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Abstract 

To support sustainable environmental management, uncertain knowledge about complex 
human-environment-systems from both inside and outside of academia needs to be integrated. Bayesian Network 
(BN) modeling is a promising method to achieve this, in particular if done in a participatory manner. Based on a 
review of 30 cases of participatory BN modeling of environmental problem fields, and of three guidelines, we 
summarize recommendations for BN modeling with stakeholder involvement. In addition, strengths and 
limitations of BNs are synthesized. We found that BNs were successfully applied for knowledge integration and 
identification of sustainable management strategies within participatory processes. Due to many favorable 
characteristics, BNs have the potential to become a core method of transdisciplinary knowledge integration in 
environmental management. 

Keywords: Bayesian Networks, transdisciplinary research, participatory modeling, stakeholder involvement, 
environmental management, knowledge uncertainty 

1. Introduction  

Typically, sustainability-oriented environmental management and planning deals with problem fields that are 
characterized by (1) a significant degree of uncertainty or even ignorance and (2) different and equally legitimate 
perspectives on what is pertinent and what is best. This prevents identification of “optimal” management 
strategies based on purely scientific evidence (Giampietro, 2002). Examples include integrated water resources 
management, climate change mitigation and adaptation, and approaches for dealing with man-made organic 
compounds that are potentially toxic for humans and other biota. For integrated water resources management 
that aims at optimizing ecosystem services, for example, there may be a need to estimate the impact of a certain 
water management measure on both farmer income and the health of riparian vegetation. All these problem 
fields are embedded in complex human-environment systems. Often, the environmental system itself is not well 
understood (e.g. how the riparian vegetation reacts to changes in river flow dynamics). Even more often, there is 
significant uncertainty about the interactions between humans and the environment or about the human system 
component that is relevant for the environmental system under consideration (e.g. how actions of farmers change 
in response to water pricing). 

To better understand human-environment systems and to support the identification of sustainable management 
strategies, knowledge of multiple scientific disciplines and diverse stakeholders from various societal sectors has 
to be integrated (Bergmann et al., 2010). A good system understanding (“system knowledge”), however, is not 
sufficient for sustainable environmental management that generally requires the endorsement and 
implementation of management measures by a multitude of stakeholders. In addition, knowledge about the 
different problem perspectives, values, and goals of the stakeholders (“target knowledge” according to 
CASS-ProClim, 1997) needs to be generated and integrated, as well as knowledge about how to achieve 
common goals (“transformation knowledge”, CASS-ProClim, 1997). Generation of these three types of 
knowledge, if done jointly by scientists and stakeholders, can be regarded as “post-normal science” (Funtowicz 
& Ravetz, 1991) and has more recently been referred to as “participatory integrated assessment” (Salter, 
Robinson, & Wiek, 2010; de Kraker, Kroeze, & Kirschner, 2011) or “transdisciplinary research” (Hirsch Hadorn 
et al., 2008; Mobjörk, 2010; Siew & Döll, 2012). An important goal of transdisciplinary research is social 
learning of the participants of the joint research process (Giampietro, 2002; Reed et al., 2010).  
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To do transdisciplinary research, appropriate methods for supporting joint problem identification, problem 
analysis, and strategy development have to be identified. Modeling is an appropriate and widely used method in 
environmental sciences and management, as knowledge about the complex human-environment system has to be 
integrated. To truly support transdisciplinary research, a relatively simple modeling approach is required. The 
approach should be able to (1) represent and integrate knowledge from diverse disciplines and spheres, (2) 
explicitly support the inclusion of stakeholder knowledge and perspectives, and (3) take into account the 
uncertainty of knowledge.  

Bayesian Networks (BNs) fulfill these requirements. BNs have already been used in support of environmental 
management, in a few cases also in participatory settings where stakeholders were involved in the modeling 
process beyond the discussion of modeling results. In their literature review on the application of BNs in 
environmental modeling for the time period 1990-2010, Aguilera, A. Fernández, R. Fernández, Rumí and 
Salmerón (2011) found that less than 5% of all identified applications of BNs were in the field of environmental 
sciences. Uusitalo (2007) reviewed the advantages as well as the challenges of using BNs in environmental 
modeling and summarized the state of the art of applying BNs. She concluded that BNs are “a useful addition to 
the toolkit of environmental scientists, especially if their work is related to environmental management”. 
Introducing a special issue on BNs in environmental and resource management, Barton et al. (2012) showed how 
BN modeling can be adapted to the structure of the problem of interest and stated that BNs have been most 
widely used in support of mid-to-long-term strategic decision-making at the scale of e.g. catchments or habitats. 
Castelletti and Soncini-Sessa (2007) considered the integration of BN modeling into a participatory planning 
process and discussed the specific limitations of BNs in water resources management. Comprehensive guidelines 
on the application of BNs in support of participatory planning were provided by Cain (2001), Bromley (2005) 
and Pollino and Henderson (2010). 

In this review, we aim at synthesizing the knowledge about application and applicability of BNs as a 
participatory modeling tool in transdisciplinary research. We wish to provide a solid knowledge basis for 
researchers (with experience in either BNs or participatory methods) and practitioners who consider using BNs 
in participatory processes. In section 2, we give a short introduction into BNs. In section 3, we review literature 
on the application of BNs as a participatory modeling approach in support of environmental management. We 
provide recommendations on how to apply BNs as a participatory modeling tool in section 4. This is followed, in 
section 5, by summarizing strengths and limitations of BNs. Finally, we draw conclusions.  

2. Bayesian Networks 

A BN is a model of a selected real system that represents the system’s components and relations in the form of a 
probabilistic causal network. The terms Bayesian Network, Bayesian Belief Network, belief networks and Bayes 
net are synonyms (Charniak, 1991; Henriksen, Rasmussen, Brandt, von Bülow, & Jensen, 2007). 

2.1 Elements of Bayesian Networks 

BNs consist of three elements (Cain, 2001): (1) System variables referred to as nodes and visualized as boxes, (2) 
Causal relationships between these nodes visualized as directed links which point from cause to effect, and (3) A 
set of (conditional) probabilities, for each node, defining the strength of the causal relationships. Figure 1 is an 
example of a simple BN (network structure and states of the variables) that models the decision of a reviewer to 
accept or reject a scientific paper. The diagram indicates that the system variable “Reviewer’s decision” is 
influenced by the “Quality of the paper” as well as by the “Weather conditions” which influence the reviewer’s 
mood and thus decision. The influences are depicted as causal links. In this case, the nodes “Quality of the paper” 
and “Weather conditions” are the parent nodes of “Reviewer’s decision”, while “Reviewer’s decision” is the 
child node of the two influencing nodes. 
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Figure 1. A simple BN “Reviewer´s decision” 

 

Nodes without parent nodes, such as “Quality of data”, “Innovative approach”, and “Weather conditions”, are 
called root nodes. Nodes without child nodes, such as “Reviewer’s decision”, are called leaf nodes. Root nodes 
represent the input variables, while leaf nodes constitute the output variables of the BN (Castelletti & 
Soncini-Sessa, 2007).  

Variables (i.e. nodes) can be either continuous or discrete (as in Figure 1), and in most BN applications, discrete 
variables are described by a limited number of discrete states (e.g. three in the cases of “Weather conditions”). 
States for discrete nodes can either be (1) labels, e.g. “low, high”, (2) numbers, (3) intervals, or (4) in Boolean 
form (e.g. “yes, no”) (Bromley, 2005). The states must encompass all possible conditions and must be mutually 
exclusive. As BNs are directed acyclic graphs, feedback loops are not possible in the networks. 

For each child node, conditional probability tables (CPTs) need to be defined. A CPT expresses the probability 
for the states of a child node, given the states of its parent nodes. The rows of the CPT can be read as 
“if-then-sentences”. In our example, the CPT of “Reviewer’s decision” reveals that “If the quality of the paper is 
high and the sun is shining, then the paper will be accepted with a probability of 95%” (Figure 2). The CPT 
shows the strengths of the causal relationships, with the “Quality of the paper” having a much stronger impact on 
the decision than the “Weather conditions”.  

 

 

Figure 2. Conditional probability table of node “Reviewer’s decision” 
 

Root nodes are quantified by unconditional probability tables which can represent observations, scenarios, or 
potential actions such as management interventions (Bromley, 2005). If root nodes are used to represent different 
scenarios of the future, the states can also be described with respect to the current conditions, for example with 
labels “lower than today, like today, higher than today” (Cain, 2001).  

2.2 Entering Data into the Network 

Both the CPTs and the network structure can be automatically learned from data. In problem fields typically 
assessed by transdisciplinary research, however, not enough data is available for automatic generation of the 
network structure. The network structure, including the definition of the states, is developed together with 
stakeholders or based on information gained from literature. In the next step, unconditional probability tables of 
the root nodes and the CPTs are developed using data obtained from different sources. These include 
stakeholder/expert knowledge, literature information, observational or statistical data, or output from more 
detailed numerical models (e.g. Steventon, 2008).  

 

Quality of data
high
medium 
low

10.0
70.0
20.0

Innovative approach
yes
no

60.0
40.0

Quality of paper
high
low

63.0
37.0

Reviewer's decision
accept paper
reject paper

63.4
36.6

Weather conditions
sunshine
clouds
rainstorm

70.0
20.0
10.0
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2.3 Top-down and Bottom-Up Modeling  

Bayesian networks can either be used “top-down” for predictive purposes or “bottom-up” for diagnostic 
purposes (Castelletti & Soncini-Sessa, 2007). Top-down modeling or downward propagation refers to the 
calculation of the probability distributions of all child nodes in response to the probability distributions of the 
root nodes, as a function of the network structure and the CPTs. Referring to Figure 1, the probability 
distributions for “Quality of paper” and “Reviewer’s decision” were calculated by the BN modeling software, 
while the probability distributions of the three root nodes had been set before. If it is known, for example, that 
the sun is shining during the review process, the probability of “sunshine” of the root node “Weather conditions” 
can be set to 1 or 100% and a higher probability for the acceptance of the paper would be calculated, compared 
to the probality shown in Figure 1. For top-down modeling, the BN modeling software uses the fundamental rule 
of probability and a joint probability calculation to update the probability distributions for all other nodes (Jensen 
& Nielsen, 2007; Pollino & Henderson, 2010). Top-down modeling is appropriate for impact and scenario 
analyses, where the BN computes the impact of certain boundary conditions and management decisions on the 
variables that are planned to be optimized. These boundary conditions and management decisions are often 
represented by setting the probability of a certain state of a root node to 100% and their impact is represented by 
the probability distribution of the child nodes, in particular of the leaf nodes.  

Bottom-up modeling or upward propagation refers to the application of the Bayes’ rule to update the probability 
distributions of the parent nodes after a finding that is based on observations was entered for a leaf node or any 
other child node. Bottom-up modeling is applied for diagnostic purposes, e.g. to assess the likely reasons for an 
observed environmental pollution. Bottom-up modeling is not equivalent to optimization, i.e. the updated 
probability distributions of the root nodes cannot be interpreted in terms of decisions that would lead to the 
observed finding or any desired state of the leaf node. Thus, when applying BNs as participatory modeling tools, 
they are always used top-down because participatory processes typically aim at a joint strategy development 
based on impact and scenario analyses.  

2.4 BN Software  

BN modeling is supported by a large number of software packages. Fenton and Neil (2007) compiled a useful 
list of commercial, open source, and free software tools. Uusitalo (2007) compared various software packages 
for building BNs in more detail. In the field of environmental modeling, Netica and Hugin are most frequently 
used (Aguilera et al., 2011).  

3. Recent Applications on Participatory BN Modeling in Environmental Management 

To review recent applications of BNs in environmental management within a participatory process, we 
conducted a keyword search for the terms “Bayesian Network” or “Bayesian Belief Network” in the ISI Web of 
Knowledge, for the period 2001-2011. We included twelve subject areas (Agriculture, Biodiversity Conservation, 
Ecology, Environmental Sciences, Energy Fuels, Fisheries, Forestry, Geography, Marine Freshwater Biology, 
Plant Science, Toxicology, and Water Resources) that are related to environmental management. Publications 
from outside the field of environmental management were excluded.  

The resulting 182 publications were categorized and assessed according to the degree of stakeholder or expert 
involvement in the BN modeling processes. For this analysis, experts were not distinguished from stakeholders. 
Categorization was done based on the seven stages of BN modeling process as described by Bromley (2005): (1) 
Defining problem, context, and stakeholder engagement; (2) Identifying variables, potential actions/scenarios, 
and indicators to describe the system; (3) Designing the pilot network; (4) Collecting data from all available 
sources including stakeholders; (5) Defining states of all variables; (6) Constructing CPTs; and (7) Checking 
network consistency, collecting feedback from stakeholders, and making the final decision. Less than one third 
of the publications included expert involvement in at least one of the seven steps (Table 1). 
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3.5 Information Basis for the Generation of CPTs  

Most case studies used a combination of different input data to fill in the CPTs (Table A1). Input included 
outputs of numerical models, stakeholder knowledge, statistical and observational data, and literature findings. In 
six case studies in the fields of water, conservation and fishery management, the CPTs were derived from 
stakeholder knowledge only. In ten cases, information from more detailed numerical models was integrated into 
the BN (Table A1). Peterson et al. (2008) developed in total three BNs with the same network structure but with 
different CPTs, with one reflecting only expert knowledge. They compared the performance of the models and 
concluded that the outcomes of the three BNs were consistent. 

3.6 Time and Effort Required 

Most case studies do not provide information about the duration of their participatory processes or the frequency 
of meetings with stakeholders. Information available ranges from one six-hour workshop (Cain et al., 2003) to 
three workshops (Henriksen et al., 2007), and to four 1- to 2-day meetings for the basic conceptualization of the 
BN (Lynam, Drewry, Higham, & Mitchell, 2010) (Table 2). The most common duration (from the first to the last 
workshop) of a participatory process was from one (Molina et al., 2011) to one and a half years (Henriksen et al., 
2007). 

 

Table 2. Design of participatory process (PP) in three case studies 

Case study and 
field of application 

PP period (from 
first to last 
workshop) 

Number of workshops in the PP 
Duration of the 
workshops 

Cain et al. (2003), 
water management 

24.09.1999 - 
02.10.1999 

3 in total (1 workshop with 
government organizations, 1 
workshop with farmers upstream, 1 
workshop with farmers downstream) 

workshop 1: 6 h, 
workshop 2 & 3: 4,5 h

Henriksen et al. 
(2007), water 
management 

October 2002 - 
March 2004 

10 in total (5 workshops with 
professional group, 5 workshops with 
citizen group) 

workshop 1 with 
professional group: 1 
day 

Lynam et al. 
(2010), water 
management 

June 2007 - 
October 2007 

4 each 1-2 days 

 

In a feasibility study, Lerner, Kumar, Holzkämper, Surridge, and Harris (2011) estimated the manpower resource 
required for building an integrated catchment management model in a participatory manner. The BN model was 
proposed as a meta-model for a more complex systems model, to be used by decision-makers. They estimated 
that 20 person-months of the project team would be necessary for construction, validation, and testing of the BN. 
Additionally, each stakeholder would have to spend two days, and each domain expert five days, for validation 
and testing of the BN model. Much more time was estimated to determine, in the beginning of the process, the 
scope of the model and to develop a conceptual model (Lerner et al., 2011). 

3.7 BNs Used as DSS 

Most of the studies proposed that BNs have the potential to function as a decision support system (DSS) in 
practice. Only three case studies (Cain et al., 2003; Inman et al., 2011; Molina et al., 2011) explicitly mentioned 
the successful implementation of BNs as DSS (Table A1). Ticehurst, Newham, Rissik, Letcher and Jakeman 
(2007) developed a DSS that was derived from a BN, to evaluate the sustainability of a coastal lake in Australia. 
They provided training for DSS application to potential users. The low use of BNs as DSS is not specific to BNs 
but is true for other model-based tools, too; this is due to many reasons (Borowski & Hare, 2007; Volk, 
Lautenbach, van Delden, Newham, & Seppelt, 2009). 

4. Recommendations for the Application of BNs in Participatory Processes  

Mainly based on the 30 reviewed case studies and the three guidelines for participatory BN modeling (Cain, 
2001; Bromley, 2005; Pollino & Henderson, 2010), we now formulate recommendations for participatory BN 
modeling using the seven stage structure proposed by Bromley (2005). The seven stages and the corresponding 
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steps of BN construction and stakeholder involvement are summarized in Table A2. We focus on five of the 
seven stages of the process, propose an evaluation of participatory BN modeling and give general 
recommendations for the whole process. 

4.1 Stage 1 - Defining the Problem, the Context and the Stakeholder Engagement 

In the beginning of the process, participants’ expectations should be elicited and openly addressed in order to 
avoid misunderstandings regarding aims and scopes of a project (Chan et al., 2010). Henriksen et al. (2007) 
suggested formulating stakeholder involvement plans to make the participatory process more transparent 
regarding time schedule, expectations, and “rules of the game” (Table A2). 

It is important to include a broad range of interest groups in the BN construction in order to integrate different 
types of knowledge and problem perspectives (Ticehurst et al., 2007). If BNs are planned to be used as a DSS, 
Cain et al. (2003) suggested the formation of a “core group” of policy makers which sufficiently represent all 
disciplines (governmental departments). This group should be trained in the application of the BNs and asked to 
take adequate time to construct a BN in an iterative process and in consultation with external experts. Henriksen 
et al. (2007) pointed out that a T-organization, i.e. a temporary organisation of representatives from the water 
authority, experts, stakeholders and citizens, should be formed. In the T-organization, the water authority leads 
the process and makes the ultimate decisions. At the early stage of the process a “leadership” group identified 
other stakeholders, initiated the process and developed a first BN to inform other stakeholders about the aim of 
the process. Later, a “professional” stakeholder group was established out of ten institutions that were involved 
in groundwater management, as well as an independent “local citizens” group of nine citizens from the area of 
concern which organized a public meeting of 100 citizens at the local community house. The idea was to take 
into account the different starting points and to let the “local citizens” group develop their own position without 
being influenced by the “professional” stakeholder group. The “local citizens” group contributed knowledge to 
the BN, took part in the evaluation of the BN results and wrote three newsletters to inform the local community. 

4.2 Stage 2 - Identifying Variables, Potential Actions/Scenarios and Indicators to Describe the System 

It is helpful to categorize the variables identified by the stakeholders according to their function in the BN. Cain 
(2001) distinguished between: (1) Objectives: variables that are to be influenced through management 
interventions, the key output of BN. (2) Interventions: management options to achieve the objectives. (3) 
Intermediate variables: factors that connect objectives and interventions. (4) Controlling factors: control the 
environmental system, but cannot be influenced on considered scale (e.g. rainfall, population growth). (5) 
Implementing factors: influence the interventions. (6) Additional impacts: variables in addition to objectives that 
are affected inadvertently by interventions (Figure 5). Molina et al. (2011) proposed five similar categories.  

 

 
Figure 5. Conceptual model for categorizing variables (Cain, 2001) 

 

The identification of variables should aim at designing a parsimonious model that captures the most relevant 
processes and causal relations. Therefore, after a broad range of potentially relevant variables has been defined, 
variables should be reviewed with regard to their relevance but also the possibility of quantifying conditional 
probabilities. To this end, it is useful to focus, as much as possible, on variables that are controllable or 
observable at the considered scale (Borsuk, Stow, & Reckhow, 2004).  
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4.3 Stage 3 - Designing a Pilot Causal Network 

Marcot et al. (2006) advised to start with simpler causal networks when introducing BNs to non-modelers and 
recommended a thorough documentation of source material and single steps of network construction in order to 
avoid “battles of the experts” afterwards. Structuring the whole BN as interacting sub-networks simplifies the 
representation of a complex system (Pollino, White, & Hart, 2007). For the construction of the sub-networks the 
stakeholders were divided according to their expertise in the fields covered by the sub-networks (Johnson et al., 
2010). The first version of a causal network, when developed with stakeholders, is likely to be overly complex, 
as each participant might want to see the part of the problem particularly well included that s/he is most 
concerned about; therefore, some simplification is required before CPTs are constructed (Borsuk, Stow, & 
Reckhow, 2004).  

4.4 Stage 6 - Construct CPTs 

The question “What is the probability that variable A takes state X given information Y?” (Pollino, Woodberry, 
Nicholson, Korb, & Hart, 2007) can be used to elicit stakeholder knowledge for generating CPTs. It is preferable 
to consult more than one stakeholder for constructing a CPT, to increase the trust in the BN results.  

In case of differing estimations of CPTs, CPTs can be averaged (Peterson et al., 2008). If the differences reflect 
strongly diverging views, the different CPTs should be included explicitly in the BNs. To make two different 
perspectives on the impact of pesticide application on groundwater quality explicit, Henriksen et al. (2007) 
added an additional variable with opposing states to the BN such that the results of both perspectives could be 
compared. In Netica, it is also possible to integrate stakeholders´ confidence in their probabilistic estimates. This 
kind of weighting helps to combine data and stakeholder knowledge for CPT generation (Pollino et al., 2007). 

4.5 Stage 7 - Check Network Consistency, Collect Feedback from Stakeholders and Make Final Decision 

Once the BN has been constructed, it should be tested and reviewed for consistency by an experienced BN 
modeler. In addition, stakeholders must be involved in testing the BNs to make them credible, either as a group 
within a workshop or individually (Henriksen et al., 2007; Zorrilla et al., 2009; Penman et al., 2011) (see also 
Table A2).  

After BN validation, the BN can calculate the effects of various scenarios (Carmona, Varela-Ortega, & Bromley, 
2011) or management alternatives (Table A2). This may require the development of qualitative scenarios 
(Düspohl, Frank, Siew, & Döll, 2012). To this end, states of root nodes need to be set. The changes in the 
probability distribution of the leaf node indicate the impact of each scenario. It might be difficult to interpret 
these calculated outputs. One possibility is to include decision and utility nodes into the BN to make impacts of 
several management actions comparable. Decision and utility nodes have the advantage to be associated with 
deterministic costs and benefits (Inman et al., 2011).   

4.6 Evaluating the Success of Participatory BN Modeling 

Given the limited experience with participatory BN modeling, an evaluation of each process is paramount to 
increase the positive outcomes of participatory BN modeling processes. Unfortunately, very little information on 
the evaluation of participatory BN modeling processes is available in the literature. Henriksen and Barlebo (2008) 
did an ex-post evaluation of the participatory BN modeling process described in Henriksen et al. (2007), for 
which they performed in-depth interviews with two involved water managers. Zorilla et al. (2009) and Inman et 
al. (2011) developed criteria for the evaluation of participatory BN modeling and asked workshop participants to 
fill out the questionnaires at the end of their workshop. Martínez-Santos, Henriksen, Zorrilla and 
Martínez-Alfaro (2010) evaluated BNs by comparing their experiences with participatory BN modeling to 
experiences with participatory modeling with a groundwater flow model, and found that the modeling 
approaches are complementary. Questions that can lead through the evaluation are e.g. “In which ways can BNs 
promote environmental management and allow the management to progress in the face of complexity and 
uncertainty?”, “How do BNs support development of a shared system understanding and provide a structured 
approach of learning?”, and “How can BNs support the transition from the actual traditional management into 
more adaptive management that is able to deal with changing conditions?” (Henriksen & Barlebo, 2008). Criteria 
that should be included in the evaluation are: (1) Structured process to deal with complex planning; (2) 
Integration of knowledge from diverse sectors; (3) Visual presentation of cross-benefits; (4) Description and 
decrease of uncertainty in prognosis; (5) Limitation of complexity; (6) Support communication and social 
learning; (7) Link of research to policy; (8) Identification of lack of knowledge for integration (Henriksen & 
Barlebo, 2008; Lerner et al., 2011; Martínez-Santos et al., 2010). 
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If the aim of the modeling process is to build a decision support tool for environmental planning, the 
effectiveness of this decision support tool can be evaluated in addition. Evaluation criteria for this approach are 
e.g. (1) Organizational receptivity, (2) Reliance on decisions, (3) Technical suitability, (4) Transparency, (5) 
Learning, (6) Ease of use, or (7) Decision stress (Inman et al., 2011). 

4.7 General Recommendations for Participatory BN-Modeling 

Building of trust is essential for successful participatory modeling with BNs (Chan et al., 2010). Therefore it is 
necessary to create a respectful atmosphere that enables open discussions. It may be beneficial to involve a 
professional facilitator to overcome communication problems due to different disciplinary backgrounds 
(Henriksen et al., 2007; Kragt, Newham, Bennett, & Jakeman, 2011). In addition, a professional facilitator can 
handle dominant personalities that might bias results (Penman et al., 2011). Nevertheless, researchers who are 
experienced in the design of participatory processes and in modeling, are better prepared to guide the 
participatory modeling process itself.  

As most stakeholders and experts may not be familiar with probabilistic reasoning, it is useful to integrate 
training on Bayesian probabilities and BNs. Hands-on training for stakeholders is necessary to create ownership 
and trust, and in particular to apply BNs as decision support tools in practice (Henriksen & Barlebo, 2008). 
Enabling stakeholders to experiment with BNs may lead to more dynamic, interactive and transparent BN 
exercises (Henriksen & Barlebo, 2008), but time constraints of stakeholder involvement may prohibit a more 
in-depth involvement of stakeholders with BNs. It is desirable to couple BN modeling with Geographical 
Information Systems to better visualize the spatial dimensions of the modeling results as these are typically of 
high relevance in environmental management (Henriksen & Barlebo, 2008). 

5. Strengths and Limitations of Bayesian Networks as Participatory Modeling Tool  

Literature reviews (Uusitalo, 2007; Aguilera et al., 2011), guidelines (Cain, 2001; Bromley, 2005), and various 
case studies (e.g. Henriksen et al., 2007; Zorrilla et al., 2009) evaluated the strengths and limitations of Bayesian 
networks for environmental modeling and management. Here, we focus on their strengths and limitations for 
participatory modeling.  

5.1 Strengths 

 Integration of knowledge from various disciplines and spheres: Knowledge from a wide range of 
disciplines and spheres can be integrated (e.g. Henriksen et al., 2007) because a BN, with its causal network, 
allows relating very different variables to each other. The discrete states of the variables allow constructing 
rather simple probabilistic descriptions of the relation between two variables, which is warranted in case of 
models which include diverse variables the relation of which is rather uncertain. However, the BN can be 
made more complex if appropriate. BNs can also help to identify knowledge gaps. Haapasaari and 
Karjalainen (2010) concluded that the probabilistic language of BNs enabled the integration of social, 
natural and economic perspectives which in turn facilitated the communication within their 
multi-disciplinary research group.  

 Explicit inclusion of stakeholder knowledge and perspectives: Stakeholders contribute, in a first step, to the 
construction of the causal net, which allows articulation of their specific knowledge and views on the 
environmental system under consideration. Regarding the setting of probabilities, the specific Bayesian 
perspective on probability allows integrating subjective beliefs of stakeholders but also of experts and 
citizens (Cain et al., 2003; Lynam et al., 2010; Carmona, Varela-Ortega, & Bromley, 2011). 

 Explicit consideration of uncertainty: The probabilistic presentation of knowledge in BNs allows 
considering uncertainty (which is mostly large in most environmental problems) throughout the analysis 
process in a transparent way. In addition, it prevents overconfidence in the response to management 
interventions (Uusitalo, 2007).  

 Variety of possible input data: The wide range of input data is a major strength of BNs. Input data, in 
particular conditional probability tables, may be derived from subjective beliefs, direct measurements or 
output data from more detailed models, or from a combination of these data sources (Bromley, 2005). In 
case of appropriate measurements, conditional probability tables can be automatically learnt from data by 
BN software (Cyr et al., 2010). This variety of input data helps to overcome data scarcity. Bayesian 
networks can also perform analyses with relatively small and incomplete data sets (Ames, Neilson, Stevens, 
& Lall, 2005).  

 Transparency: With BNs it is possible to clearly represent expertise, uncertain knowledge or assumptions in 
a transparent way. Based on four case studies, Bromley (2005) emphasized that decisions which have been 



www.ccsenet.org/jsd Journal of Sustainable Development Vol. 5, No. 12; 2012 

11 
 

supported by a participatory BN modeling process are transparent. BNs therefore provide the opportunity to 
make environmental decision-making more acceptable to the public.  

 Short run times: Together with the graphical interface, very short run times of BNs allow users to play with 
the model and to quickly quantify the impact of certain decisions on the probability distribution of child 
nodes. 

 Communication and learning: Evaluations of BNs as a participatory tool revealed that BNs have the 
potential to facilitate communication and learning among different stakeholders (Lynam et al., 2010; 
Zorrilla et al., 2009). The BN diagram (Figure 1) visualizes how systems function, thus facilitating 
stakeholder learning (Bromley, 2005). Fast run-times of BN models also allow quick recalculations within 
a stakeholder workshop, thus allowing the participants to learn from modeling results as a group. Learning 
among stakeholders also includes understanding each other’s concerns. BNs are useful for discussions 
between different disciplines and stakeholder groups (Henriksen et al., 2007; Wang, Robertson, & Haines, 
2009). They can provide a focus for the stakeholder dialogue (Bromley, 2005) and even help to structure 
the overall participatory process (Zorrilla et al., 2009). 

 The availability of user-friendly software packages makes the application of BNs also accessible to 
non-specialists. 

5.2 Limitations 

 Limited representation of spatial variability, temporal dynamics and feedbacks: As discussed by Pollino 
and Henderson (2010), static spatial variability (e.g. that different location has different properties) can 
easily be taken into account by parent nodes that have specific locations as states. Modeling spatial 
relations and their impact, however, can only be done in a very restrictive way. Temporal dynamics can be 
represented by combining various BNs to dynamic BNs but the number of time steps is very limited due to 
excessive computing times (Fenton & Neil, 2007; Steventon, 2008; Pollino & Henderson, 2010). Castelletti 
and Soncini-Sessa (2007) therefore concluded that BNs are not suitable for highly dynamic problems which 
are often encountered in water resources management. As BNs are acyclic graphs, feedbacks cannot be 
modeled in a static BN. But if the feedback occurs at the same time-scale as that of the time-scale of a 
dynamic BN, a feedback loop can be represented (Pollino & Henderson, 2010). 

 Difficulty to elicit conditional probabilities: Populating CPTs is demanding for stakeholders and scientific 
experts. Eliciting knowledge from scientific experts in a probabilistic form may be difficult if they are not 
familiar with probabilistic thinking and data analyses. Uusitalo (2007) surmised that scientific experts 
usually working with observational data may have trouble formulating beliefs without relying on data. 
Scientific experts usually working with classical statistical analyses may have problems expressing their 
knowledge in a probabilistic way (Uusitalo, 2007). In addition, people are prone to overconfidence when it 
comes to probabilistic estimations (Morgan & Henrion, 1990). Therefore, it is the modeler’s responsibility 
to carefully interpret probability values in CPTs that are very close to zero or one. 

 Reliability of expert beliefs and BN modeling results: Quantitative (deterministic or probabilistic) 
knowledge about causal relations is generally poor for complex human-environment systems that are often 
of interest in strategic environmental management. In this case, the CPTs are highly uncertain and possibly 
inaccurate. Even though the stakeholder group agrees on the validity of a jointly developed BN, the 
computed probability distributions may be incorrect. Keith (1996) pointed out that the number of experts 
sharing one belief is not necessarily proportional of that belief being correct. 

 Cognitive difficulties with probabilities: The probabilistic representation of knowledge is challenging for 
participatory modeling. Many people have cognitive difficulties to understand probabilities, especially to 
grasp conditional probabilities (Anderson, 1998). Therefore the network structure needs to be very simple, 
and the number states should be rather small for participatory modeling (Fenton & Neil, 2007). The fact 
that most stakeholders are more familiar with deterministic model results than probability distributions 
might also constrain the understanding of the model output (Zorrilla et al., 2009). 

 Lack of precision of BN models and results: The use of a small number of states for discrete variables, such 
as “low, medium, high” necessarily leads to an imprecise and vague representation of the system under 
consideration, and to results that may be difficult to interpret. This can only be overcome to a certain extent 
by defining numerical boundaries to terms like “low”, e.g. related to a certain water quality norm. To avoid 
this lack of precision, Borsuk, Schweizer and Reichert (2012) chose to use continuous variables but this is 
only possible in case of well-researched causal relationships.  
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6. Conclusions 

The number of participatory modeling applications of BNs in environmental management is still small. 
Nevertheless, the 30 reviewed case studies have shown that BN modeling can be successfully applied within a 
participative process. Together with the guidelines of Cain (2001), Bromley (2005) and Pollino and Henderson 
(2010), the case studies form a very useful information base for new projects that wish to support 
transdisciplinary knowledge integration by participatory BN modeling. 

Many features make BNs particularly suitable for supporting the identification of sustainable management 
strategies in problem fields related to complex human-environment systems. Nevertheless, a thorough 
contemplation of the balance of strengths and limitations of BNs in the specific problem context is recommended 
before BN modeling is selected as a participatory modeling approach. To allow for a better representation and 
visualization of spatial heterogeneity, which is required for supporting land and water management, coupling of 
BNs to Geographical Information Systems is recommended. To at least partially overcome the limitations of 
BNs related to the lack of precision and accuracy, BN models can be combined with more detailed models. 
While the BN serves to represent the total human-environment system of interest, more detailed models for 
sub-domains for which better quantitative knowledge exists are coupled to certain BN nodes. Depending on the 
location of the coupling nodes within the BN, the detailed model can be used to construct a CPT, or the 
probability distribution computed by a BN can serve to define the input to a detailed model. For example, the BN 
may be used to quantify the probability distribution of pollutant emissions under certain scenarios of external 
driving forces and management options, while the computed emissions scenarios are used, by a soil and 
groundwater transport model, to compute pollutant concentrations at a drinking water well. With such a coupling 
of BN and detailed model, the output of the detailed model is more precise then the results of the BN could be, 
while it is more relevant than it could be without the emissions scenarios derived by the BN. 

We conclude that participatory modeling of human-environment systems with BNs has the potential to become a 
core method of transdisciplinary research and knowledge integration in environmental management. We 
therefore recommend that environmental scientific experts and managers get acquainted with BNs at least on a 
general level, and consider their use in transdisciplinary and participatory processes. 
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Appendix 

Table A1. Applications of BNs for participatory modeling in environmental management, 2001-2011. Refer to 
section 3 regarding the stages of stakeholder involvement 

Case study 
Field of 
application 

Stages with stakeholder
involvement according to 
Bromley (2005) 

Derivation of
conditional probability 
tables 

Using the BN
as DSS in 
practice 

Ames et al. (2005)1 
water 
management 

1, 6 
data, stakeholder 
knowledge  

unknown 

Bashari, Smith, & Bosch 
(2008) 

conservation 
Management 2, 5, 6, 7 

data, stakeholder 
knowledge  unknown 

Borsuk, Stow, & Reckhow 
(2004) 

water 
management 2,6 

data, stakeholder 
knowledge, literature unknown 

Cain et al. (2003) 
water 
management 

1, 2, 3, 5, 6 stakeholder knowledge yes 

Carmona, Varela-Ortega, & 
Bromley (2011) 

water 
management 

2, 3, 5, 6, 7 
numerical models, data, 
stakeholder knowledge, 
literature 

unknown 

Chan et al. (2010) 
water 
management 1, 2, 3, 4 

numerical models, data, 
stakeholder knowledge, 
literature 

unknown 

Cyr et al. (2010) 
conservation 
management 2, 3, 5 data unknown 

Haapasaari, Michielsens, 
Karjalainen, Reinikainen, & 
Kuikka (2007) 

fishery 
management 1, 2, 3, 5 stakeholder knowledge no 

Hamilton, Fielding, 
Chiffings, Hart, & Johnstone 
(2007) 

water 
management 1, 2, 3, 5, 6 

numerical models, data, 
stakeholder knowledge  unknown 

Hammond & O`Brien 
(2001)1 

fishery 
management 2, 3 unknown no 

Helle, Lecklin, Jolma, & 
Kuikka (2011) 

conservation 
management 2, 3, 6 

numerical models, data, 
stakeholder knowledge, 
literature 

unknown 

Henriksen et al. (2007)1 
water 
management 1, 2, 3, 4, 5, 6 

data, stakeholder 
knowledge, literature unknown 

Inman et al. (2011) 
water 
management 1, 2. 3, 4, 7 

stakeholder knowledge, 
literature yes 

Johnson et al. (2010) 
conservation 
management 

1, 2, 3, 5, 6, 7 stakeholder knowledge unknown 

Kragt et al. (2011)1 
water 
management 2, 5 

numerical models, data, 
stakeholder knowledge no 

Lecklin, Ryömä, & Kuikka 
(2011) 

conservation 
management 2, 3, 6 

stakeholder knowledge, 
literature unknown 

Lerner et al. (2011)2 
water 
management 

1, 2, 3 
numerical models, data, 
stakeholder knowledge 

unknown 

Lynam et al. (2010) 
water 
management 2, 3, 6 

numerical models, data, 
literature unknown 
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Table A1. Applications of BNs for participatory modeling in environmental management, 2001-2011. Refer to 
section 3 regarding the stages of stakeholder involvement (continued) 

Case study 
Field of 
application 

Stages with stakeholder 
involvement according to 
Bromley (2005) 

Derivation of conditional 
probability tables 

Using the BN as 
DSS in practice

Marcot et al.(2006) 
conservation 
management 1, 2, 3, 5, 6, 7 

data, stakeholder 
knowledge unknown 

Martínez-Santos et al. 
(2010)2 

water 
management 1, 2, 3, 4, 5, 6 

numerical models, data, 
stakeholder knowledge, 
literature 

no 

McCloskey, Lilieholm, 
& Cronan (2011) 

conservation 
management 2, 5, 6 stakeholder knowledge unknown 

Molina et al. (2011) 
water 
management 

2, 3, 4, 6, 7 
data, stakeholder 
knowledge, literature 

yes 

Penman et al. (2011)1 
conservation 
management 1, 2, 3, 4, 5, 6 

numerical models, data, 
stakeholder knowledge unknown 

Peterson et al. (2008) 
conservation 
management 1, 2, 3, 6 

numerical models, data, 
stakeholder knowledge unknown 

Pollino et al. (2007) 
conservation 
management 

1, 2, 3, 5, 6, 7 
data, stakeholder 
knowledge 

unknown 

Pollino, White, & Hart 
(2007) 

conservation 
management 1, 2, 3, 6 

data, stakeholder 
knowledge, literature unknown 

Ticehurst et al. (2007) 
conservation 
management 1,2,3 

data, stakeholder 
knowledge, literature unknown 

Uusitalo, Kuikka, & 
Romakkaniemi (2005) 

conservation 
management 

1,2,3,6 stakeholder knowledge unknown 

Wang, Robertson, & 
Haines (2009) 

water 
management 1,2,5 

stakeholder knowledge, 
literature unknown 

Zorilla et al. (2010)2 
water 
management 1, 2, 3, 4, 6, 7 stakeholder knowledge unknown 

1Study describes optimization with decision nodes. 
2Study includes formal evaluation of the application of participatory BN. 
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Table A2. Stages and steps of participatory BN construction with stakeholder involvement according to Bromley 
(2005). 

 Definition of 
stages  Steps in BN construction  Stakeholder involvement 

1 

define the 
problem, the 
context and 
stakeholder 
engagement 

define objectives identify and select stakeholders 

delineate geographical area of interest analyze stakeholder interest, world perception

define soc. and econom. boundaries agree on roles and responsibilities 

identify time horizon agree on stakeholder involvement plan 

2 

identify variables, 
potential actions 
and indicators to 
describe the 
system 

list all factors to be addressed list stakeholder concerns 

identify key indicators  stakeholders to suggest important indicators 

identify potential actions/scenarios suggest list of possible actions/scenarios 

identify data sources stakeholders to identify data sources 

3 
design a pilot 
causal network 

define input variables and links for the
network 

stakeholder interview: receive comments on
the design of the initial network  

design causal network,minimizing the
size of the network and of the required 
CPTs) 

demonstration including CPTs to illustrate 
power of networks 

check consistency, logic & focus of
network 

arrange system of dissemination to 
stakeholders and or general public 

4 

collect data from 
all available 
sources including 
stakeholders 

collect data for each variable and causal
link 

individual stakeholder interview: collect data
from individual stakeholders 

analyze data - 

revise network structure based on data
availability - 

5 
define states for 
all variables define states for all variables 

stakeholder interview: input for stakeholders
for states 

6 construct CPTs 

manual entry of CPTs individual stakeholder interview: obtain 
stakeholder opinion 

automatic learning techniques to
generate CPTs - 

review network and amend as necessary
individual stakeholder interview: obtain 
stakeholder opinion 

7 

check network 
consistency, 
collect feedback 
from stakeholders 
and make final 
decision  

check consistency of network: does it
make sense 

- 

evaluate feedback from stakeholder and
incorporate if necessary 

stakeholder interview: feedback from 
stakeholders an review of network 

add decision nodes if required - 

evaluate/modify/adopt network/
sensitivity analysis -  

implement BN in DSS if required -  

alternative options/negotiation/decision decision/reporting comments from 
stakeholders 

 


