) overlooks the inferences of real data. It is also unable to eliminate the influence of 
outliers and sometimes even a complicated transformation fail to normalize the data. For that reason, this study 
will look into the second approach in alleviating the problem of non normality and heterogeneity of variances 
simultaneously. Lix and Keselman (1998) stated that tests which are sensitive to the combined effects of 
nonnormality and variance heterogeneity can be obtained by substituting robust measures of location and scale 
such as trimmed means and Winsorized variances in place of the usual means and variances respectively. Trimmed 
mean is a good measure of location because its standard error is less affected by departures from normality. This is 
due to the fact that the extreme values or outliers are removed (Lix & Keselman, 1998). It is a popular robust 
estimator used by many researchers because of its ability in controlling Type I error rate (Luh, 1999; Keselman, 
Wilcox, Taylor & Kowalchuk, 2000; Locker, 2001; Luh & Guo, 2005). A few examples of robust methods which 
uses trimmed mean are the Welch test (Welch, 1951), the James test (James, 1951) and the Alexander-Govern test 
(Alexander & Govern, 1994). Trimmed mean summarizes data when trimming is carried out. By using the 
trimmed means, the effect of the tails of the distribution is reduced by their removal based on the trimming 
percentage that has to be stated in advanced (fixed amount). Even though trimmed mean has a good control of 
Type I error rate, the trimming is done regardless of the types of distribution due to the percentage of trimming that 
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is set prior to the facts whether the outliers are presence or not. It will be a gross mistake to eliminate data which are 
not outliers such as in a normally distributed data. There is extensive literature regarding this trimming method that 
uses the fixed amount of symmetric trimming. Among them are Lee and Fung (1985), Keselman, Wilcox, Othman 
and Fradette (2002), and Wilcox (2003).  

To avoid unnecessary trimming, an alternative to a fixed trimmed mean is the modified one-step M estimator 
(hereafter MOM). This estimator empirically trimmed extreme data based on the types (shape) of distribution 
(Othman, Keselman, Padmanabhan, Wilcox & Fradette, 2004). If we have skewed distributions then the amount of 
trimming on both tails should not be the same. More should be trimmed from the skewed tail unlike trimmed mean 
which trimmed the data regardless of the shape of the tails. Another approach of trimming which was investigated 
by Keselman, Wilcox, Lix, Algina and Fradette (2007) used fixed asymmetric trimming. This trimming approach 
uses hinge estimators proposed by Reed and Stark (1996) to determine the suitable amount of trimming on each 
tail of a distribution. However, their method still adopts the fixed trimming percentages.  

Motivated by the good performance of trimmed mean, this study will investigate on the three approaches of 
trimmed mean mentioned above i.e. (i) fixed (percentage) symmetric trimming, (ii) automatic trimming and (iii) 
fixed asymmetric trimming. These trimmed means will be used as the central tendency measures for a robust test 
statistic known as Ft statistic. The performance of these methods in terms of type I error rates for the case of two 
groups are determined and compared. 

2. Method 

Three methods of trimming namely the fixed symmetric trimming, automatic trimming and fixed asymmetric 
trimming were examined in this study. The fixed symmetric and asymmetric trimming adopted 10%, 15% and 
20% total amount of trimming while the automatic trimming trimmed data based on different scale estimators i.e. 
MADn, Tn, and LMSn,  

Each trimmed mean generated through different criteria of trimming was used as the central tendency measure for 
Ft statistic. Altogether, this study produced nine different Ft procedures. Each of these procedures was then 
compared under conditions of normality and non-normality represented by the g- and h- distributions. 

2.1 Ft statistic 

Lee and Fung (1985) introduced a statistical procedure that is able to handle problems with sample locations when 
nonnormality occurs but the homogeneity of variances assumption still applies. This statistic was named trimmed 
F statistic, Ft. Their work focused on the best trimming percentages used to produce trimmed means which are able 
to control Type I error and to provide good power rates of the statistical procedure. 

They recommended the trimmed F statistic with 15% symmetric trimming as an alternative to the usual F test 
especially when the distribution is long tailed symmetric. This method is simple and easy to program. 

To further understand the Ft method, let 
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XXX )()2()1( ,...,,  be an ordered sample of group j with size nj and let   1 jj gnk  where  x  is the largest integer 

x .  
Hence the g-trimmed F is defined as 

 
   

 










 J

j
tj

J

j

ttj

t

JHSSD

JXX
gF

1

1

2

/

1/
)( , where       [1] 

J = number of groups,  jjjj ggnh 21  ,  



J

j
jhH

1

  and  



J

j

tjjt HXhX
1

/ .  

jg  represents the proportion of observations in jth group that are to be trimmed in each tail of the distribution. 

tjX

 

= the jth group trimmed mean, and 
tjSSD  = the g-Winsorized sum of squared deviations. Ft(g) will follow 

approximately an F distribution with (J – 1, H – J) degrees of freedom.  
2.2 Fixed symmetric trimmed mean 
Let 

jnjj j
XXX )()2()1( ...   represent the ordered observations associated with the jth group. In order to calculate the 

100g% sample trimmed mean, we define 

XLj = (1 – r)X(k + 1)j + rX(k)j    and  XUj = (1 – r) jkn j
X )(   + r jkn j

X )1(    

where 
g represents the proportion of observations that are to be trimmed in each tail of the distribution. 

  1 jgnk  where jgn  is the largest integer  jgn  and jgnkr  . 

The jth group trimmed mean is given by 
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The g-Winsorized sum of squared deviations is then  calculated as  
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2.3 Automatic trimmed mean 
Let jnjj j

XXX )()2()1( ,...,,  be an ordered sample of group j with size nj. MOM trimmed mean of group j is calculated 

by using: 
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where 

jg1 =number of observations
jiX )(
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 K (scale estimator), 

jM


 = median of group j and the scale estimator can be either MADn, Tn or LMSn. 

K = 2.24 (multiplier of scale estimator) 
nj = group sample sizes 
The value K = 2.24 was suggested by Wilcox and Keselman (2003) in place of the multiplier of the scale estimator 
in the above criteria. They adjusted the K value so that efficiency is good under normality especially for small 

sample sizes. They found that, by using simulation with 10,000 replications, the efficiency of tj  (the standard 

error of the sample mean divided by the standard error of tj ) is approximately 0.9 for n1 = n2 = n3 = n4 = n5 = 20 

with K = 2.24. tj

 

was arrived at using MADn. We conducted a similar simulation study on tj  using robust scale 
estimators Tn and LMSn, and found that the efficiencies are approximately 0.83 and 0.91, respectively. Hence, we 
kept the value of 2.24 in our selection criteria. Note that 2.24 is approximately equal to the square root of the 0.976 
quantile of a chi-square distribution with one degree of freedom (Wilcox & Keselman, 2003). Indicating that, it is 
also suitable for skewed distribution. 
For the equal amounts of trimming in each tail of the distribution, the Winsorized sum of squared deviations is 
defined as 
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When allowing different amounts of trimming in each tail of the distribution, the Winsorized sum of squared 
deviations is then defined as, 
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2.3.1 MADn 
MADn is the median absolute deviation about the median. It demonstrates the best possible breakdown value of 
50%, twice as much as the interquartile range and its influence function is bounded with the sharpest possible 
bound among all scale estimators (Rousseeuw & Croux, 1993).  
This robust scale estimator is given by 

jjiin xmedxbMAD  med         [7] 

where the constant b = 1.4826 is needed to make the estimator consistent for the parameter of interest, 

ni xxxx ,...,, 21  and ji 
 

However, there are drawbacks in this scale estimator. The efficiency of MADn is very low with only 37% at 
Gaussian distribution. Rousseeuw and Croux (1993) carried out a simulation on 10,000 batches of Gaussian 
observations to verify the efficiency gain at finite samples. They compared the variance of the standard deviation 
with the variance of MADn based on the finite samples. MADn also takes a symmetric view on dispersion and does 
not seem to be a natural approach for problems with asymmetric distributions. 

2.3.2 Tn 

Suitable for asymmetric distribution, Rousseeuw and Croux (1993) proposed Tn, a scale known for its highest 
breakdown point like MADn. However, this estimator has more plus points compared to MADn. It has 52% 
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efficiency, making it more efficient than MADn. It also has a continuous and bounded influence function. 
Furthermore, the calculation of Tn is easy. 

Given as 
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Tn has a simple and explicit formula that guarantees uniqueness. This estimator also has 50% breakdown point.  
2.3.3 LMSn 
LMSn is also a scale estimator with a 50% breakdown point which is based on the length of the shortest half sample 
as shown below: 
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consistency at Gaussian distributions. LMSn has an influence function the same as MAD (Rousseeuw & Leroy, 
1987) and its efficiency equals that of the MAD as well (Grubel, 1988).  
2.4 Adaptive trimmed mean 
This adaptive trimmed mean uses hinge estimator HQ1 (Reed & Stark, 1996) in order to adjust the trimming 
process that suits the shape of data distribution. Keselman et al. (2007) successively improved Welch test using 
this adaptive trimmed mean in controlling Type I error rates.  
The adaptive trimmed mean is calculated as  
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where g1 = [njl], g2 = [nju], h = nj – g1 – g2, l = lower trimming percentage, u = upper trimming percentage and nj 

is the sample size. The percentage of lower and upper trimming identified using hinge estimator HQ1 (Reed & 
Stark, 1996). However the total percentage of trimming is predetermined just like the usual trimmed mean.  

To define the lower and upper trimming percentage, let consider an ordered sample J, L is the mean of the 
smallest [n] observations, where [n] denotes n rounded down to the nearest integer, while U is the mean of 
the largest [n] observations. As for example, let  = 0.05, therefore L0.05 is the mean of the smallest 0.05n 
observations.  
The measurement of Q1 is defined as 
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Q1 classifies whether a symmetric distribution has light (for Q1<2), medium (for 2.6<Q13.2) or heavy (for Q1>3.2) 
tail. It is a location free statistic and uncorrelated with other location statistics. Reed and Stark (1996) defined a 
general scheme of their approach based on the former definitions of tail length as follows: 

i. Set the total amount of trimming, , from the sample. 

ii. Determine the proportion to be trimmed from the lower end of the sample (l) by the proportion 
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where UWx and LWx are respectively the portion of the numerator and denominator of the previously defined 
statistic (Q1). The notation for UWx and LWx are as follows:  
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Subsequently, the calculation for HQ1 is  
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iii. The upper trimming percentage is defined as: 
u=  - l  

3. Empirical Investigation 

This study investigated on the performance (robustness) of Ft statistic using different types of trimmed mean as the 
central tendency measure for the case of two unbalanced groups. In studying the robustness of the procedures, two 
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variables were manipulated, creating conditions which are known to highlight the strengths and weaknesses of the 
tests. The two variables were: (1) population distribution and (2) degree of variance heterogeneity.  

Unequal group sizes, when paired with equal and unequal variances, can affect Type I error control for some 
statistical tests. Thus, several ratios of variances were considered, namely, 1:1, 1:8 and 1:36. The total sample size 
for the two groups was set at N = 30 (12, 18). To test for the effect of distributions, the g- and h- distribution 
(Hoaglin, Mosteller & Tukey, 1983) was used to represent the skewed and normal data. Three types of 
distributions representing normal, skewed normal-tailed and skewed leptokurtic were considered. Observations of 
the g- and h- distribution were generated by converting the standard normal variates using the following equation:  
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The g- and h- distribution is modified from standard normal distribution with constant g controlling the value of 
skewness and h controlling the value of kurtosis. The level of skewness and kurtosis will increase as the value of g 
and h increase, respectively. The data is normal when g = 0 and h = 0. The values of (g, h) used in this study are (0, 
0), (0.5, 0) and (0.5, 0.5). Table 1 summarizes the skewness and kurtosis values for the three selected situations 
(Wilcox, 2005).  

This study was based on simulated data. For data generation, SAS function RANNOR (SAS Institute, 1999) was 
used to obtain pseudo-random standard normal variates.

 

In examining the Type I error rates, the group location 
measures were set to zero. For each condition examined, 5000 data sets were generated. The nominal level of 
significance was set at   = 0.05. 

 

4. Results  

The performance of the nine Ft procedures under unequal sample sizes with various variances is shown in Table 2. 
By convention, a procedure can be considered robust if its Type I error rates is between  5.1  to5.0  (Bradley, 
1978). Thus, when the nominal level is set at  = 0.05, the Type I error rate should be in between 0.025 and 0.075. 
Type I error rates are considered liberal when they are above the 0.075 limit while those below the 0.025 limit are 
considered conservative. 

4.1 Normal distribution 

For normal distribution with g = 0 and h = 0, under N = 30, the Ft procedure using fixed trimmed mean with 15% 
and 20% symmetric trimming produced Type I error rates within robust criterion regardless of the variances. In 
contrast, fixed asymmetric trimming was able to produce good control of Type I error rates for 10% trimming 
under all variance ratios. For automatic trimming, Ft with MOM - Tn and MOM - LMSn produced robust procedure 
when the ratio of variances were 1:8 and 1:36.  

4.2 Skewed normal-tailed distribution 

Ft with fixed symmetric trimmed mean produced all robust result except for 10% trimming with variance ratio of 
1:36. As for automatic trimming, only Ft with MOM - Tn having variance ratio of 1:8 and 1:36, and Ft with MOM - 
LMSn having 1:8 variance ratio were able to show Type I error within robust criterion. Nevertheless, fixed 
asymmetric trimming produced good control of Type I error for all variances ratio except when heterogeneity was 
1:36 for 20% trimming.  

4.3 Skewed leptokurtic distribution 

When using equal variance 1:1, all Type I error rates for fixed symmetric, automatic and fixed asymmetric 
trimming produced Type I error rates within the Bradley’s criterion of robustnesss except for fixed asymmetric 
with 15% and 20% trimming. Under unequal variances, the procedures with 15% and 20% symmetric trimming, 
MOM - MADn and 15% asymmetric trimming produced robust procedure. 

5. Discussion and conclusions 

To evaluate the robustness of a test, several other benchmarks have been used in the past. Procedures that were 
considered not robust for some researchers could be deemed as robust for others. Some researchers would consider 
that the procedures with conservative Type I error rates fail to perform. However, Mehta and Srinivasan (1970) 
and Hayes (2005) stated that conservative procedures in which the true Type I error rate is less than or equal to the 
nominal level can still be considered as robust. Yet, a conservative test will be lower in power than a less 
conservative test because a more conservative test is less likely to reject any null hypothesis (Hayes, 2005). While 
for liberal tests, Hayes (2005) also had a piece of advice, i.e. to avoid using such tests. He defined liberal test as a 
test that tends to underestimate the true p-value. Using a liberal test for testing hypothesis will increase the 
probability of Type I error to a value greater than the nominal level, which implies that there is a bigger risk of 
making a Type I error. Nonetheless, Keselman et al., (2000) pointed out that there is no one universal standard by 
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which tests can be judged to be robust, so different interpretations of these results are possible. This study also 
identified some promising procedures that performed well in terms of Type I error.  

Based on the results, for Ft with fixed trimmed mean, 15% symmetric trimming is the best alternative because this 
procedure was able to produce Type I error rates which were very close to the nominal level for all the types of 
distributions tested (normal, skewed normal tailed and skewed leptokurtic). For Ft with automatic trimming, the 
MOM - MADn, MOM - Tn and MOM - LMSn performed well for most of the conditions under skewed distribution 
regardless of variance ratios. As for Ft with asymmetric trimming using hinge estimator, 10% trimming showed 
good result for normal distribution while 15% trimming produced good control of Type I error rates for all 
variance ratios under skewed normal-tailed distribution which the Type I error rates are the nearest to the nominal 
level compared than the other trimming percentages.  

Overall, the best procedure that should be taken into consideration is the Ft with MOM - Tn for normal distribution, 
15% fixed symmetric trimming for skewed normal-tailed distribution and MOM -MADn for skewed leptokurtic 
distribution. All of these procedures produced the nearest Type I error rates to the nominal level.  
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Table 1. Some properties of the g-h distribution 

 

g h Skewness Kurtosis Shape

0.0 0.0 0.0 3.0 Normal

0.5 0 1.81 9.7 Skewed normal-tailed  

0.5 0.5 120.1 18393.6 Skewed leptokurtic 

 

Table 2. Comparisons of Type I Error Rates 

 

Dist. Var. Trimming methods

  Fixed symmetric Automatic Fixed asymmetric 

  10% 15% 20% MADn Tn LMSn 10% 15% 20%

g = 0.0  

h = 0.0 

1:1 0.0476 0.0472 0.0478 0.0912 0.0810 0.1134 0.0498 0.0380 0.0244

1:8 0.0220 0.0318 0.0274 0.0916 0.0508 0.0346 0.0284 0.0166 0.0116

1:36 0.0208 0.0304 0.0276 0.0570 0.0492 0.0750 0.0310 0.0166 0.0116

Average 0.0301 0.0365 0.0343 0.0799 0.0603 0.0743 0.0364 0.0237 0.0159

g = 0.5  

h = 0.0 

1:1 0.0442 0.0450 0.0424 0.1078 0.1060 0.1252 0.0448 0.0450 0.0354

1:8 0.0254 0.0352 0.0296 0.0780 0.0740 0.0644 0.0250 0.0330 0.0260

1:36 0.0246 0.0358 0.0304 0.0758 0.0720 0.2198 0.0262 0.0300 0.0230

Average 0.0314 0.0387 0.0341 0.0872 0.0840 0.1347 0.0320 0.0360 0.0281

g = 0.5  

h = 0.5 

1:1 0.0318 0.0370 0.0326 0.0518 0.0474 0.0510 0.0258 0.0194 0.0138

1:8 0.0196 0.0278 0.0218 0.0266 0.0246 0.0992 0.0144 0.0168 0.0122

1:36 0.0190 0.0266 0.0206 0.0274 0.0244 0.4814 0.0148 0.0718 0.0126

Average 0.0235 0.0305 0.0250 0.0353 0.0321 0.2105 0.0183 0.0360 0.0129


