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Abstract 

In this paper, a one-dimensional nonlinear modified and extended Voigt model with constant material parameters 
is formulated to represent mathematically the time deformation behavior of a variety of viscoelastic materials. A 
binomial law is used as a nonlinear elastic force function. Numerical illustrations performed show that the 
hyperlogistic-type solution obtained is very useful to reproduce any S-shaped experimental curve.  
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1. Introduction 

The understanding of rheological properties of materials is of a great interest in many fields of science and 
engineering. These properties are necessary to be known and predicted before design and optimization process. 
Theoretical models that describe material responses subjected to deformations or forces appear then as important 
analytical tools in mechanics. In the characterization of materials, these are often considered as purely elastic or 
viscoelastic materials following that the time effect is neglected or taken into account. But, it is well known that 
real materials are time and history-dependent, to say, viscoelastic materials. Viscoelastic materials exhibit both 
combined elastic and viscous material behaviors in which the constitutive stress-strain equation is 
time-dependent. In the modeling of rheological materials, the simplest theory consists of a linear viscoelastic 
model. However, the well known established linear viscoelastic theory is only applicable for small deformations 
or low stresses. Since mechanical properties of materials are in general nonlinear in cases of intermediate and 
high deformations and stresses, nonlinear viscoelastic theories are required. Strictly speaking, viscoelastic 
materials are characterized by elastic, viscous and inertial contributions. These contributions are highly nonlinear 
and involve more complex material responses under mechanical solicitations. Therefore, an adequate 
constitutive equation must be nonlinear and must relate mathematically stress, strain and their higher time 
derivatives (Bauer, et al., 1979; Bauer, 1984). Since also linear viscoelastic theory is usually described in the 
Boltzmann single integral representation or in the differential form, one can extend these equations to higher 
order stress or strain terms in order to model material nonlinearities. From a mathematics point of view, the 
integral representation of viscoelastic constitutive equation is more difficult to perform than the differential form. 
In that perspective, several studies of different complexities have been performed to describe viscoelastic 
material functions. Many successful predictive models are also shown to be based on extension of classical linear 
rheological models to finite deformations (Monsia, 2011a, 2011b, 2011c, 2011d, 2011e). Monsia (2011a), 
recently, using a second-order elastic spring in series with a classical Voigt element, which is an extended form 
of the standard linear solid to finite strains, constructed a hyperlogistic-type equation to reproduce the nonlinear 
time-dependent stress response of some viscoelastic materials. Monsia (2011b) again, developed a single 
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differential constitutive equation derived from a nonlinear standard solid model consisting of a polynomial 
elastic spring in series with a classical Voigt element for the prediction of time-dependent nonlinear stress of a 
class of viscoelastic materials. In (Monsia, 2011c) the author formulated a nonlinear four-parameter rheological 
Voigt model consisting of a nonlinear Voigt element in series with a classical linear Voigt element with constant 
material coefficients for representing the nonlinear stiffening response of the initial low-load portion and the 
softening, that is to say, the S-shaped mechanical behavior of some viscoelastic materials. Recently, Monsia 
(2011e) developed a simple nonlinear generalized Maxwell fluid model consisting of a nonlinear spring 
connected in series with a nonlinear dashpot obeying a power-law with constant material coefficients for 
representing accurately the time-dependent behavior of some viscoelastic materials. However, in many 
viscoelastic models, such as the previous models, except the model (Monsia, 2011d), the inertia of the system 
under study was neglected. Moreover, there are only a few theoretical models that consider both nonlinear elastic 
properties and nonlinear viscous properties of materials simultaneously in their formulation, due to mathematical 
complexities. To overcome these above mentioned difficulties, Bauer (1984) studying the rheological properties 
of arterial walls, developed an approach based on the classical Voigt model. This theory (Bauer, 1984) consists 
to decompose the total stress acting on the material as the sum of three components, that is, the elastic, viscous 
and inertial stresses. This method has been after used by many authors (Armentano, et al., 1995; Gamero, et al., 
2001; Monsia, et al., 2009) for a complete characterization of arterial behavior. In (Monsia, et al., 2009), 
following the Bauer’s approach (1984), elastic, viscous and inertial stresses are expanded in power series of 
strain. Monsia (2011d) using also the Bauer’s method (1984) and expressing the elastic stress as an asymptotic 
expansions in powers of deformation, the viscous stress as a first time derivative of a similar asymptotic 
expansions in powers of deformation, and the inertial stress as a second time derivative of a similar asymptotic 
expansions in powers of deformation, developed a hyperlogistic equation that represents successfully the 
time-dependent mechanical properties of a variety of viscoelastic materials. Monsia (2011f) using again the 
Bauer’s approach (1984), proposed a nonlinear rheological model based on a substitution of linear elastic and 
damping forces in Voigt model by nonlinear elastic force and damping force with inclusion of a body for 
providing a theoretical basis to empirical exponential or logistic formulas used by several authors for fitting the 
stress-strain experimental data of arteries. Recently, Monsia (2011g) by considering the same approach (Bauer 
1984), developed a hyper-exponential type model to describe the deformation behavior of a variety of materials. 
The model (Monsia, 2011g) was an important modification and extension to finite deformation of the classical 
linear Voigt model. In (Monsia, 2011g), the nonlinear elastic force function has been expressed as a simple 
hyperbolic law, and the viscous and inertial stresses as a first and a second time derivatives of a similar law, 
respectively. The obtained evolution equation of the deformation is a Lambert-type equation that has been solved 
in closed-form solution, by using suitable boundary conditions, in a hyper-exponential type function of time. 
More recently, Monsia (2012) using also the same hyperbolic law as elastic force function and applying the 
Bauer’s theory (1984), developed successfully a hyperlogistic-type model that appeared powerful to describe the 
time dynamic response of viscoelastic materials under a constant applied load, to say, the nonlinear deformation 
behavior of viscoelastic materials during creep tests. In this paper, by applying once more the Bauer’s theory 
(1984), a one-dimensional nonlinear modified and extended Voigt model with constant material parameters is 
formulated to represent mathematically the time deformation behavior of a variety of viscoelastic materials. A 
binomial law is used as a nonlinear elastic force function. The resulting evolution equation of the time dependent 
deformation is a Lambert-type nonlinear ordinary differential equation that is solved in analytic solution by 
considering suitable boundary conditions. Numerical illustrations performed show that the hyperlogistic-type 
solution obtained is very useful to reproduce any S-shaped experimental data.  

2. Formulation of the Mechanical Model 

2.1 Theoretical Considerations 

In this part the one-dimensional theoretical model proposed will be described and the governing equations 
including elastic, viscous and inertial nonlinearities will be also derived. To that end, we consider the Bauer’s 
theory (1984) as formulated previously by Monsia (2011g; 2012). Thus, by superposing the elastic, viscous and 
inertial stresses, for a nonlinear elastic force function )( , where the deformation )(t  is a scalar function 
of time t , it arises the following differential evolution equation (Monsia ,2011g; Monsia, 2012) 
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where the dot over a symbol denotes a differentiation with respect to time t  and the inertial coefficient c  is 
different from zero. The coefficients a  and b  are respectively the stiffness and viscosity modules. These all 
three coefficients are time independent material parameters. The scalar function t  denotes the exciting stress 
acting on the material studied. At this stage of modeling, it is required to specify the nonlinear elastic force 
function )( . A basic principle that governs the Bauer’s theory is that, for small deformations, the function 

)( should reproduce the well known linear elastic force function. In this regard, the function )( is 
empirically formulated, in the present work, as the following binomial function 

m)1()(                         (2) 

where the real number m  is a material parameter. Therefore, using Equation (2), Equation (1) gives  

1221 )1()1()1()1()1(   mmmm
t mccmmmba          (3) 

Equation (3) represents analytically in the single differential form the relation between the exciting stress t  
and the resulting strain  . Equation (3) denotes a second-order nonlinear ordinary differential equation in   
for a given exciting stress t . Note that in the case where the parameter m is negative, the function )(
tends towards infinity, to say, stiffens for 1 . 

2.2 Dimensionalization 

The strain )(t  is a dimensionless quantity. Then in Equation (3) the coefficients have the following 
dimensions. Let now M, L and T denote the mass, length and time dimension respectively, the dimension of the 
stress varies as ML-1T-2. Therefore, the dimension of a varies as ML-1T-2, that of b varies as ML-1T-1, and that of 
c  varies as ML-1 (mass per unit length).  

2.3 Solution using a stress 0t   

2.3.1 Evolution Equation of the Deformation )(t   

In the absence of exciting stress ( 0t ), the internal dynamics of the viscoelastic material under study is 
expressed by the following governing evolution Lambert-type equation 
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This can be also rewritten as 
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where 
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2 , and c different from zero. Equation (5) represents the Lambert-type evolution 

equation of the material under study.  

2.3.2 Solving Time-Deformation Equation 

With the help of the following change of variable 



www.ccsenet.org/jmsr                Journal of Materials Science Research                Vol. 1, No. 2; April 2012 

Published by Canadian Center of Science and Education 169

 1x                        (6) 

Equation (5) transforms in the form 

0)1(
22

 x
m

x
x

x
mx o 


              (7) 

Substituting  
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into Equation (7) now leads to the expression 
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Equation (9) is a first-order nonlinear Riccati differential equation for the variable f that possesses the strain 
rate dimension. Due to the fact that f is defined as a frequency, the nonlinearity parameter m  must be 
negative. Using suitable boundary conditions that satisfy the dynamics of the viscoelastic material under study, 
that is to say   

0t , oftf )(lim , 

and  

t , 0)(lim tf  

the following explicit analytical solution, by integration, is obtained 
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By considering Equation (6) one can easily obtain the desired strain  
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Equation (11) gives the strain versus time variation in the viscoelastic material under consideration. It represents 
mathematically the time dependent deformation behavior of the material studied as a hyperlogistic-type model 
that is known to be powerful to reproduce any S-shaped curve. 

3. Numerical Results and Discussion  

In this section some numerical illustrations are presented to show the predictive ability of the model to reproduce 
the mechanical response of the material considered. The dependence of the strain versus time curve on material 
parameters is also discussed. Note that the numerical illustrations are investigated at the fixed value 1K . In 
this work, the function )( is given by a binomial expression. This spring force function is very well suited by 
the fact that for 10   , )( can be expanded in power series of deformation, and agrees then very well with 
the polynomial function of deformation used by Bauer (1984). Another features that involve the choice of this 
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binomial law, is that it allows, contrary to previous restoring force function (Monsia, 2011g; 2012), to assure or 
to control the nonlinearity of the model via an explicit material parameter, to say, via the coefficient m . If the 
parameter 1m , Equation (5) or (7) becomes a simple linear ordinary differential equation. For 1 , the 
factor 1  reduces to the term  , so that Equation (5) becomes identical to the fundamental Lambert-type 
evolution equation of the deformation obtained in (Monsia, 2011d). Therefore, the previous model (Monsia 
2011d) can be interpreted as a special case of the present model. Note that it is possible to control the magnitude 
of strain  with the help of a finite extensibility coefficient s so that, the function ms )1()(   . But, this 
study will be done as a subsequent work. For several applications using viscoelastic materials linear models are 
inapplicable. Then, the formulation of the time dependent consistent nonlinear deformation model at large strains 
becomes a prerequisite in many branches of science and engineering applications. By applying the Bauer’s 
theory (1984) that is well-suited to account for material nonlinearities, a one-dimensional nonlinear 
four-parameter rheological model is developed. By expanding the elastic force function in term of a generalized 
binomial expression, the viscous damping and the inertial forces in terms of the first and second time derivatives 
of a similar generalized binomial law, we have successfully described the nonlinear time dependent behavior of 
the mechanical system studied as a hyperlogistic-type function, that appeared useful to reproduce any sigmoid 
curve. With four material parameters, the present model becomes more flexible for data fitting than (Monsia 
2011g) that contains three material parameters.  

4. Conclusions 

The one-dimensional classical Voigt model is modified and extended to finite deformation in order to take into 
consideration elastic, viscous and inertial nonlinearities simultaneously. The use of a binomial elastic spring 
force function allows controlling the nonlinearity of the model by means of an explicit material parameter. The 
model is applicable for describing the time deformation behavior of some viscoelastic materials. The material 
response is represented as a hyperlogistic-type function that is useful to reproduce any S-shaped curve. 
Numerical examples showed the predictive capability of the model and its sensitivity to material parameters. 
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Figure 1. Typical strain versus time curve showing an asymptotical value 

Figure 1 illustrates the typical time dependent strain behavior with an increase until an asymptotical value, 
resulting from Equation (11) with the fixed value of coefficients at 1m , 9275.4 , 2o , 1of . It 
can be seen from Figure 1 that the model is capable to reproduce mathematically and accurately the typical 
exponential deformation of some viscoelastic materials (Monsia, 2011g). The strain versus time curve is 
nonlinear, with a nonlinear beginning initial region. The plotting illustrates then the S-shaped deformation 
behavior of the viscoelastic material under study. 

 

 

Figure 2. Strain time curve with three different values of m  

Figure 2, 3, 4 and 5, demonstrate the effects of material coefficients on the strain. The effects of these 
coefficients are studied by varying one coefficient while keeping the other three constant. In Figure 2 is shown 
the dependence of the strain versus time relationship on the nonlinearity parameter m . The graph indicates that 
the initial value of the strain increases with increasing m  so that, the strain value increases in the early period 
of time before to reach the peak asymptotical value. However, an increasing m , has no significant effect on the 
time needed to reach the maximum strain value. The solid line corresponds to 3m , the dashed line to 

2m , and the dash-dot line to 1m . The other parameters are 9275.4 , 2o , 1.0of . 
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Figure 3. Strain time curves showing the effect of the coefficient   

The strain curves at various values of the viscous damping term   for the material under consideration are 
shown in Figure 3. An increasing  , increases the initial value of the strain so that, the strain value increases 
fast and significantly in the early period of time before to attain the peak asymptotical value. An increasing  , 
reduces also the time required to attain the maximum asymptotical strain. The solid line corresponds to 

9275.4 , the dashed line to 5 , and the dash-dot line to 6 . The other parameters are 3m , 
2o , 1.0of . 

 

 

Figure 4. Strain versus time curves showing the effects of the natural frequency o  

Figure 4 exhibits the dependence of the strain versus time curve on the natural frequency o . The graph 
indicates that an increase o , decreases the initial value of the strain so that, the strain value decreases fast and 
significantly in the early period of time before to attain the peak asymptotical value. An increase o , increases 
also the time needed to reach the maximum asymptotical strain. It is worth noting that the effects of the viscous 
coefficient   and the frequency coefficient o  affect the strain versus time curve in opposite directions. The 
solid line corresponds to 2o , the dashed line to 2.2o , and the dash-dot line to 6.2o . The other 
parameters are 3m , 6 , 1.0of .  
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Figure 5. Strain time curves for various values of the coefficient of  

Figure 5 illustrates how the coefficient of  affects the strain versus time curve. An increasing of , decreases the 
initial value of the strain and increases the time necessary to reach the peak asymptotical strain. The curves 
become also more linear with decreasing of . The solid line corresponds to 1.0of , the dashed line to 

2.0of , and the dash-dot line to 25.0of . The other parameters are 3m , 6 , 2.2o .  

   


