Nonaffine Primitive Solvable Subgroups in General Liner Group $GL\left(3, p^{k}\right),$ Where $p$ Is an Odd Prime, $k\ge 1$ Is an Integer


  •  Ahed Hassoon    

Abstract

We know that if $\Gamma$ is the automorphisem group of primitive tournament $T=(X, U)$, then $\Gamma =H\cdot G$ where $H=(X, +)$, $G$ is irreducible solvable subgroup in $GL\left(n, p^k\right)$ with an odd order. But there are three kinds of irreducible solvable subgroups in $GL\left(n,p^k\right)$: imprimitive groups, affine primitive groups, and nonaffine primitive groups.
In this paper we will study the structure of nonaffine primitive solvable subgroups in $GL\left(3, p^k\right)$, find the order of these subgroups, and show that all nonaffine primitive solvable subgroups in $GL\left(3, p^k\right)$ have an even order, and then there are no primitive tournaments as automorphisem group $\Gamma =H\cdot G$ where $G$ is nonaffine primitive solvable subgroups in $GL\left(3, p^k\right)$.


This work is licensed under a Creative Commons Attribution 4.0 License.