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Abstract 

In this paper, force vibration of composite laminate plates subjected to low-velocity impacts are investigated 
semi-analytically and analytically. Symmetrically angle-ply laminated rectangular, circular and elliptical plates are 
considered. The simply supported edges boundary condition is considered. Plates were studied based on small 
deflection thin plate theory. A Hertz Contact Theory models the contact forces between the rigid projectile and the 
laminated plate. 

A simple and improved model was developed to calculate force vibration of composite plates. A semi-analytical 
model was obtained for force vibration of composite laminated plates by the method of Rayleigh-Ritz and modal 
expansion. Calculations of the impact response in composite material structures are important in damage-tolerant 
design. The results were compared with the results from the available literature and found to be in good agreement. 
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1. Introduction 

Composites are used in civil, aerospace applications, high-speed boats, sports supplies, automotive and 
transportation industries, where they are subjected to different type of loading. Their response to such conditions 
should be clearly understood. For instance, a tool can be dropped onto a composite during maintenance, or a flying 
fragment with low velocity can impact the composite structure. As a simple model, composite plates are impacted 
by spherical rigid impactors. 

Different studies have been conducted to determine the dynamic properties of laminated plates. In a number of 
these studies, the closed form exact solutions have been presented for the natural frequencies of specially 
orthotropic, anti-symmetric angle-ply and anti-symmetric cross-ply laminated plates with simply-supported edges 
(Reddy, 1945; Whitney, 1987). Goldsmith (1960) organized and skillfully written text takes readers through the 
mathematical complexities of impact theory, after a brief introduction to the nature of physical impact, the text 
examines stereo-mechanical impact, vibrational aspects of impact, contact phenomena produced by impact of 
elastic bodies, dynamic processes involving plastic strains and result of impact experiments.   

One of the most popular methods to obtain approximate solutions for the frequencies of an orthotropic plate is the 
Rayleigh-Ritz method. Nallim and Grossi (2008) presented the free transverse vibration analysis of symmetrically 
laminated solid and annular elliptic and circular plates based on the Rayleigh-Ritz method, where the deflection of 
the plate is approximated by a general shape function of a polynomial type. Lam and Chun (1994) have determined 
the dynamic response of laminated angle ply plates with the clamped boundary conditions subjected to explosive 
blast loading. 

Shivakumar et al. (1985) developed two simple and improved models, energy-balance and spring-mass to 
calculate impact force and duration during low-velocity impact of circular composite plates. Aslan et al. (2003) 
concerned with evaluation of the in-plane dimensional effect of fiber-reinforced laminated composites under 
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Low-velocity impact. A numerical simulation was performed using 3DIMPACT transient dynamic finite element 
analysis code for calculating stresses and contact forces of the composite plates during impact. 

Sun and Chen (1985) used the three-dimensional finite element method to perform the dynamic analysis of 
laminated plates under impact loading. Cairns and Lagace (1989) considered influencing of different parameters 
on the impact behavior of laminated composite plates. A Rayleigh-Ritz energy method was used to spatially 
discretize the time-varying boundary value problem and a set of coupled ordinary differential equations in time 
were obtained based on the discretized system Lagrangian. 

Chun and Kassegne (2005) used the higher-order shear deformation theory to study the response of graphite/epoxy 
laminated composite nonprismatic folded plates subjected to impact loads. A finite-element model of the theory is 
also developed. The modified Hertzian contact law incorporated within the Newton–Raphson method is used to 
calculate the contact force between the impactor and the laminated plate. Tiberkak et al. (2008) also investigated 
fiber-reinforced composite plates subjected to low velocity impact, by the use of finite element analysis. Dynamic 
stress analysis is carried out by the use of a constitutive equation of composite laminates without damage. And 
Setoodeh et al. (2009) analyzed a three-dimensional elasticity based approach coupled with layer-wise laminated 
plate theory employed to conduct low velocity impact analysis of general fiber reinforced laminated composite 
plates, with a finite element computation algorithm. 

It is possible to theoretically state that there are no closed-form solutions for the calculation of frequencies of 
complicate shapes. The present study proposes a general, simple programming method for determining the natural 
frequency and mode shape of laminated angle-ply plates with various shapes by rectangular orthotropy. The 
relationship between the contact deformation and the contact force is generally modeled using Hertz contact laws. 
The effect of boundary shapes on the contact force of plates is considered. The objective of this paper, therefore, is 
to develop improved, yet simple, analyses to calculate the impact force and duration for low-velocity impact on 
laminated plates. 

2. Method 

2.1 Free Vibration Analysis 

Consider a plate of total thickness h , composited of nl  (number of layer) orthotropic layers. The origin of the 
Cartesian coordinate system is located in the mid-plane with the z axis perpendicular to the plane as shown in 
Figure 1. Let wvu ,,  denote the mid-plane displacements in the directions of yx, and z , respectively. 

 

Figure 1. Geometry of the laminated plate and thk layer with the angle of fiber orientation k  

The strain-displacement relations for the plate are (Reddy, 1945; Whitney, 1987) 
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Where 
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According to the generalized Hooke's law, the stress- strain relation for the thk  layer is 
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In which 
k  is the angle of the fiber direction on the thk  layer with the x -axis, as shown in Figure 1.  kQ  is the 

stiffness matrix of the thk  layer and its components are given by: 
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Where 11E  and 22E  are the Young’s modulus, 
12G  is the shear modulus and 12  are the Poisson's ratios. It is 

unlikely that an exact solution can be obtained for various shapes and boundary conditions. The Rayleigh-Ritz 
method was employed to obtain a semi-analytical solution. A set of simple polynomials is selected as the 
admissible function for plate displacement. The plate is assumed to be in harmonic motion and hence the 
displacements can be written as: 
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Where   natural frequency and WVU ,,  can be denoted in terms of x and y (Yousefi et al. 2011) 
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For Boundary-shape-function see Table 1 and 1, 2n   satisfied geometry boundary condition of plate, 1n  
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Table 1. Shapes and boundary shapes function 

Shape 
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2

2

2

2


R

y

R

x  1
22
















b

y

a

x  

 
From the elastic theory, the strain and kinetic energies are written as: 
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Where nl  is the total number of layers and kV  is the thk  layer volume. Substituting Eqs. (8, 7, 3, 2, 1) into Eq. 
9, the maximum strain and kinetic energies are obtained: 
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While  K  and  M  are the nt3  dimension, stiffness and mass matrixes. Using the Rayleigh-Ritz principle 
can be writing: 
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Results are a set of homogeneous equations in an equal number of unknown i . These equations can be described 
in matrix form: 
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This will yield a set of frequencies by determine the Eigen-values ( ) of ][][ 1 KM   as shown in Table 2 
(  2 ). The corresponding mode shapes can be obtained by Eigen-vectors of ][][ 1 KM   as shown in Table 3. 
It is a fact that fundamental frequencies obtained using the semi-analytical Rayleigh-Ritz method are always 
higher than the exact values since the plate mode shape assumed by a finite number of terms in the shape 
functions which inherently increase the rigidity of the plate. An analytical method is available for a narrow range 
of condition. The method is restricted to simply supported boundary conditions, and especially orthotropic 
laminated rectangular plates. In this case the transverse displacement w  same as isotropic plate is 
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And set of natural frequencies determine as: 
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This approach is particularly useful as comparison with above semi-analytical Rayleigh-Ritz method. 
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Table 2. First four natural frequency (rad/sec) of laminated plate by presented analytical and semi-analytical 
method 

Boundary 

Conditions 
Dimensions Method 

Mode sequence number 

1 2 3 4 

Simply Supported 

Rectangular Plate 

2.0 ba  Analytical 1900.3828 4699.1181 5806.4911 7601.5313 

2.0 ba  Present 1900.3828 4699.1181 5806.4911 7601.5313 

Simply Supported 

Circular Plate 
1128.0R  Present 1713.3704 4365.0292 5245.4695 8165.4948 

Simply Supported 

Elliptical Plate 
aba 5.1,0921.0   Present 2105.9549 3794.5583 6655.8467 7301.0961 

Simply Supported 

Elliptical Plate 
aba 2,0798.0   Present 2613.3996 3951.5162 6058.5862 9001.9731 

 

Table 3. First four Mode-shape of laminated plate by presented semi-analytical method 

Shape 
Mode Shape 

1 2 3 4 

Rectangular Plate 

2.0 ba  

 
  

 

Circular Plate 

1128.0R  

    

Elliptical Plate 

a=0.0921 

b=1.5 

 

    

Elliptical Plate 

a=0.0798 

b=2a 

     

 
2.2 Dynamic Response 

Plate is assumed to be subjected to a normal pressure ),,( tyxP  on the upper surface. The linear equations of 
motion of classical plate theory for laminates with constant A's, B's and D's are (Reddy, 1945). 
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yxWyxVyxU nmnmnm  are the plate mode shapes. By substitution of Eq. 18 in the last Eq. 16 
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Since the mode shapes satisfy the free vibration equation 
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Substitution of Eq. 20 into Eq. 19 yields: 
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Multiplication Eq. 21 by mnW 
~

 and integration over the area of the plate. 
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The solution of Eq. 23 is obtained by using the convolution integral. 
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Hence forced plate displacement is: 
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In the semi-analytical model, the mode shapes can be obtained by substitute the Eigen-vectors of    KM 1  in Eq. 
8 and in the analytical model, the mode shapes are 
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Contact law is the relationship between the contact force and the indentation, where the indentation is the 
difference between the displacement of the impactor tip and that of the top surface of the plate when the projectile 
has a higher rigidity than the plate. In Low-velocity impact, where the duration of impact is long in comparison to 
the period of the lowest vibration mode of the plate, the Hertz contact law can be applied. Hertzian theory can be 
modified to apply for the case of impact on an anisotropic surface like composite laminates. During loading, the 
contact force F  can be evaluated using the modified Hertz contact law as follows (Goldsmith, 1960): 

  2/3)()( tktF   )28(  

Where   is the indentation, and k  is the modified Hertz contact stiffness between the composite plate and rigid 
foreign impactor, which is defined as: 
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22E  is the transverse Young's modulus of the composite plate, and 
sR , s , 

sE  are the radius, Poisson’s ratio 
and Young’s modulus of the spherical impactor. 

The dynamic response of the impact is investigated with the consideration of these assumptions: 1. frictionless 
between the impactor and composite plate; 2. neglecting the damping effect in the composite plate; 3. the impactor 
is a rigid body with isotropic properties; 4. only the first impact is considered. 
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Figure 2. Laminated plate and impactor 

 
As a simplifying approximation, the contact force F  is simply taken as a point force and by Hertz contact theory, 
the indentation   is defined as )()()( twtwt pb  , )(twb  is the impactor displacement and )(twp is the 
transverse plate displacement at the impact point, see Figure 2. 
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The solution of Eq. 31 with time increment gives the impact force in the impact time duration. First, the response 
of the plate to a unit impulse of time duration t  is calculated for the entire time history and stored in the 

memory. After that the non-linear Hertz law is applied at every time step (

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11

2

1000

1




t ) to calculate the impact 

force. The impact force at any time t  is calculated from the impactor and plate displacements of the previous time 
step. Each term of above equation extract in Appendix. 

3. Results  

In this section examples of composite plate are investigated the achieved results of solving the problem with the 
use of the present theory are compared to the available results to assure validity. Four shapes simply-supported ten 
layered carbon fiber reinforced plate with 

s)0/90/0/90/0(  stacking sequences were considered. The material 
properties are assumed equal for all layers. The mechanical properties of each layer are: 

GPaE 12011  , GPaEE 9.73322  , GPaGGG 5.5231312  , 

3.0231312   , 31580 mKg  

These data are material properties of T300/934 taken from Sun and Chen (1985). The presented solution for plates 
is obtained by using MAPLE-10. For all composite plate shapes (square, circular and elliptical) by equal thickness 
and area: mmh 69.2 mmba 200  for square plate, mmR 8.112  for circular plate, abmma 5.1,1.92   
and abmma 2,8.79   for elliptical plate. 

3.1 Free Vibration 

Table 2 gives first four natural-frequencies of composite plate with different shape (square, circular, elliptical), 
simply supported boundary condition and 

s)0/90/0/90/0(  stacking sequences computed in the present study 
based on 136 terms of sires used in semi-analytically Rayleigh-Ritz method. And also gives a comparison of 
semi-analytical solution with analytical solution for especially orthotropic simply support laminated square plate. 
Excellent agreement is shown. First four mode-shapes of these four plates are presented in Table 3. 
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3.2 Force Vibration 

The force caused by the impact of a sphere on a composite plate cannot be expressed by a simple and known 
analytical function of time. Thus the force history profile is idealized by a suitable step curve having constant 
forces over equal time increments. The plate was impacted at the center by a spherical steel ball of 12.7 mm 
diameter with an initial velocity of 3 m/s. The mass density of the impactor is 7960 3mKg . The modified Hertzian 
contact stiffness assumed in the analysis is taken to be 5.1810394.8 mNkc  . 

The time history of the impact process such as impactor displacement and the target fiber-reinforced composite 
plate deflection due to impact force acting at the center has been calculated. The effect of plate shape is examined. 
For impact behavior, validation of the presented analytically and semi-analytically method was carried out using 
the same example used by Sun and Chen (1985), Cairns and Lagace (1989) and Chun and Kassegne (2005). 136 
mode-shapes of Rayleigh-Ritz method and 625 mode-shapes of analytical method are used for the analysis of 
folded plates subjected to impact loads. It may be seen in Figure 3 that obtained contact force history by analytical 
method is in good agreement with the results reported by previous investigators, but obtained contact peak force by 
semi-analytically method about 40% more than analytically. The results show the relatively large number of 
modes that are required to achieve good results. 

 

 
Figure 3. Contact force history 

 
4. Discussion 

The analysis led to the following conclusions: 

(a) Impact force obtained from semi-analytically Rayleigh-Ritz method by 136 mode shapes was little greater than 
analytically method by 2525  mode shapes, but semi-analytically method is simple, and approximately predicts 
the maximum impact force (Figure 3). 

(b) Impact forces calculated from the two models by high number of mode-shape agreed with each other and with 
reported data (Figure 3). 

(c) The contact force depends to plate shape. The calculated impact forces for rectangular plate are greater than 
elliptical and elliptical plate greater than circular (Figure 4). 
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(d) Semi-analytically Rayleigh-Ritz method developed for the history of contact force, transverse plate deflection 
at contact point and projectile displacement, as shown in Figures 4, 5. 

(e) Presented method can be used to study the responses of laminated plates with any stacking sequence, boundary 
conditions and plate shapes under different type of point loading. 

(f) The impact peak force by approximate semi-analytically is higher than analytically and exact value. But it's able 
to find for a wide range of different plate shape having an internal hole, internal ring support, any aspect ratio and 
different boundary condition with simple programming. A presented study has been conducted prior to damage 
prediction. 

 
Figure 4. Contact force history of obtained plate shape by semi-analytical method 

 

    

Figure 5. Center of plate and Impactor displacement in impact duration 
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Appendix 

To fined impact force in the impact time duration by time increment t , we have: 
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 Therefore, for impact force solved:  
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To fined kF  in step time k , from zero to impact duration. 


