Some Inequalities and Asymptotics for a Weighted Alternate Binomial Sum

J. C. S. de Miranda


We establish strict inequality bounds for the binomial sums $\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1}$ and prove the asymptotic result: $$\sum_{i=0}^n {n\choose i} \frac{(-1)^i}{2i+1} \sim \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{2n+1}}, \mbox{ as } n\to \infty.$$

Full Text:



Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.