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Abstract 

The use of fossil fuels should be reduced in near future due to their limited resources and increasing ecological 
impacts. Therefore, increased interest and incentives have been created for developing electricity supply utilizing 
renewable energy such as solar energy, which has long-range potential and is applicable in most geographical 
regions. The objective of this paper is to perform thermodynamic and economic analysis of the proposed 
integrated solar Derna steam turbine power plant (unit 5) based on the parabolic trough system. Two modes of 
operation are considered: power boosting mode in which solar energy is used to preheat the feed water in the low 
and high-pressure preheaters and fuel saving mode in which a fraction of saturated steam is generated by the 
solar collector field. A simulation mathematical model has been developed for each component of the plant. Also 
different thermodynamic performance parameters at all points of the plant are considered in the calculations. 
This study shows that the maximum increasing of overall efficiency of the integrated solar steam power plant 
(ISSPP) are 5.9% for fuel saving mode and 3.2% for power boosting mode for 21st July at 12:00 with DNI 810 
W/m2. During 25 years operating period of solar field, the fuel saving mode saves approximately 121 million 
$ and reduces about 125,000 ton in fuel consumption and approximately 390,000 ton in CO2 emissions while the 
augmentations of electrical energy for the power boosting mode are about 360,879 MWh. The study also shows 
that the paybacks of the solar field cost for the power boosting and fuel saving modes of operation are 
approximately 15.7 and 11.5 years, respectively. 

Keywords: integrated solar steam power plant, thermodynamic and economic analysis, concentration solar 
power, parabolic trough collectors, fuel saving mode, power boosting mode 

Nomenclatures 

AF air to fuel ratio, kg/kgfuel C fraction of carbon in oil fuel, kg/kgfuel 

h enthalpy, kJ/kg  Cp specific heat at constant pressure, kJ/kg.oC 

m mass fraction Hu lower heating value of oil fuel, kJ/kg 

m  mass flow rate, kg/s H fraction of hydrogen in oil fuel, kg/kgfuel 

M molecular weight, kg/kmol N fraction of nitrogen in oil fuel, kg/kgfuel 

n mol fraction, kmol/kmol O fraction of oxygen in oil fuel, kg/kgfuel 

P pressure, bar S fraction of sulfur in oil fuel, kg/kgfuel 

T temperature, oC DT temperature difference, oC 

w specific work, kJ/kg 
Greeks 

 efficiency  relative humidity of moist air 

 excess air factor 
Subscripts 

B boiler th theoretical 
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s steam sol solar steam 

G combustion gases R reaction 

P pump pp pinch point 

T  Turbine f saturated water  

g saturated vapor fg difference between saturated liquid and vapor  

w water at boiler inlet 
Abbreviations 

DSG direct steam generation LEC Levelized Electricity/Energy Cost 

ISFPP integrated solar-fossil power plants PT parabolic trough 

SEGS solar electric generating systems  ISSPP Integrated Solar Steam Power Plant 

O&M Operational and Maintenance CSP Concentration Solar Power 

PTS Parabolic Trough System 
IAPWS 

International Association for the Properties of 

Water and Steam 
1. Introduction 

Electricity production using solar thermal energy is one of the main research areas at present in the field of 
renewable energies. With levelized electricity costs (LEC) of 0.10-0.12 $US/kWh the well-known SEGS (Solar 
Electric Generating Systems) plants in California are presently successful solar technology for electricity 
generation (Eck et al., 2003). The SEGS plants apply a two-circuit system, consisting of the collector circuit and 
the Rankin cycle of the power block. These two-circuits are connected via a heat exchanger. In the case of the 
Direct Steam Generation (DSG) in the collector field, the two-circuit system turns into a single-circuit system, 
where the collector field is directly coupled to the power block. This renders a lower investment and higher 
process temperatures resulting in higher system efficiency. Due to the lower investment and the higher efficiency 
a reduction of the LEC of 10% is expected when the DSG process is combined with improved components of the 
solar collectors (Valenzuela et al., 2006). 

Eck et al. (2003) investigated a direct steam generation (DSG) solar thermal power plants. The paper 
investigated the advantages, disadvantages, and design considerations of a steam cycle operated with saturated 
steam for the first time. Two types of plants were analyzed and compared in detail: a power plant with synthetic 
oil and a DSG power plant. It is found that the LEC of a DSG plant could be higher than those of a synthetic oil 
plant. When considering a plant without solar thermal storage on the other hand, the DSG system could reduce 
the LEC. Garcia et al. (2011) paper describes a simulation model of parabolic trough solar thermal power plants 
with a thermal storage system. Model results for a 50 MWe power plant are presented and compared to real data 
from an equivalent power plant currently operated by the ACS Industrial Group in Spain. Garcia-Barberena et al. 
(2012) analyzed the influence of operational strategies on the performance of parabolic trough (PT) solar power 
plants with the aid of SimulCET a computer program for the simulation of the energy behavior of PT plants 
developed by the National Renewable Energy Centre of Spain. Comparing with experimental data it showed 
good agreement among daily averaged estimates and the corresponding measured energy values with mean 
deviation of ± 3.14%. Montes et al. (2009) presented an economic optimization of the solar multiple for a 
solar-only parabolic trough plant. Five parabolic trough plants have been considered, with the same parameters 
in the power block but different solar field sizes. Thermal performance for each solar power plant has been 
featured, both at nominal and part-load conditions. Once annual electric energy generation is known, LEC for 
each plant was calculated, yielding a minimum LEC value for a certain solar multiple values within the range 
considered. A mathematical model of 30-MW SEGS solar power plant was established by Abdel Dayem et al. 
(2013). Annual performance of the plant was presented under weather conditions of Makkah 21.4 °N. Direct 
steam generation plant was studied with higher power generated. The power was highly improved by about 45% 
along the year. 

Solar energy is often available in abundant quantities in the vicinity of conventional steam or combined power 
plants, where the need for clean add-on power is substantial. Fossil-fuel based power units can be augmented 
with solar thermal power for feed water preheating or parallel steam generation. 

Integrated Solar-Fossil Power Plants (ISFPP) represent, both economically and energetically, a promising 
alternative for the conversion of solar energy while offering a guarantee of a minimum power supply 
independent of the level of solar radiation (Wood, 2008; Torres et al., 2013; Khaldi, 2011; Peterseim et al., 2012). 
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Table 1. Parabolic trough collector system specifications 

Physical dimensions of collector construction Reference 

1. Inner diameter of absorber tube 50 mm (Zarza et al., 2004) 

2. Outer diameter of absorber tube 70 mm (Zarza et al., 2004) 

3. Inner diameter of glass cover 85 mm (Zarza et al., 2004) 

4. Outer diameter of glass cover 90 mm (Zarza et al., 2004) 

5. Aperture presented by one collector 5.76 m (Zarza et al., 2004) 

Physical characteristics of the materials used in the construction of the collectors 

6. Transmissivity of glass cover 0.85 (Sukhatme et al., 2008) 

7. Emissivity of absorber tube 0.05 (Sukhatme et al., 2008) 

8. Emissivity of glass cover 0.88 (Sukhatme et al., 2008) 

9. Absorptivity of absorber tube 0.95 (Sukhatme et al., 2008) 

Plant design parameters  

14. Mass flow rate of water/steam for one loop  0.8 kgs-1  (Zarza et al., 2004) 

17. Concentration ration PTC 25.87   

 

To harness the maximum amount of solar radiation, the orientation and tracking of a Parabolic Trough System 
(PTS) is of paramount importance. A PTS is oriented with its focal axis pointed either in the east-west (E-W) or 
north-south (N-S) direction. In the E-W orientation, the focal axis is horizontal, while in the N-S orientation, the 
focal axis may be horizontal or inclined. According to Aldali et al. (2011) five modes of parabolic trough 
collectors can be used according to their orientation and sun tracking capabilities. 

Five different modes of tracking are discussed herein. 

 Mode 1 offers a horizontal focal axis along the east-west plane. The collector is rotated about a 
horizontal east–west axis with a daily adjustment required to ensure that noon beam irradiation is 
normal to the collector aperture. 

 Mode 2 is similar to mode 1, but with a continuous adjustment of the collector such that the beam 
irradiation is incident on the collector aperture with a minimum angle throughout the day. 

 Mode 3 is similar to mode 2, but with a horizontal focal axis along the north–south plane. 

 Mode 4 is similar to mode 3, but with the focal axis being at a fixed inclination that is equal to the 
latitude of the location. The collector is rotated about an axis parallel to earth’s axis at an angular 
velocity that is equal and opposite to the earth’s rotational rate. 

 Mode 5 is similar to mode 4, but with the collector now subjected to a two-dimensional motion, i.e., the 
collector is rotated about the focal axis as well as about a horizontal axis perpendicular to this axis. The 
beam irradiation is thus always normal to the collector aperture. 

In this study a substantial energy gain from mode 3 of operation as opposed to mode 2 and hence the former was 
selected for the present design study. 

2.2 Steam Power Plant 

The Derna steam power plant, as shown in Figure 2, consists of a single pressure boiler, 65MW steam turbine, a 
condenser, a condensate pump, a low-pressure feed water heater, a deaerator, a feed water pump, and a 
high-pressure feed water heater. The design parameters are listed in Table 2. The pinch point temperature 
difference of 15 °C is considered and a design stack temperature of 130 °C was selected which is higher than the 
dew point temperature (125 °C) of the combustion product. 
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Tg,out with the fixed value of stack gas temperature of 130 °C and repeat the calculations with assuming another 
value of  unit the calculated Tg,out approaches the value of 130 °C. 

4. Full Load Results  

Table 3 displays the power generation, oil fuel consumption, overall efficiency of energy conversion, and the 
mass flow rate of CO2 emissions for the two considered modes of operation at full load compared to the 
conventional steam cycle plant. The results are given for 21st March with DNI 490 W/m2, 21st July with DNI 810 
W/m2, and 21st December with DNI 487 W/m2 at 12:00. As indicated in Table 2, for 21st July, the fuel saving 
mode results in reduction of fuel consumption and emission of CO2 by approximately 15.3% and increasing in 
overall efficiency of approximately 5.9%, while the power booster mode results in increasing of electrical power 
by about 9.7% and 3.2% increasing in overall efficiency compared to the conventional steam cycle operating at 
full load. For 21st March, the fuel saving mode results in reduction of fuel consumption and CO2 emission by 
approximately 8.6% and increasing in overall efficiency by approximately 3.1%, while the power booster mode 
results in improvement of electrical power by approximately 6% and 1.2% increasing in overall efficiency 
compared to the conventional steam cycle operating at full load. For 21st December, the fuel saving mode results 
in reduction of fuel consumption and CO2 emission by approximately 2.3% and increasing in overall efficiency 
by approximately 0.9%, while the power booster mode results in improvement of electrical power by about 2.7% 
and 0.7% increasing in overall efficiency compared to the conventional steam cycle operating at full load. 

 
Table 3. Output data for different modes of operation 

Arrangement 
mmkjk;’;/ 

elecW  (MW) fuelm  (kg/s) overall (%) 
2COm  (kg/s) 

(21st at 12:00) (21st at 12:00) (21st at 12:00) (21st at 12:00) 

Mar. Jul. Dec. Mar. Jul. Dec. Mar. Jul. Dec. Mar. Jul. Dec. 

Booster mode 

Fuel saving mode 

Conventional plant 

68.92

65.0 

65.0 

71.29 

65.0 

65.0 

66.77 

65.0 

65.0 

4.423

4.044

4.423

4.423

3.745

4.423

4.423

4.322

4.423

35.0 

36.1 

33.0 

36.2 

38.9 

33.0 

33.7 

33.9 

33.0 

13.82 

12.64 

13.82 

13.82

11.70

13.82

13.82

13.50

13.82

 

5. Economic and Environmental Benefits 

For economic evaluation of the ISSPP, it is relevant to compare the cost of the solar field and resulted cost of 
fuel savings estimated in Table 3 together with the evaluated CO2 reduction cost for the fuel saving mode or 
revenues for solar augmenting the capacity of producing electricity in the power plant for the power boosting 
mode. For doing the economic study we will assume that the steam turbine plant is already built and currently in 
operation and due to the development of the solar technologies we want to equip the present steam turbine cycle 
with a solar field for power boosting mode or fuel saving mode. The economic and environmental analysis was 
best determined by calculating the outputs of the ISSPP on an hourly basis, and summing the results over the 
course of a year. For simplicity, all of the annual performance calculation is based on 10 hours per day of usable 
sunlight during the whole year, and a 25 years collector lifetime. 

5.1 Solar Field Costs 

The collector surface area needed for reaching the amount of solar heat required are 38572.32 m2 for power 
boosting mode and 77709.24 m2 for fuel saving mode. The collector surface is the mirrored surface needed for 
absorbing the radiation, which is different from the total surface of the solar field. The rows of collector have to 
keep a distance between them because of the shading effects for low incident angles. This distance is 
approximated as three times the aperture of the collectors and it allows to determine the land surface necessary 
for installing the solar field. Assuming that the land use factor is 3.5, the total surface required for installing the 
solar field is: 

5.3  collectorfieldsolar AA  m2                         (11) 
For the study we assume estimated specific costs for the PTC technology of around 300 $/m2 (Da Rocha, 2010). 
By multiplying the collector price per square meter and the square meters of collector surface we can calculate 
the capital expenditure (CAPEX): 

  
2$/m  300 collectorACAPEX    $                    (12) 
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That is the required initial investment for building the solar field at the beginning of the construction. But for 
paying the construction during the period of operation of the solar field we have to calculate the annuity. The 
annuities are the fixed payments which have to be done every year during the predicted life of operation of the 
solar field for payback of the initial investment. The annuity includes the price of the construction and the 
increase of interest rate every year. Considering a period of operation of 25 years (T) and an interest rate of 8% 
(r), the annuity is calculated as (Da Rocha, 2010): 

  1)1(

.)1(





T

T

r

rr
a

    
year-1                        (13)

 
And the yearly payment is: 

  Payment/year = CAPEX  a   $/year                 (14) 
which in 25 years makes a total of: 

Total Payment = Payment/year  25  $ 

The total payment for the solar field for power boosting mode is approximately 27.2 million $ and for fuel 
saving mode is approximately 54.8 million $. 

5.2 Power Boosting Mode 

Figure 4 shows the monthly augmentations of electrical energy. The largest augmentations of electrical energy 
are in July (approximately 2057 MWh) while the smallest augmentations of electrical energy are in January 
(approximately 376 MWh). The economic strategy based on solar augmented is dependent on the surplus that is 
being produced at the generator, that is, the capacity to boost the electricity production compared to the 
conventional steam power plant. The expected revenue Rpower boosting is calculated by multiplying the summation 
of the monthly augmentations of electrical energy, Welec, shown in Figure 4, to the electricity tariff Telec. 

$/year     day/month of No. 
Dec

Jan 1
,boostingpower  


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
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
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










N

i
iekecelec WTR 

                (15)
 

where N is the number of hours of usable sun per day (10 hours). With respect to Telec, the average 2013 tariffs 
for the very high voltage production of electricity of Telec = 120 $/MWh will be considered. The expected annual 
revenues for solar augmenting the capacity of producing electricity in the power plant are approximately 
$US3.87 million. During 25 years operating period of solar collectors, the power boosting mode increases the 
electrical energy produced by the steam power plant by approximately 360,879 MWh. 

 

 
Figure 4. Monthly augmentations of electrical energy for power boosting mode 

 

5.3 Fuel Saving Mode 

Figure 5 shows the monthly reductions of the fuel consumptions and CO2 emissions. The largest amount of fuel 
saving (approximately 685 ton) and CO2 emissions (approximately 2141 ton) are in July while the smallest 
amount of fuel saving (approximately 165 ton) and CO2 emissions (approximately 515 tons) are in January. 
Since the fuel saving mode requires less fuel than a conventional steam turbine cycle due to its fraction of steam 
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generated from the solar field, the operation of fuel saving mode reduces total CO2 emissions. The avoided 
emissions can be set in relation to the incremental cost in order to calculate the avoidance costs in US$ per ton of 
CO2 avoided. Therefore, economic strategy underlying the fuel saving mode is based on two different prices. 
Firstly, the national price of fuel oil, FS, concerns the fuel savings derived from the operation of reducing 
boiler’s heat load. Secondly, 

2COC the credit support due to equivalent CO2 emissions avoidance shall be taken 

into account for the calculations. The sum of the two parameters will give the expected revenue using a fuel 
saving approach. 

  $/year     days/month of No.
Dec

Jan

N

1i
COisaved,  COisaved,  fuelsaving fuel 22  












CmFSmR
 

       (16)
 

where mfuel saved and mco2 saved are the reduction of the fuel consumption and CO2 emissions per hour of usable sun. 
The FS in 2013 is approximately 935 $/ton while the value of 2COC  which is presently applied by the World 
Bank is approximately 11 US$/ton (El-Sayed, 2005). Then the expected annual revenues for fuel saving mode 
are 4.84 million $. During 25 years operating period of solar collectors, the fuel saving mode saves 121 million 
$ and reduces approximately 125,000 ton in fuel consumption and 390,000 ton in CO2 emissions. 

Depending on above analysis, the paybacks for the power boosting and fuel saving modes of operation are 
approximately15.7 and 11.5 years, respectively.  

As solar thermal energy is the cleanest renewable energy of zero emission, its utilization performs a reduction of 
greenhouse gas emission and meets with the policy of governments to promote measures against global warming. 
For fuel saving mode, the greenhouse gas (CO2) emission is reduced by approximately 15600 tons/year in 
comparison with a conventional steam turbine power plant. 

 

 
Figure 5. Monthly Fuel and CO2 saving for fuel saving mode 

 

6. Conclusions 

An integrated solar steam power plant (ISSPP) was thermodynamically and economically studied. Both power 
boosting and fuel saving modes were considered in this study. The computer code developed enabled matching 
the solar collectors with the steam power plant. The main conclusions of this task are: 

 For 21st July at 12:00, the fuel saving mode results in reduction of fuel consumption and emission of 
CO2 by approximately 15.3% and increasing in overall efficiency of approximately 5.9%, while the 
power booster mode results in improvement of electrical power by about 9.7% and 3.2% increasing in 
overall efficiency compared to the conventional steam cycle operating at full load. For 21st December at 
12:00, the fuel saving mode results in reduction of fuel consumption and CO2 emission by 
approximately 2.3% and increasing in overall efficiency by approximately 0.9%, while the power 
booster mode results in improvement of electrical power by about 2.7% and 0.7% increasing in overall 
efficiency compared to the conventional steam cycle operating at full load.  

0

500

1000

1500

2000

2500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

F
ue

l 
an

d 
C

O
2

sa
vi

ng
,  

(t
on

)

Months

Fuel saving
CO2 saving



www.ccsenet.org/jsd Journal of Sustainable Development Vol. 7, No. 1; 2014 

70 
 

 The collector surface area and total payment for the solar fields are approximately 38572 m2 and 
US$ 27.2 million for power boosting mode and 77709 m2 and US$ 54.8 million for fuel saving mode. 

 For power boosting mode, largest augmentations of electrical energy are in July (approximately 2057 
MWh) while the smallest augmentations of electrical energy are in January (approximately 376 MWh). 
For fuel saving mode, the largest amount of fuel saving and CO2 emissions are in July (approximately 
685 and 2141 tons, respectively) while the smallest amount of fuel saving and CO2 emissions are in 
January (approximately 165 and 515 tons, respectively). 

 During 25 years operating period of solar field, the fuel saving mode saves approximately US$ 121 
million and reduces approximately 125,000 ton in fuel consumption and 390,000 ton in CO2 emissions 
while the augmentations of electrical energy for the power boosting mode are approximately 360,879 
MWh. 

 The paybacks of the solar field cost for the power boosting and fuel saving modes of operation are 
approximately 15.7 and 11.5 years, respectively. 
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