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Abstract 

Re-vegetation on closed mining-sites for carbon sequestration and/or bio-energy production is one of the 
strategies of addressing the world-wide issues of energy crisis and global warming. However, mine soils 
including coal-mining refuse usually have poor quality and are unfavorable to plant growth. Thus, the major 
objective of this study was to improve quality of coal-mining refuse under laboratory conditions using zeolite, 
flue gas desulfurization gypsum (FGD), flyash, and biosolids at 10% (w/w) rate. Chemical analysis did not 
indicate any significantly high concentrations of toxins in the solid or the solution phase, suggesting that soil 
acidity was the principal chemical constraint hindering re-vegetation. In this context, FGD was the best among 
the tested materials for increasing soil pH and improving lettuce (Lactuca sativa) seed germination, while 
application of biosolids significantly enhanced soil aggregate stability. Specifically, laboratory tests showed that 
application of FGD increased pH of the acidic coal refuse samples from initial 3.80-4.66 to 5.70-6.60 and 
enhanced the growth of germinated lettuce seedlings in mine soil solution from 2.9-4.4 cm to 5.9-8.6 cm. The 
biosolids amendment increased the geometric mean diameter of the mine soil aggregates from the antecedent 
0.93-0.99 mm to 1.13-1.25 mm. However, use of zeolite and fly-ash did not significantly improve the soil 
quality. 

Keywords: mine soil, coal refuse, reclamation, soil quality, amendments, carbon sequestration, bio-energy 
production 

1. Introduction 

Minesoils are formed on landscapes altered by mining processes, particularly by the surface mining operations. 
A mine soil material is a structureless agglomeration of fragmented rock, subsoil, and the soil that is often less 
weathered than the original soil profiles that it has replaced (Angel et al., 2008). Mine soils also include ore 
waste and coal refuse. Coal refuse is regarded as the low-grade coal material extracted along with the coal ore. 
The former is separated from the latter through coal processing and then discarded. The refuse is usually 
composed of rock fragments derived from interseam shale or siltstone partings and waste rock materials from 
above or below the coal seam. The refuse shares many properties with the associated coal seam and still contains 
a certain amount of coal (or energy). Considering a 30 percent refuse generation rate and 1094.3 million tons of 
coal production in the USA (National Mining Association, 2012) in 2011, an estimated 328.3 million tons of 
coal refuse may have been generated in that year alone. Besides occupying lands for its disposal, the potential 
hazards of improperly reclaimed refuse include contamination of surface and groundwater by acidic leachates 
and runoff, erosion and sedimentation into nearby water bodies, spontaneous combustion, and damage from 
landslides (Daniels & Stewart, 2000; Daniels et al., 2010). 

Proper reclamation of mine soils not only benefits the local environment but also contributes to the offsetting of 
CO2 emissions from industrial activities by storing carbon (C) in vegetation (e.g., Lal & Bruce, 1999; Nabuurs et 
al., 2000) and soil (Shrestha et al., 2009). In addition, growing biofuel feedstock crops on marginal lands (e.g., 
closed-mining sites covered with mine soils or coal refuse) has been increasingly accepted as a sustainable 
alternative to food-crop-based bio-enegy production (Tilman et al., 2006; Gelfand et al., 2013) without risks of 
competing for fertile agricultural land or damaging the environment. Overall, C sequestration and bio-energy 
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production in mine soils have created a new concept of mine soil reclamation in sustainable development of the 
world economy and environmental protection.  

Effective C storage and bio-fuel production require high soil quality so that the vegetation can be easily 
established and maintained for a long period (e.g., 50 years), even with a limited management. However, a mine 
soil (i.e., coal refuse) usually has poor soil quality including low content of soil organic matter (SOM), infertility, 
micronutrient imbalances or toxicity, soil compaction, low moisture holding capacity, high electrical 
conductivity (EC), and extreme pH (Stewart & Daniels, 1992; Daniels & Stewart, 2000; Daniels & Zipper, 2010). 
These properties result in unfavorable conditions for both soil organic C (SOC) sequestration and biomass 
production. Therefore, soil amendments and proper management are often needed to improve soil physical, 
chemical, and biological quality of a drastically disturbed mine site in order to establish the vegetation and create 
effective sinks of atmospheric CO2. A number of amendments have been tested to improve the mine soil quality 
for successful reclamation, SOC sequestration and production of biofuel feedstock. For example, manure, 
compost, biosolids, paper-mill sludge, and sawdust have been successfully applied to increase the SOM levels 
and improve the physical and chemical properties of a range of mine soils (Daniels & Haering, 1994; Li & 
Daniels, 1997; Coyne et al., 1998; Roberts et al., 1988; Haering et al., 2000; Bendfeldt et al., 2001; Tompson et 
al., 2001; Larney et al., 2005; Forsberg & Ledin, 2006; Shipitalo & Bonta, 2008; Shrestha et al., 2009; 
Pérez-estebana et al., 2012). Limestone and coal combustion byproducts (e.g., fly-ash, bottom ash, and flues gas 
desulfurization gypsum or FGD) have been widely used and extensively researched for reducing mine soil 
acidity (Bhumbla et al., 2000; Dick et al., 2000; Stewart et al., 2001; Daniels et al., 2002; Shukla et al., 2005; 
Carter et al., 2009). Various commercial N, P, and K fertilizers have also been applied to provide effective and 
sufficient nutrient concentrations for vegetation establishment on mined soils (Daniels & Stewart, 2000; 
Bendfeldt et al., 2001; Larney et al., 2005; Jacinthe & Lal, 2007; Shrestha et al., 2009).  

Therefore, the overall objective of this study was to improve quality of mine soil so as to satisfactorily establish 
vegetation cover for C sequestration by using coal refuse as a growing medium in eastern Ohio, where piles of 
coal refuse are scattered inside the reclaimed forests. No vegetation had established on these piles. Laboratory 
studies were initiated to evaluate how selected amendment materials could improve the mine soil quality and 
facilitate healthy-vegetation establishment and to identify the best amendment(s) for these specific mine soils 
(coal refuse). The specific objectives of this laboratory study were to: 

i. examine the quality and chemical composition of the two coal refuse samples (denoted as mine soils 
hereinafter unless specified); 

ii. study the effects of selected amendments on the elemental (especially toxic ones) concentrations in the 
water solutions of the soils; 

iii. test the effects of amendments on mine soil pH; 

iv. evaluate the effects of amendments on lettuce (Lactuca sativa) seed germination in mine soil solutions; 

v. assess the influences of amendments on physical properties of these mine soils such as aggregate 
stability and water holding capacity; and  

vi. identify the best amendment for these specific soils. 

2. Materials and Methods 

2.1 Sampling Site 

Samples were taken from two coarse coal refuse piles in reclaimed forests near the city of Lisbon (40°46′26″N, 
80°46′3″W), Columbiana County, Ohio. Large bulk samples (4 kg) were obtained by combining several 
subsamples taken at random from the surface (upper 10 cm) of each pile. These piles were 90 to 100 years old 
(pers. comm. with Mark L. Smith, Division of Mineral Resources Management, Ohio Department of Natural 
Resources). Ohio was one of the earliest states in the US to start coal mining, the first coal production occurred 
in Jefferson County circa 1800 (Crowell, 1995). Coal production began in Columbiana County in 1803 when 
100 tons of coal was reportedly mined (Crowell, 1995). From 1803 until 1993, 96 million tons of coal was mined 
in Columbiana County (Crowell, 1995). The prevailing rocks nearest the surface are of the Pennsylvania 
formations consisting of shale, limestone, and sandstone, all with intermingled layers of coal and commercially 
important clays (http://www.columbianacounty.org). 

2.2 Chemical Analysis of Soils and Amendments 

The two samples (denoted as A and B) were air-dried, hand-crushed to pass through a 2-mm sieve, and then 
stored for subsequent chemical analyses and testing. Color of the dry samples was determined using the Munsell 
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color charts (Nandi & Luffman, 2012). The pH and electrical conductivity (EC) of the soils and amendments 
were measured in 1:4 (solid weight: DI water weight) soil slurries. This ratio was identical to the soil solution 
ratio later used for chemical analyses and germination tests so that the pH could be applied to these soil elutriates 
(Bowers et al., 1997). Soil pH can be measured at soil:water ratios of 1:1, 1:2, 1:5 and 1:10, and slightly different 
results are usually obtained (Tan, 2005). Dilute soil solutions (e.g., 1:10 ratio) usually have higher pH values 
than their concentrated counterparts (e.g., 1:1 ratio). However, the pH difference can be less than 0.4 units 
between the values measured at 1:1 and 1:10 ratio (Thomas, 1996). The preliminary data of this study showed 
that the soil pH measured at the 1:4 ratio was only 0.1 to 0.2 units higher than that measured at a 1:1 ratio. 
Therefore, pH values presented in this paper at a 1:4 ratio are comparable to those obtained at 1:1 or 1:2 reported 
elsewhere. Total elemental concentrations in the solids (soils and amendments) were analyzed using an ICP 
spectrophotometer (Teledyne Leeman Labs, New Hampshire) after the samples were digested in concentrated 
hydrofluoric acid / perchloric acid (Soltanpour et al., 1996). Concentrations of carbon and nitrogen were 
measured using the dry combustion method by a Vario Max C/N analyzer (Elementar Americas, Inc., New 
Jersey) (Nelson & Sommers, 1996; Bremner, 1996). Water-stability of soil aggregates was tested and calculated 
using the method by Kemper and Rosenau (1986). Soil water-holding capacity (WHC), comprising of saturated 
water content, field capacity, and permanent wilting point, were estimated at 0 MPa (under the ambient 
atmosphere), -0.03 MPa, and -1.5 MPa, respectively, after the samples were saturated with water for 12 h (Cassel 
& Nielsen, 1986). Soil available water capacity (AWC) was approximated by the difference between the 
moisture contents at field capacity (-0.03 MPa) and the permanent wilting point (-1.5 MPa).  

2.3 Amendment Test 

Samples A and B were, respectively, treated at room temperature (~25 °C) with five amendments (coarse zeolite 
with a grain size of 0.4 ~ 1.4 mm, fine zeolite with a grain size < 0.04 mm, FGD, flyash, and biosolids) at a ratio 
of 10% by weight. Deionized (DI) water was added to each mixture to attain field moisture capacity. Each 
amendment was tested in triplicate. Samples of the mixtures (about 100 g) were taken periodically over 35 d for 
pH measurement, and for determining how long an amendment would take to improve soil pH and reach the 
reaction equilibrium. After 35 d, the remaining samples were air dried and stored for subsequent elemental 
analyses, germination tests, and measurement of physical properties.  

2.4 Soil Solution Preparation and Analysis  

Soil solution was prepared from each post-incubated soil sample using a 1:4 (w/w) mixture of soil and DI water 
according to the method outlined in Bowers et al. (1997). Soil mixtures were constantly stirred for a minimum of 
1 h on an automatic shaker, followed by 1-h settling, and filtration through a 0.45-μm Millipore filter. The 
filtrates were used for following germination tests and for solution elemental analysis.  

2.5 Seed Germination Test  

The phytotoxicity of the post-incubated soils was determined using 5-d seed germination (Bowers et al., 1997). 
Tests were conducted using Buttercrunch lettuce (Lactuca sativa) seeds purchased from a local nursery 
(Columbus, Ohio). Test seeds were selected for uniform size and color after screening through a #20 sieve to 
remove the small seeds. Seed germination tests were conducted by placing 10 seeds in 10 ml of filtrated soil 
solution contained in clear, polystyrene Petri dishes (9 × 50 mm) with leak-proof covers. Three replicates of 10 
seeds each were prepared for each solution sample. Tests were initiated within 24 h of preparation of the solution. 
Control treatments (3 replicates) were prepared in a similar fashion using distilled water and potting-soil solution 
as the test media. Test containers were incubated at 25 °C under a light-dark cycle of 18 h and 6 h, respectively, 
at approximately 38 mE m-2 s-1 for a period of 5 d (incubator manufactured by Percival Scientific Inc., Iowa). 
After 5 d, the total number of germinated seeds was recorded and the percent germination determined for each 
elutriate. The germination was considered successful if the primary root length was ≥ 3 mm. The final length of 
each germinated seedling was measured using a caliper (Bel-Art Products, New Jersey). 

All data were statistically analyzed by computing the one-way ANOVA using Minitab 16.1.1 (LEAD 
Technologies, Inc., North Carolina ). Treatment differences were assessed at p < 0.05. 

3. Results and Discussion 

3.1 Chemical Composition of Mine Soils and Amendments  

The data of total elemental analyses (Table 1) show that both soils contained significant amounts (15.3 and 13.6 
g kg-1 soils) of sulfur (S), which most likely originated as the coal-mining by-product - pyrites (FeS). When 
exposed to the air during mining, the minerals are oxidized into sulfuric acid, resulting in mine soil acidification 
and high soil S concentration. In comparison, total S in surface soils (0-10 cm) of 35 cultivated sites in the Great 
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Figure 1. Effects of amendments on pH of soil A (top) and soil B (bottom). Error bars represent standard 

deviation  

 

Biosolids contained some alkalinity which was added to improve the efficacy of the sludge digestion and ensure 
proper disposal of the waste (USEPA, 2000). However, the neutralization capacity of the solids was limited 
compared with that of FGD. Thus, biosolids did not significantly enhance the final pH of soil A during the 35-d 
period. Although pH of soil A increased initially from 4.66 to 5.09 in 1 d by the amendment, it decreased 
afterwards and stabilized at 4.68 close to the antecedent value (4.66). Application of biosolids increased the pH 
of soil B to 5.45 in first 6 d, but it eventually stabilized at 4.50. Neither the application of coarse zeolite nor that 
of the fine zeolite increased soil pH for either soil, although slight increase in pH was initially observed. 
Application of flyash even decreased pH of soil A by 0.36, but slightly increased that of soil B by 0.2 unit, 
indicating that flyash used in this study was not a good amendment for amelioration of soil pH.  

In summary, application of FGD at 10% (w/w) significantly increased soil pH by 1~ 2.9 units. In comparison, 
application of biosolids increased pH of soil B by 0.7 but did not significantly change that of soil A. 
Amendments of coarse zeolite, fine zeolite, and flyash did not significantly affect the final pH for either soil at 
10% application rate. It took more than 10 d for both soils to attain a relatively stable pH after amendments. 
Application of all amendments initially increased pH of both soils for a short period followed by a decrease and 
eventual stabilization over the longer period. This pattern in soil pH indicates the presence of some un-oxidized 
S (potential acidity) in these mine soils and a slow release of the acid over time. This trend also suggests that 
re-acidification of the amended-mine soil could occur due to the slow release of the acid by the remaining 
un-oxidized S. Therefore, a frequent monitoring of soil pH is recommended even after the soil pH is increased to 
a desired level, and further treatment (applying more materials in a few months) might be needed. 
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3.3 Lettuce Seed Germination Test 

Chemical analyses of soils and soil solutions indicated any amendment-induced changes in soil chemical 
properties. The purpose of germination test was to provide direct evidence on plant response to mine soils with 
and without the amendments. The 5-d germination percentage and shoot length were used to evaluate the 
amendment-caused changes in soil quality.  

 

 

 
Figure 2. Effects of amendments on lettuce seed germination in 1:4 soil A solution: germination percentage (top) 

and shoot length (bottom). Error bars represent standard deviation. Values with different lowercase letters are 
significantly different by Tukey test (p < 0.05) 

 

The data in Figure 2 show a 90% germination percentage of lettuce seeds and a 4.7-cm average shoot length of 
the germinated seeds in the unamended-soil A solution. The percentage is close to that in DI water or in the 
potting soil solution and the shoot length is also close to that in the DI water (4.4 cm) but only half of that 
observed in the potting soil (10.0 cm). These data suggest that soil A did not contain significant amounts of 
toxins, and that the soil solution was as mild as the DI water. However, the mine soil may not contain adequate 
amount of plant nutrients for the lettuce sprouts to grow. Thus, the shoot length is much shorter than that in the 
fertile potting soil. Among the 5 amendments, only FGD exhibited a significantly positive effect on both the 
germination and the shoot elongation rates. Specifically, using FGD increased the seed germination percentage 
in soil A solution from 90% to 97% (although not statistically significant) and the shoot length to 5.9 cm. In 
comparison with DI water and potting soil, lettuce seedlings grew better in solution of the FGD-amended soil 
than in the DI water (4.4 cm) but not as well as in the potting soil solution (10.0 cm), suggesting that FGD may 
contain some plant nutrients (Ca and S), but not other important plant nutrients. In contrast, solutions from soils 
amended with zeolites, flyash, and biosolids did not increase and in some cases or even inhibited lettuce seed 
germination and reduced the shoot length in comparison with that under un-amended soil A. Thus, those 
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materials had some adverse negative effects on seed germination, probably because of high concentration of salts 
(e.g., Na) in the solution.  

 

 
 

 
Figure 3. Effects of amendments on lettuce seed germination in 1:4 soil B solution: germination percentage (top) 

and shoot length (bottom). Error bars represent standard deviation. Values with lowercase letters are 
significantly different by Tukey test (p < 0.05) 

 

In contrast, these amendments enhanced growth of lettuce seedlings to varying extents in solutions of soil B 
(Figure 3) although the germinations were not significantly improved compared with that of the un-amended soil 
solution (Figure 3a). For example, coarse zeolite and biosolids slightly increased the shoot length to 3.4 and 3.0 
cm, respectively, from 2.9 cm in the un-amended soil solution. The germinations were 87% and 80%, 
respectively, for each case, compared with 90% in the solution from un-amended soil B. Similarly, use of fine 
zeolite and flyash improved the shoot length to 3.4 and 3.9 cm and germination rates were 93% and 87%, 
respectively. Seedling growth of 2.9 cm in solution B was shorter than that of 4.7 cm in solution A or 4.4 cm in 
DI water, and much shorter than that of 10.0 cm in the potting soil solution. These results indicate that soil B had 
more adverse effect on lettuce growth than soil A, probably because of higher acidity in the former rather than 
because of any toxic element. Therefore, use of amendments increased the lettuce growth by neutralizing soil 
acidity albeit to a varying degree. The highest positive effect of amendment was observed for FGD on shoot 
growth in soil B. Application of FGD enhanced the shoot growth from 2.9 cm to 8.6 cm in comparison with 4.4 
cm in DI water and 10.0 cm in potting soil, showing that FGD not only effectively reduced soil acidity but also 
supplied some nutrients into the soil solution, benefiting seedling growth. Moreover, it was reported that 
enhanced SO4

2- concentration in soil solution by FGD amendment could reduce the Al toxicity to plants by 
forming AlSO4

+ complexes (Chen et al., 2001; Illera et al., 2004).  
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Water stability of aggregates (WSA) is an important physical characteristic of agricultural soils. It is a measure 
of the susceptibility of aggregates to dispersion by the kinetic energy of water. More specifically, it measures the 
extent to which soil aggregates are likely to remain intact and separate from one another through rain and 
mechanical disturbance (Kemper & Rosenau, 1986). The data in Figure 4 show that use of biosolids significantly 
increased the geometric mean diameters (GMDs) of both soils. The GMD of aggregates in soil A was 1.3 times 
larger, and increased from 0.99 to 1.25 mm. Similarly, GMD of soil B aggregates was 1.2 times larger, and 
increased from 0.93 to 1.13 mm. These trends indicate the beneficial role of biosolids in enhancing aggregate 
stability. Other amendments such as FGD or flyash did not significantly improve the stability of soil aggregates. 
On the contrary, application of zeolites had a negative effect and reduced the GMD of soil A (Figure 4).  

Although this is the first related report on mine soils, enhancing agricultural soil aggregation through biosolids 
amendments has been reported by several researchers (Garcia-Orenes et al., 2005; Ojeda et al., 2008; Wallace et 
al., 2009). For example, after 2 years of digested biosolids application to a soil surface at a rate of 15 Mg ha-1, 
Ojeda et al. (2008) reported that the GMD of a loamy soil increased from 2 to 2.5 mm. The aggregate stability 
percentage of two soils studied by Garcia-Orences et al. (2005) increased by 1.8-3.7 folds in comparison to that 
of the control. Wallace et al. (2009) reported that application of 60 Mg ha-1 of dry biosolids resulted in about 
50% more large aggregates (2-6 mm) relative to that of the control and the GMD increased from 1.2 to 1.5 mm. 
Application of biosolids provides the soil with abundant SOM as an aggregate-binding agent and increases the 
soil aggregate size and stability. In contrast, the inorganic amendments (i.e., zeolite, FGD, and fly-ash) did not 
improve soil aggregation because of lack of any cementing organic matter. Salé et al. (1996) reported decreases 
in soil aggregate stability and GMD by use of a flyash.  

3.4.2 Water Holding Capacity  

High soil WHC is very important to a successful re-vegetation on a closed mining site where the plant-available 
water depends only on precipitation. However, predominately coarse-textured mine soils often have low WHC. 
The data in Figure 5 show that the saturated water holding capacity (SWHC) was 61.9% for soil A and 52.3% 
for soil B. Application of fine zeolite significantly increased the SWHC of soil A by 4% to 65.9 %, because of 
the fine grain size of the zeolite (< 0.04 mm) and an increase in the clay + silt fraction in soil A by the 
amendment. However, application of flyash significantly reduced the SWHC of soil A by 3%, down to 58.7%, 
probably because of the hydrophobicity of the ash created at a high temperature. It has been reported that use of 
flyash could reduce field moisture capacity at low rates of < 10% but increase it at high rates of > 25% (Chang et 
al., 1977). Garg et al. (2005) also reported that at low rates (4 and 8 Mg ha-1), application of flyash had no effects 
on SWHC but increased it by 3% at 12 Mg ha-1. Adriano & Weber (2001) observed that increase in WHC 
became significant with flyash application rates higher than 560 Mg ha-1, but the plant available water increased 
significantly only at the highest rate of 1120 Mg ha-1. However, Pathan et al. (2003) reported that flyash 
application significantly increased the SWHC (doubled) of two soils at the rate of 10% by weight, suggesting 
that effects of fly-ash on the soil WHC depend both on the fly-ash type (source) and the application rate.  

Neither biosolids nor FGD significantly affected the SWHC of soil A, and no single amendment significantly 
altered that of soil B, again indicating its strong dependence on soil type, amendment type, and amendment rate. 
The effects on SWHC by these amendments at 10% application rate were generally < 5% as observed in this 
report. Therefore, additional laboratory tests on different soils would be necessary to determine the specific 
effects on WHC at different application rates prior to their application in the field.  
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