Interpolating Sparsely Corrupted Signals in Micrometeorology

Carlos Ramirez, Miguel Argaez, Aline Jaimes, Craig E. Tweedie


In real applications where data acquisition is carried out under extreme conditions, post-processing techniques for systematic corrections are of critical importance. In micrometeorological studies, it is often the case that acquired data contains both missing information and impulse noise due to instrumentation failure, data transmission and data rejection for quality assurance. In this work, we propose a simple algorithm based on an $\ell_{1}-\ell_{1}$ variational formulation that simultaneously suppresses impulse noise and interpolates missing information. Our approach consists of relaxing the objective function in the variational formulation with a strictly convex and continuously differentiable function that depends on a regularization parameter. We solve a sequence of strictly convex optimization subproblems as the regularization parameter goes to zero, converging to the solution of the original problem. Numerical experiments on real micrometeorological datasets are conducted showing the effectiveness of the proposed approach. Furthermore, a convergence analysis is presented providing theoretical guaranties of our method.

Full Text:



Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.