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Abstract  

The present study concerns development of suitable model to understand the influence of microstructure on 
the mechanical properties of Al65Cu20Ti15 nano intermetallic dispersed amorphous matrix composite using 
the artificial neural network (ANN).). Model behavior has been evaluated to predict the role of different 
consolidation parameters such as temperature, pressure, and time on the mechanical properties of the alloy. A set 
of processing parameters were evolved through the analysis of the models which were used to develop the 
consolidated bulk alloy under appropriate experimental schedule. The microstructure and mechanical properties 
of the bulk alloy have been investigated to understand the structure property and high pressure sintering process 
(HPS) correlation. Artificial Neural Network model exposed that the temperature of 350-450 oC and the pressure 
of about 2-4 GPa are most suitable sintering parameters for obtaining favorable mechanical properties of the 
alloy. 
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1. Introduction  

In recent years, Al-rich amorphous alloys have drawn a special attention as potential structural materials with 
exceptionally high specific strength. In such alloys the achievable strength is much higher than that of the high 
strength age-hardenable Al-alloys (Inoue, 2000; Kiminami, Basim, Kaufman, Amateau, Eden, & Galbraith, 2001; 
Masumoto, 1994). Amorphous alloys derive their strength directly from their non-crystalline structure, which 
does not have any of the defects (such as dislocations) that limit the strength of crystalline age- hardenable alloys. 
The non-equilibrium processes like mechanical alloying and rapid solidification have been successfully 
employed to meet the challenge of achieving the amorphous/glassy-state in Al-alloys (Suryanarayana, 2001; 
Fecht, 1992; Liu, Dong, Li, Yu, & Zou, 2005). It has also been reported that dispersion of nanocrystalline phases 
in amorphous matrix further improve the strength and toughness (Manaila, Macovei, Popescu, Devenyi, Jianu, & 
Vasile, 2000; Li, Zhao, & Jiang, 2003; Peker & Johnson, 1993) of the alloys.  

Several amorphous and nano-intermetallic dispersed amorphous microstructures have been developed by 
mechanical alloying having the nominal composition of Al65Cux(Ti,Nb,Zr)35-x (Manna, Nandi, Bandyopadhyay, 
& Ghoshray, 2004b; Manna, Nandi, & Nambissan, 2004c; Manna, Chattopadhyay, Banhart, & Fecht, 2004a; 
Chattopadhyay, Gannabattula, Pabi, & Manna, 2001). Different consolidation techniques including hot/warm 
pressing and extrusion methods are used to consolidate the ball milled product into bulk samples (Zhao & Jiang, 
2003; Kawamura, Mano, & Inoue, 2001; Schurack, Eckert, & Schultz, 2000; Nygren & Shen, 2003). Selection 
of temperature and pressure in consolidation of the mechanically alloyed amorphous/nanocrystalline powders is 
most crucial to achieve most preferred mechanical properties. In this context, reasonable amount of 
experimented data has already been generated through numbers of recent investigations (Roy, Kumari, Mitra, & 
Manna, 2007; Roy, Chudoba, Witczak, Lojkowski, Fecht, Mitra, & Manna, 2008; Roy, 2008). Therefore, it may 
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be of interest to employ data driven model to predict and understand the general correlation between sintering 
parameters and mechanical property. Among the data driven modeling techniques, artificial neural network is 
gaining increasing interest to solve problems of mapping one or more responses related in complex manner to a 
high dimensional input variables space (Bhadeshia, 1999; Aijun, Hejun, Kezhi, & Zheng, 2004; Lin, Zhang, & 
Zhong, 2008; Datta, Pettersson, Ganguly, Saxén, & Chakraborti, 2007; Brady & Tortorelli, 2004; Maa, Zhu, 
Wuab, & Zhang, 2009, McBride, Malinov, & Sha, 2004; Jang, Sun, & Mizutani, 1997).  

The present work is aimed at development of a prediction model to correlate the sintering variables and 
mechanical properties of the Al65Cu20Ti15 alloy by artificial neural network (ANN) technique using the available 
data reported in the literature. The model has been appropriately evaluated to predict the most suitable sintering 
parameters so as to achieve superior mechanical properties of the alloy consolidated in high pressure sintering 
route. Attempt has also been made to consolidate the alloy powder using the sintering parameters chosen through 
the analysis of the model predictions. Microstructural and mechanical properties of the samples have been 
examined to validate the model responses. 

2. Neural Network Modeling  

The basic element of an artificial neural network is called a neuron and these neurons are linked to each other 
with weight factor known as synaptic connections weight. In perceptron model, connection weights are adjusted 
during the training procedure. This process is continued until a good performance measure is reached against the 
dynamic set of the weights and the networks are trained against reasonable numbers of input-output pairs. 
Among the varieties of neural networks, multi layer perceptron kind of neural network are widely used in 
developing prediction models. 

2.1. Network Design  

The general structure of the neural network is schematically shown in Figure 1. The input and output layers are 
connected by the hidden layers. Due to the flexible nature of tan sigmoid transfer function a single hidden layer 
between input and out layer, with appropriate number of neuron, can capture any degree of nonlinearity in the 
relationship (Martin, 1992). Therefore, in this exercise an input layer-single hidden layer-output layer network, 
with a tan-sigmoid transfer function in the input to hidden layer and a linear transfer function in the hidden layer 
to output layer, is implemented. The number of neurons in the output layer is predetermined by the number of 
outputs to train, which is 1 in this case, the hardness or compressive strength of the alloy under study. The choice 
of number of neurons in the input to hidden layer is bottle neck of the problem. The common approach is to find 
optimum number of neurons in the hidden layers through exhaustive trials. However, a typical guess has been 
made for the starting point considering number of input to output ratio and the nonlinearity factor of the problem 
(Basheer & Hajmeer, 2000). On the other hand the maximum number of neurons in the hidden nodes is restricted 
by the number of the data pairs available for training. For a statically significant training the number of 
connections parameters (weights and biases) to be fitted is kept smaller than the number of the data pairs 
available in the training set (Sha & Edwards, 2007). Trials are made by repeating the similar operations for 
varying number of hidden units of the hidden layers in order to search the optimal network using a Matlab 
routine. The exhaustive trials conducted herein, revealed that network architecture with 10 and 8 neurons in the 
hidden layers are optimum for hardness and compressive strength model. Generalize mathematical description of 
such network architecture is described bellow. 

The inputs (xi) are multiplied by weights (wij) for a hidden node (hj); summation of all the wjixi is then added to a 
bias value (bj) and finally operated by a suitable transfer function (f), tan sigmoid in this case. The operation can 
be written as: 

)( jiijj bxwfh    

In the course of calculation, as stated earlier, the hidden layer contributes to the output neuron through a linear 
operation to yield the final network output, (y), i.e., hardness or compressive strength of the alloy in this work, as 
follows:  

)( 'bhwy kk    

where wk and b are new sets of weights and bias values for the hidden layer to output neuron During the training 
process, the deference between the instantaneous output value predicted by the model and the target value of the 
network response is back propagated to adjust the whole set of weights and biases to obtained a finally trained 
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network.  

 

Figure 1. Schematic illustration of general structure of the neural network model 

 

 

 
Figure 2. Typical changes noticed during advancement of training procedure of hardness model in (a) mean 
square error (b) gradient of training error curve and (c) count of data failed in validation check against the 

training iteration 
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2.2 Network Training and Testing  

The data set used for training the present network is summarized in Table 1. The input and output pairs for the 
consolidation processes of the alloy were collected from the published literatures (Roy, Kumari, Mitra, Manna, 
2007; Roy, Chudoba, Witczak, Lojkowski, Fecht, Mitra, Manna, 2008; Roy, 2008). To improve the efficacy of 
network training, the whole data set were scaled to -1 to +1 using equation 3 and a counter operation was 
performed to revert back the network output in real scale.  

1
)(

)(2

minmax

min 




xx

xx
X N                                (3) 

where xN is the transformed value of a variable x, and xmax and xmin are the maximum and minimum values of x 
respectively.  

 
Table 1. Statistical description of the data set used for ANN training 

Parameters Units Minimum Maximum Mean Standard Deviation 

Sintering temperature 0C 300 600 465 100.7 

Sintering pressure GPa 0.05 8.0 2.4 3.12 

Sintering time Minute 1 20 9.35 6.2 

Hardness GPa 1.37 20 7.88 3.01 

Compressive strength MPa 46 2037 1155 568 

 

As discussed earlier section supervised single hidden layered feed forward network with gradient descent back 
propagation algorithms have been adopted to train the hardness and compressive strength separately in this 
problem. Consolidation temperature, pressure and time are considered as the model inputs variables of the 
system. The hyperbolic tangent (tanh) and scale conjugate gradient algorithms were implemented as transfer 
function and training rule respectively, for the training procedure. One such training plot along with the gradient 
information of the training error curve and number of cases failed in validation against the training iteration is 
shown in Figure 2. Since the set of error curves shows similar characteristics for a significant number iterations 
which means the overfitting is carefully avoided and the training is reasonable good.  

3. Experimental Procedures  

For experimental verification of the proposed models a suitable scheme was developed for prepareing the 
samples. The powder blends comprising elemental Al, Cu and Ti in appropriate proportion were prepared with 
the nominal stoichiometry of Al65Cu20Ti15. The powder were subjected to mechanical alloying in a Retsch PM 
400 high-energy planetary ball mill operated at 300 rpm with 10:1 ball to powder weight ratio using tungsten 
carbide (WC) coated vial and balls (10 mm diameter) (Suryanarayana, 2001). Ball milling was carried out in wet 
(toluene) medium to prevent the agglomeration of powders and to retard the oxidation (Suryanarayana, 2001). 
The alloy powder milled for 25 hours was first cold-compacted at a uniaxial pressure of 100 MPa in vacuum 
(4×10−8 MPa) using a manual press. These cold pressed cylindrical preforms of 5mm diameter and 5-6mm 
height were mounted in ceramic containers, and positioned between tungsten carbide anvils, where heating was 
carried out using graphite susceptor coils. The samples were sintered at different temperatures (300-600 oC) 
under a uniaxial pressure of 8 GPa for 1 min.  

During sintering of the mechanically alloyed product, critical parameters were precisely determined by analysis 
of the results obtained from the ANN model. The compaction of the powder sample was confirmed by verifying 
the density using standard density measurement technique (Gregg & Sing, 1982). The consolidated samples were 
used for physical and mechanical properties to validate the model behavior.  

The phase evolution in the sintered product were studied by X-ray diffraction (XRD, Kα radiation, λ = 0.1542 
nm, 30KV, 15mA). The microstructure and composition of different phases in the composite samples were 
examined using a JEOL JEM 2100 high-resolution transmission electron microscope (HRTEM) at an 
acceleration voltage 20 kV. The specimen for HRTEM studies were prepared using mechanical polishing, 
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followed by argon ion milling on a GATAN precision ion mill for 30 min. Hardness measurement was carried 
out using a nanoindentation tester (Nanoindentor-XP, NanoInstrument Inc, USA). An average of 20 reading was 
taken to represent the hardness value in each case.  

Compression tests were carried out at room temperature at a strain rate of 1 x 10-3 s-1 using a universal testing 
machine. Specimens with 3mm x 3mm cross sectional area and 6mm height were cut from sintered compacts 
and compressed between parallel plates coated with tungsten carbide. The load and displacement were measured 
by using a quartz load cell of 5 kN capacity (accuracy ±1N) and high accuracy digital strain gauge (accuracy ±1 
mm), respectively The apparatus for such measurement was presented elsewhere (Witczak, 1997). Average three 
sample reading was taken to represent the compressive strength value in each case. 

4. Results and Discussion  

The methodology was used to develop two differently trained neural networks for prediction of hardness and 
compressive strength. The whole data set was divided into three different parts in the ratio of 4:1:1 for training 
testing and validation of the models. The training and testing data set were used to develop the models while the 
validation set was used to check the prediction accuracy of the model. The network outputs are plotted versus the 
targets and illustrated in Figure 3 along with the relative error plots for training testing and validation data set of 
each of the properties. The regression correlation was computed to check the model accuracy on the data used to 
build the model (training and testing set) and the unknown data (validation set) as well. The correlation 
coefficient and the relative error plots clearly indicate that the performance level of both the models has been 
found satisfactory. It is evident that the prediction accuracy performances of the models show a reliable 
agreement with the target values. The scatters in the data points are apparently marginal. These models were 
used for simulation and analysis. Systematic simulations of these models were for further analysis of the system. 

 

  
 

Figure 3. Illustrate the model prediction accuracy on the known (training and testing data) and unknown 
(validation data) with the help of network outputs plotted versus the target and the relative error plots for (a) 

hardness and (b) compressive strength of Al65Cu20Ti15 alloy 
 

4.1 Model Insight for Mechanical Properties of the Alloy  

Figure 4(a)-(c) depict the response surfaces showing variation of compressive strength against the sintering 
pressure and temperature at varying time duration. The observed variations in all the three cases are in general of 
similar nature. The plots clearly revealed that the compressive strength is higher in the regime of high 
temperature (>450oC) and moderate pressure (~4GPa). Earlier, the glass transition temperature for this alloy has 
been identified of about 400 oC (Roy, 2008). In this regard, it is known that diffusivity in the amorphous 
microstructure is much higher at the temperatures above glass transition temperature (Geyer, Johnson, Schneider, 
Qiu, Tombrell, & Macht, 1996). Therefore, in the present alloy the strength obtained at higher sintering 
temperature may be attributed to the enhanced diffusion process which resulted into strong bonding among the 
aggregates/particles favoring the sintering process. However, high temperature in combination with high 
pressure resulted in marginal drop in the compressive strength. Earlier, studies have reported significant 
crystallization of the amorphous matrix under the combination of higher temperature and pressure which causes 
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deterioration of strength. It is apparent from Figure 4(a) and (b) that at lower than glass transition temperatures, 
variation of compressive strength with pressure is similar up to a holding time of 10 minutes. However in case of 
20 minutes holding time, the compressive strength sharply drops with increasing pressure at lower temperature 
(Figure 4(c)). Here, it is reasonable to conjecture that even at lower temperature prolong holding may form 
nanocrystalline intermetalilic phases resulting into decrease in compressive strength. An earlier study has shown 
that the presence of brittle intermetallic phases inhibits densification the powder blends (Senkov, Senkova, Scott, 
& Miracle, 2005).  

 

 

 

Figure 4. Model simulated response surfaces to study variations of HPS parameters on compressive strength at 
(a)1, (b)10 and (c)20 minutes time 

 

Figure 5 (a)-(c) show the response surfaces of variation of hardness as the function of pressure and temperature 
for different levels of duration. Comparison of the models shown in Figure 5 reveal that hardness increase with 
pressure at lower temperature, however, at higher temperature the same decreases from a peak value at lower 
pressure to the minimum value at higher pressure. It may be mentioned here that increase in temperature could 
lead to the formation of higher volume fraction of fine intermetallic phases. Presence of such ultra-fine 
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intermetallic phases contributes significantly to the enhancement of hardness of the sintered product. The 
decrease in hardness at high pressure and at the high temperature may be attributed to the anomalous growth of 
intermetallic phases taking place on a larger scale. The presence of some larger grains, accounting for a 
significant volume fraction, could also contribute to a significant decrease in hardness. 

4.2 Experimental Verification of the ANN Results  

Analysis of the models reveals prominent variation of the properties at temperature of 350oC and 450oC at the 
pressure of about 2GPa. In view of this, samples sintered at 350 and 450 oC were subjected to microsrructural 
and mechanical characterization with an aim to explore the mechanisms responsible for the observed variation.  

 

 

 
Figure 5. Model simulated response surfaces to study variations of HPS parameters on Hardness at (a)1, 

(b)10 and (c)20 minutes time 
 
4.2.1 Mechanical Properties  

Figure 6 depicts the hardness, and compressive strength of the composites sintered at 350oC and 450oC. It is 
interesting to record that the hardness is higher for sintering temperature of 350oC, whereas compressive strength 
is higher for the sample that was sintered at 450oC. Therefore, the experimental results of hardness do not 
corroborate the same results obtained from the ANN model. In this context, further scrutiny of the ANN results 
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reveal that variation of hardness between the temperature ranges 350 to 450oC is only nominal, while the 
variation of compressive strength within the same temperature range is significant. It is apparent that the 
hardness value is dominantly determined by the mechanical behavior of the bulk grain. On the other hand, the 
compressive strength is more influenced by the nature of the interfaces. In view of this, it is reasonable to 
conjecture that in respect of hardness, the contribution of the amorphous aggregates at lower sintering 
temperature is more significant than the same of the partially crystalline matrix at higher temperature. However, 
lower value of compressive strength, at lower sintering temperature may be attributed to the weaker interfaces 
among the particles due to the difficulties in sintering of amorphous aggregates. Sintering at 450 oC allow better 
sintering due to favorable deformation condition in presence of the crystalline phases thereby resulting into 
higher value of compressive strength. 
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Figure 6. Experimentally observed mechanical properties of the alloy consolidated with 2 GPa pressure, 10 

minutes time at two different temperatures 350 0C and 450 0C 

 
4.2.2 Microstructure  

For better understanding of the mechanical responses of the high pressure sintered alloy, the samples were 
investigated through XRD and TEM study. Figure 7 shows the results of XRD analysis of the mechanical alloyed 
powders consolidated by high pressure sintering. The patterns suggest that sintering at 350oC produced bulk 
amorphous sample. Increase in sintering temperature to 450oC yielded perceptible crystallization of the as-milled 
amorphous aggregate and yields a metastable composite microstructure comprising several ultrafine intermetallic 
phases like Al5CuTi2, Al4Cu9, Al2Cu and Al3Ti in varying volume fraction dispersed in the amorphous matrix. 
The formation of these intermetallic phases is in conformance with the concerned ternary phase diagram (Roy, 
Kumari, Mitra, & Manna, 2007).  

Bright field TEM image and corresponding selected area diffraction (SAD) pattern obtained from the powder 
blends consolidated by HPS at 3500C and 4500C are shown in Figure 8. Examination of the TEM images 
indicates that predominantly amorphous microstructure is achieved after consolidation at 3500C while nano 
crystalline of Al2Cu, Al4Cu9 and Al5CuTi2 phases are dispersed in the Al-rich partially amorphous matrix after 
sintering at 4500C. Therefore, the results obtained from the analysis of the TEM image and the corresponding 
SAD pattern corroborates the results of the XRD analysis shown in Figure 7. As observed, both of these 
characterizations of the alloy processed in the high pressure sintering condition judiciously explain the 
mechanical properties as well.  
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Figure 7. XRD patterns of the Al65Cu20Ti15 amorphous matrix composite consolidated by high pressure sintering 
at different temperatures 

 

  

Figure 8. Bright field TEM image and corresponding selected area diffraction (SAD) pattern of Composite 
consolidated by high pressure sintering at (a) 350oC and (b) 450oC 

 
5. Conclusion  

The major conclusions that emerged out of the present study are:  

1) Artificial neural networks (ANN) have been successfully implemented to model the mechanical properties of 
bulk Al65Cu20Ti15 alloy synthesized by consolidation of ball milled powder blend.  

2) Analysis of the results of the ANN model revealed that the temperature of 350-450 oC and the pressure of 
about 2-4 GPa are most suitable sintering parameters for obtaining favorable mechanical properties of the alloy.  

3) The experimental results demonstrated that partially crystallized amorphous microstructure obtained at 
appropriate sintering temperature results into the best combination of compressive strength and hardness due to 
dominant contribution of amorphous phase on hardness of the aggregates and favorable role of the crystalline 
phases on sintering mechanism among the aggregates.  
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