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Abstract

We study the discrete approximation to solutions of first-order system arising from applying the trapezoidal rule to a

second-order scalar ordinary differential equation. In the trapezoidal rule the finite difference approximation are Dyk =

(zk + zk−1)/2, Dzk = ( fk + fk−1)/2, for k = 1, 2, .., n, and tk = kh for k = 0, ..., n, 0 = G
(
(y0, yn), (z0 + z1)/2, (zn−1 + zn)/2)

)
,

where fi ≡ f (ti, yi, zi) and G = (g0, g1) are continuous and fully nonlinear. We assume there exist strict discrete lower

and strict discrete upper solutions and impose additional conditions on fk and G which are known to yield a priori bounds

on, and to guarantee the existence of solutions of the discrete approximation for sufficiently small grid size. We use

the homotopy to compute the solutions of the discrete approximations. In this paper we study the first-order system of

difference equations that arise when one applies the trapezoidal rule to approximate solutions of the second-order scalar

ordinary differential equation.

Keywords: Second order scalar ordinary differential equation, Strict discrete lower and strict discrete upper solutions,

Bernstein-Nagumo condition, Brouwer degree theory

1. Introduction

Consider the continuous two-point boundary value problem

y′′ = f (t, y, y′), t ∈ [0, 1], (1)

G((y(0), y(1)), (y′(0), y′(1))) = 0 (2)

where f : [0, 1]×R2 → R and G = (g0, g1), gi : R2×R2 → R, i = 0, 1 are continuous and fully nonlinear. The trapezoidal

rule for solving (1), (2) involves rewriting the problem as the first-order system (see for example Russell,1977 and Denny

and Landis, 1972),

y′ = z (3)

z′ = f (t, y, z). (4)

Its discretization has the form

Dyk = (zk + zk−1)/2 =: rk(y, z), (5)

Dzk = ( fk + fk−1)/2 =: pk(y, z), (6)

G((y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)) = 0, (7)

where the grid size h = 1/n, Dyk = (yk − yk−1)/h, Dzk = (zk − zk−1)/h for k = 1, 2, · · · , n and the grid points tk = kh for

k = 0, 1, · · · , n , and fi ≡ f (ti, yi, zi).
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If y = y(t) is a solution of (1), then y = y(t) and z = y′(t) is a solution of the system (3), (4). By a solution of (5), (6) and

(7), we mean a vector y = (y0, y1, · · · , yn) and z = (z0, z1, · · · , zn) satisfying (5) and (6) for k = 1, 2, · · · , n and (7).

Replacing k by k + 1 in (6), we get

Dzk+1 = ( fk+1 + fk)/2. (8)

Hence a solution of the discrete approximation, (5) and (6) is a solution of the second order difference equation

D2yk+1 = D(Dyk+1) = D(zk+1 + zk)/2 = ( fk−1 + 2 fk + fk+1)/4 =: gk(y, z) (9)

where f j ≡ f (t j, y j, z j) for j = k − 1, k, k + 1 and k = 1, · · · , n − 1.

Following Henderson and Thompson (2001) we assume that there are strict lower and strict upper solutions for (1), α
and β, respectively, which are very strongly compatible with the very general nonlinear boundary conditions given by

G = 0. Moreover we assume that the right hand side of (1), f , satisfies a Nagumo growth bound with respect to y′ for (t, y)

satisfying α(t) ≤ y ≤ β(t).

Thompson (1996) introduced the notion of compatibility of boundary conditions with lower and upper solutions and

established the compatibility conditions for the Sturm-Liouville, the periodic, and the Neumann boundary conditions.

Moreover he showed that under the above assumptions there are solutions of (1) and (2).

Henderson and Thompson (2001) showed that under these assumptions ααα = (α(t0), · · · , α(tn)) and βββ = (β(t0), · · · , β(tn))

are strict discrete lower and strict discrete upper solutions, respectively, for (9) provided the step size h = ti − ti−1 = 1/n
is sufficiently small. Using these strict discrete lower and strict discrete upper solutions and the Nagumo growth bound

they established a priori bounds on difference quotients of solutions independently of step size provided the step size is

sufficiently small. They introduced the central notion of very strong discrete compatibility of the boundary conditions

G = 0 with the strict discrete lower and strict discrete upper solutions, ααα and βββ, respectively. Under the assumptions of

Henderson and Thompson (2001), they showed the boundary conditions are effectively very strong discrete compatible

with ααα and βββ and exploited this to show that solutions of the discrete problem exist for sufficiently small step size.

We introduce a variant of strict discrete lower and strict discrete upper solutions ααα and βββ, respectively, appropriate for the

study of (9). We show that ααα = (α(t0), · · · , α(tn)), and βββ = (β(t0), · · · , β(tn)) are strict discrete lower and strict discrete

upper solutions, respectively, for (9) provided the step size is sufficiently small. Combining these with the Nagumo growth

bound we establish a priori bounds on the zk and hence on Dyk for solutions of (5) and (6) independent of the step size for

sufficiently small step size.

We introduce the central notion of very strong discrete compatibility of the boundary conditions G = 0 with ααα and βββ.
Following Henderson and Thompson we show that our boundary conditions (6) are effectively very strongly discrete

compatible with ααα and βββ. Our boundary conditions (7) are a variant of those of Henderson and Thompson and again we

need to modify Henderson and Thompson’s arguments. We use this machinery to show that solutions of our discrete

problem exist for sufficiently small step size.

In order to state our results we need some notation. We denote the boundary of a set T by ∂T and the closure of T by

T . As usual Cm(A; B) denotes the space of m times continuously differentiable functions from A to B endowed with the

maximum norm. In the case of continuous functions we abbreviate this to C(A; B). In the case B = R we omit the B.

For any vector s = (s0, · · · , sn) ∈ Rn+1 and u = (u0, · · · , un) ∈ Rn+1 we write s ≤ u if sk ≤ uk for k = 0, · · · , n. If

y = (y0, · · · , yn) ∈ Rn+1, then set Dyk = (yk − yk−1)/h for 1 ≤ k ≤ n. If l : [0, 1] → R and n > 0 is an integer, then we set

l = (l0, · · · , ln) ∈ Rn+1, where lk = l(k/n) for k = 0, · · · , n. If c ∈ R is a constant then set c = (c0, . . . , cn), where ck = c for

all k.

If A is a bounded open subset of Rn, p ∈ Rn, f ∈ C(A; Rn) and p � f (∂A) we denote the Brouwer degree of f at p by

d( f , A, p).

2. Preliminary Results

Definition 1. We call α (β) a strict lower (strict upper) solution for (1) if α (β) ∈ C2 [0, 1], and there exists γ > 0 such
that

α′′(t) − f (t, α(t), α′(t)) ≥ γ, t ∈ [0, 1], (10)(
f (t, β(t), β′(t)) − β′′(t)) ≥ γ, t ∈ [0, 1]

)
. (11)

We will call the pair non-degenerate if � = (α(0), β(0)) × (α(1), β(1)) is non-empty. If γ = 0, in (10), (11) then we call α
(β) a lower (upper) solution for (1).
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We call ααα (βββ) a strict discrete lower (strict discrete upper) solution for (9) if there is γ > 0 such that

D2αk+1 − f (tk+1, αk+1,Dαk+1)

4
− 2 f (tk, αk,Dαk)

4
− f (tk−1, αk−1,Dαk−1)

4
≥ γ, (12)

(
f (tk+1, βk+1,Dβk+1)

4
+

2 f (tk, βk,Dβk)

4
+

f (tk−1, βk−1,Dβk−1)

4

−D2βk+1 ≥ γ
)

(13)

for k = 1, · · · , n − 1 where

αk = α(tk), ααα = (α0, α1, · · · , αn), (14)

βk = β(tk), βββ = (β0, β1, · · · , βn). (15)

If γ = 0, then we call ααα (βββ) a discrete lower (discrete upper) solution for (9). In view of (10) and (11) by abuse of notation,

we set � = (α0, β0) × (αn, βn) and say ααα and βββ are nondegenerate if � is nonempty.

To state our main result we will need the following variant of the Bernstein-Nagumo condition.

Definition 2. Let α ≤ y ≤ β be strict lower and strict upper solutions for (1). We say the f satisfies the Bernstein-Nagumo
condition for if there exists nondecreasing φ ∈ C([0,∞]; (0,∞)) and N > 0 such that

| f (t, y, p) |≤ φ(| p |) for all t ∈ [0, 1] and y ∈ [α(t), β(t)] (16)

and ∫ N

σ

sds
h(s)

> max{β(t) : t ∈ [0, 1]} − min{α(t) : t ∈ [0, 1]} (17)

where σ = max{| β(1) − α(0) |, | β(0) − α(1) |}.

As indicated earlier, we use the strict discrete lower and strict discrete upper solutions with maximum principle arguments

to obtain a priori bounds on solutions of the discrete problem. Moreover we use the following discrete version of the

Bernstein-Nagumo condition to obtain a priori bounds on zk for solutions of the discrete problem.

Definition 3. (see Henderson and Thompson, 2001) Let ααα ≤ y ≤ βββ be strict discrete lower and strict discrete upper solu-

tions for (9). We say the fk satisfy the discrete Bernstein-Nagumo condition for k = 1, · · · , n if there exists nondecreasing

φ ∈ C([0,∞]; (0,∞)) and N > 0 such that

| f (tk, yk, p) |≤ φ(| p |) for all yk ∈ [αk, βk], k = 1, 2, · · · , n (18)

and ∫ N

σ

sds
h(s)

> max{βk : k = 0, · · · , n} −min{αk : k = 0, · · · , n} (19)

where σ = max{| βn − α0 |, | β0 − αn |}.

Note that if α and β are strict lower and strict upper solutions for (1) and f (t, y, p) satisfies the Bernstein Nagumo condition

with respect to α and β then the fk satisfy the discrete Bernstein Nagumo condition with respect to ααα and βββ given by (14)

and (15).

Existence proofs for BVPs commonly employ modifications on f . We will make the necessary modifications by using the

following notation.

If c ≤ d are given, let π : R → [c, d] be the retraction given by

π(y, c, d) = max{min{d, y}, c}. (20)

For each ε > 0, let K ∈ C(R × (0,∞); [−1, 1]) satisfy

(1) K(., ε) is an odd function

(2) K(t, ε) = 0, iff t = 0 and

(3) K(t, ε) = 1 for all t ≥ ε.
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If c ≤ d and ε > 0 are given, let T ∈ C(R) be given by

T (y, c, d, ε) = K(y − π(y, c, d), ε). (21)

Let

∼
f k = f (tk, π(yk, αk, βk), π(p,−L, L)), and

D2yk+1 = (1− | T (yk, αk, βk, ε) |)(
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4+

T (yk, αk, βk, ε)(| (
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4 | +ε). (22)

Let Q : [0, 1] × [0, 1] → R be given by

Q(x, t) =

⎧⎪⎪⎨⎪⎪⎩(1 − x)t, for all 0 ≤ t ≤ x ≤ 1,

(1 − t)x, for all 0 ≤ x ≤ t ≤ 1,

and for all C,D ∈ R, let w(C,D) : [0, 1] → R be given by w(C,D)(x) = C(1 − x) + Dx. Let X = Rn+1 × Rn+1 × R2 with

the usual product norm. Define T : Rn+1 → Rn+1 by

T(g)k = −h
n∑

i=0

Q(tk, ti)(gi) for k = 0, 1, · · · , n

for all g ∈ Rn+1. Clearly T is continuous and

D2yk+1 = gk, k = 1, · · · , n − 1

y0 = A, yn = B

if and only if

y = T(g) + w(A, B).

Thus (y, z) is a solution of

D2yk+1 = ( fk+1 + 2 fk + fk−1)/4 = gk(y, z), k = 1, · · · , n − 1 and (23)

zk =
∑k

i=1 hDzi + z0 =
∑k

i=1 hpi + z0 =: lk(y, z), k = 1, · · · , n (24)

y0 = A, yn = B (25)

z0 = 2(y1 − y0)/h − z1 (26)

if and only if (
y
z

)
=

(
T(g(y, z)) + w(A, B)

l(y, z)

)
, (27)

where

l0(y, z) = 2(y1 − y0)/h − z1.

Let (y, z) be a solution of (27). We show that it is a solution of (5) and (6).

Let hk = Dyk − (zk + zk−1) /2. Then
Dhk = D2yk − (Dzk + Dzk−1) /2

= gk − (pk + pk−1) /2
= 0, for k = 2, . . . , n.

Thus
hk = h1, for 1 ≤ k ≤ n
= Dy1 − (z1 + z0) /2 = 0.

Thus (y, z) is a solution of (5), as required.

3. A Priori Bounds

Lemma 1. Let α ≤ β be strict lower and strict upper solutions for (1) on [0, 1] and let ααα and βββ be given by (14) and (15).
There exists δ1 > 0 such that if h = 1/n < δ1, then ααα and βββ are strict discrete lower and strict discrete upper solutions,
respectively, for (9).
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Proof Now αk = α(tk), βk = β(tk). By the Mean Value Theorem,

| Dαk |, | Dβk |≤ max
{| α′(t) |, | β′(t) |: t ∈ [0, 1]

}
+ 1 = L,

| D2αk+1 |, | D2βk+1 |≤ max
{| α′′(t) |, | β′′(t) |: t ∈ [0, 1]

}
+ 1 = P.

By Taylor’s Theorem, α(tk−1) = α(tk) − hα′(tk) + O(h2), thus | Dαk − α′(tk) |≤ Kh and hence | Dαk − α′(tk) | converges

uniformly to zero as h goes to zero. By Taylor’s Theorem,

α(tk+1) = α(tk) + hα′(tk) + h2

2
α′′(tk) + o(h2) (28)

α(tk−1) = α(tk) − hα′(tk) + h2

2
α′′(tk) + o(h2). (29)

By (28), (29) | D2αk+1 − α′′(tk) |≤ η(h) where we write q = o(h) when q = η(h)h and η(h) → 0 as h → 0. Thus

| D2αk+1 − α′′(tk) | converges uniformly to zero as h → 0.

Then by the uniform continuity of f on bounded subset of [0, 1] × R2, there is δ1 such that 0 < h < δ1

D2αk+1 −
(

f (tk+1, αk+1,Dαk+1)

4
+

2 f (tk, αk,Dαk)

4
+

f (tk−1, αk−1,Dαk−1)

4

)

≥ α′′(tk) −
(

f (tk+1, α(tk+1), α′(tk+1))

4
+

2 f (tk, α(tk), α′(tk))

4

+
f (tk−1, α(tk−1), α′(tk−1))

4

)
− γ

2

≥ γ

2
.

In addition, we may choose δ1 such that for 0 < h < δ1

f (tk+1, βk+1,Dβk+1)

4
+

2 f (tk, βk,Dβk)

4
+

f (tk−1, βk−1,Dβk−1)

4
− D2βk+1

≥
(

f (tk+1, β(tk+1), β′(tk+1))

4
+

2 f (tk, β(tk), β′(tk)

4

+
f (tk−1, β(tk−1), β′(tk−1))

4

)
− β′′(tk+1) − γ

2

≥ γ

2
.

The following Lemma concerns solutions to the modified difference equations.

Lemma 2. Let ααα ≤ βββ be nondegenerate strict discrete lower and strict discrete upper solutions for (9). Assume that there

is a constant K > 0 such that | ∼f (t, y, p) |< K for all (t, y, p) ∈ [0, 1] × R2. Assume that
∼
f (t j, α j, p) ≥ ∼

f (t j, y j, p) for all

j ∈ {0, · · · , n}, α j ≥ y j and p ∈ R and
∼
f (t j, β j, p) ≤ ∼

f (t j, y j, p) for all j ∈ {0, · · · , n}, β j ≤ y j and p ∈ R. Then there exist
δ2 > 0 such that for 0 < h = 1/n < δ2, solutions (y, z) of

Dyk = (zk + zk−1)/2, (30)

Dzk = (
∼
f k +

∼
f k−1)/2, (31)

satisfying α0 ≤ y0 ≤ β0 and αn ≤ yn ≤ βn, satisfy ααα ≤ y ≤ βββ.

Proof Let y and z be solutions of (30), (31) satisfying (y0, yn) ∈ �. We show that ααα ≤ y ≤ βββ. Suppose that αt > yt for

some t ∈ {0, · · · , n}. Since α0 ≤ y0 ≤ β0, αn ≤ yn ≤ βn then we may assume αt − yt has maximum at k for some 0 < k < n
with αk − yk > 0. This implies D(αk − yk) ≥ 0 ≥ D(αk+1 − yk+1). Hence

D2αk+1 − D2yk+1 ≤ 0. (32)

Also we have

−Dyk = −Dyk+1 + h(
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4

≤ −Dyk+1 + hK.
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Thus

0 < Dαk − Dyk ≤ Dαk − Dyk+1 + hK

≤ Dαk − Dαk+1 + hK

≤ h(max | α′′(t) | +K)

≤ h(P + K) < δ2(P + K), for h < δ2,

and

| Dα j − Dyj | ≤ | Dαk − Dyk | + | Dα j − Dαk | + | Dyk − Dyj |
≤ h(2P + 2K) < δ2(2P + 2K), for h < δ2

if j = k − 1 or j = k + 1. By the uniform continuity of
∼
f on bounded subsets of [0, 1] × R2, we may choose δ2 ∈ (0, δ1)

such that for all points (t, y, p) and (t, u, v) ∈ [0, 1] × [αm, βM] × [−L, L] with | y − u |< δ2 and | p − v |< δ2(2P + 2K), we

have | ∼f (t, y, p) − ∼
f (t, u, v) |< γ; here δ1, P and L are given in Lemma 1.

From the definition of lower solution αk, for δ2 sufficiently small thus we obtain

D2αk+1 − D2yk+1

≥
∼
f (tk+1, αk+1,Dαk+1) + 2

∼
f (tk, αk,Dαk) +

∼
f (tk−1, αk−1,Dαk−1)

4
+ γ

−
∼
f (tk+1, yk+1,Dyk+1) + 2

∼
f (tk, yk,Dyk) +

∼
f (tk−1, yk−1,Dyk−1)

4
.

Now yk < αk, so
∼
f (tk, yk,Dyk) >

∼
f (tk, αk,Dαk) − γ as | Dyk − Dαk |< δ2(2P + 2K). Similarly if y j ≤ α j for j = k − 1 or

j = k + 1 then
∼
f (t j, y j,Dyj) >

∼
f (t j, α j,Dα j) − γ as | Dyj − Dα j |< δ2(2P + 2K). Moreover if y j > α j with j = k − 1 or

j = k + 1 then | y j − α j |< δ2 and | Dyj − Dα j |< δ2(2P + 2K), thus
∼
f (t j, y j,Dyj) >

∼
f (t j, α j,Dα j) − γ.

∴ D2αk+1 − D2yk+1

>

∼
f (tk+1, αk+1,Dαk+1) + 2

∼
f (tk, αk,Dαk) +

∼
f (tk−1, αk−1,Dαk−1)

4
+ γ

−
∼
f (tk+1, αk+1,Dαk+1) + 2

∼
f (tk, αk,Dαk) +

∼
f (tk−1, αk−1,Dαk−1)

4
− γ

= 0.

Hence D2αk+1 − D2yk+1 > 0 which is a contradiction to (32). Thus α j ≤ y j for j ∈ {0, · · · , n}. Similarly β j ≥ y j. Thus

ααα ≤ y ≤ βββ.

The following Nagumo style result is an analogue of ( Thompson, 1996, Theorem 2.1)

Theorem 3. Let ααα ≤ βββ be strict discrete lower and strict discrete upper solutions for (9). Let fk satisfy the discrete
Bernstein-Nagumo condition for k = 1, · · · , n . If y is a solution of (5)-(7) with ααα ≤ y ≤ βββ then | zk |≤ N for k = 1, · · · , n
where N is given in (19).

Proof Let βM = max{βk : k = 0, · · · , n}, αm = min{αk : k = 0, · · · , n}. Choose ε > 0 so that∫ N

σ

sds
h(s)

> βM − αm + ε. (33)

Suppose that | zk |≤ N for all k is false. Thus there is k0 such that | zk0
|> N. We consider the case zk0

> N; the case

zk0
< −N is similar. We show there is k1 such that 0 ≤ zk1

≤ σ. First consider the subcase zk ≥ 0 for all k, 0 ≤ k ≤ n. Then

σ ≥| yn − y0 |=|
n∑

i=1

hDyi |=
n∑

i=1

h
2

(zi + zi−1).

Thus zk1
≤ σ for some k1.
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Now consider the subcase zk2
< 0 for some k2. Assume k2 < k0; the subcase k2 > k0 is similar. Thus there is k1 > k2 such

that zk1−1 < 0 ≤ zk1
. But by (6) and the continuity of f over the bounded interval [0,1], say | f |≤ K implies | pk |≤ K.

Thus | zk − zk−1 |= h | pk |≤ hK for h ≤ σ
K , and thus

0 ≤ zk1
= zk1−1 + (zk1

− zk1−1) ≤ zk1
− zk1−1 ≤ hK ≤ σ

as required. Proceeding with this argument we may choose k1 and k3 such that 0 ≤ zk1
≤ σ < N ≤ zk3

and σ ≤ zk ≤ N
for k1 < k < k3. Let W = {i : k1 < i ≤ k3, zi > zi−1}. Thus [σ,N] ⊆ ∪i∈W [zi−1, zi]. Let W ⊆ W be a minimal subset of W
such that [σ,N] ⊆ ∪i∈W [zi−1, zi]. Hence [σ2,N2] ⊆ ∪i∈W [z2

i−1, z
2
i ].

Now

∫ N

σ

sds
φ(s)

=

∫ N2

σ2

dτ
2φ(
√
τ)

≤
∑
i∈W

∫ z2
i

z2
i−1

dτ
2φ(
√
τ)

≤
∑
i∈W

z2
i − z2

i−1

2φ(
√

z2
i−1

)

=
∑
i∈W

z2
i − z2

i−1

2φ(zi−1)

Here we use φ(
√
τ) is non-decreasing and 0 ≤ z2

i−1 ≤ z2
i

≤
∑
i∈W

z2
i − z2

i−1

2φ(
√

z2
i )
+

∑
i∈W

z2
i − z2

i−1

2

{
1

φ(zi−1)
− 1

φ(zi)

}
.

Now

∑
i∈W

z2
i − z2

i−1

2φ(zi)
=

∑
i∈W

zi + zi−1

2
h

Dzi

φ(zi)
≤

∑
i∈W

h
zi + zi−1

2

as

| Dzi |≤ 1

2

(
| fi | + | fi−1 |

)
≤ 1

2

(
φ(zi) + φ(zi−1)

)
≤ φ(zi) (34)

as 0 ≤ zi−1 ≤ zi, and φ is a non-decreasing function. Moreover since W is minimal, W = Wa ∪ Wb where (zi−1, zi) ∩
(z j−1, z j) � ∅, ∀i � j, i, j ∈ Wa and similarly for i � j, i, j ∈ Wb. Now φ(σ) ≤ φ(zi−1), ∀i ∈ W. Thus

∑
i∈Wa

z2
i − z2

i−1

2

{
1

φ(zi−1)
− 1

φ(zi)

}

≤
∑
i∈Wa

(zi + zi−1)(zi − zi−1)

2

{
1

φ(zi−1)
− 1

φ(zi)

}

≤ (N + 1)max{| zi − zi−1 |} 1

φ(σ)

≤ (N + 1)Kh
φ(σ)

since zk ≤ N + 1 for all k when hK ≤ 1, so

| (zi + zi−1)/2 |≤ N + 1 and | zi − zi−1 |= h | pi |≤ hK.

Similarly

∑
i∈Wb

z2
i − z2

i−1

2

{
1

φ(zi−1)
− 1

φ(zi)

}
≤ (N + 1)Kh

φ(σ)
.
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Thus ∫ N

σ

sds
φ(s)

≤
∑
i∈W

h
(zi + zi−1)

2
+

2(N + 1)Kh
φ(σ)

≤
∑
i∈W

(yi − yi−1) +
2(N + 1)Kh

φ(σ)

≤
k2∑

i=k0+1

(yi − yi−1) + ε

when 2(N+1)hK
φ(σ)

< ε. Since 0 ≤ (zi + zi−1)/2 for k1 + 1 ≤ i ≤ k3, thus yi ≥ yi−1 for k1 + 1 ≤ i ≤ k3. Hence

∫ N

σ

sds
φ(s)

≤ yk2
− yk0

+ ε ≤ βM − αm + ε

which is a contradiction to (33), and the result follows.

4. Nonlinear Boundary Conditions and Compatibility

Let ααα ≤ βββ be non-degenerate, strict discrete lower and strict discrete upper solutions, respectively for (9).

Definition 4. (Henderson and Thompson, 2001) We call the vector field

ψ = (ψ0, ψ1) ∈ C(�; R2) discrete inwardly pointing on � if for all (C,D) ∈ ∂�

ψ0(α0,D) ≥ Dαk, ψ
0(β0,D) ≤ Dβk (35)

and

ψ1(C, αn) ≤ Dαn, ψ
1(C, βn) ≥ Dβn. (36)

We call ψ strongly discrete inwardly pointing if the weak inequalities are replaced by strict inequalities.

Definition 5. (Henderson and Thompson, 2001) Let G ∈ C(� × R2; R2). We say G is very strongly (strongly) discrete

compatible at level L with ααα and βββ if for all discrete (strongly discrete) inwardly pointing ψ on Δ satisfying | ψ |≤ L,

G(C,D) � 0 for all (C,D) ∈ ∂� (37)

and

d(G,�, 0) � 0, (38)

where

G(C,D) = G((C,D);ψ(C,D)) for all (C,D) ∈ �.

If it is very strongly (strongly) discrete compatible at all levels then we simply say it is very strongly (strongly) discrete

compatible with ααα and βββ.

Remark 4. If G is very strongly (strongly) discrete compatible with ααα and βββ then the Brouwer degree (38) is independent
of the (strongly) inwardly pointing vector field ψ. It is not difficult to see that (strongly) inwardly pointing vector fields
always exist. Moreover, since we consider very strongly discrete compatible boundary conditions G, it follows that (38)
holds for all discrete inwardly pointing vector fields, and so we will choose ψ as follows:

ψ0(C,D) = (β1 − β0)/h
C − α0

β0 − α0

+ (α1 − α0)/h
β0 −C
β0 − α0

(39)

and

ψ1(C,D) = (βn − βn−1)/h
D − αn

βn − αn
+ (αn − αn−1)/h

βn − D
βn − αn

(40)
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For the linear Sturm-Liouville boundary conditions, G = (g0, g1) where

g0
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= a0y0 − a1(z0 + z1)/2 − A = 0

and

g1
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= b0yn + b1(zn−1 + zn)/2 − B = 0

where a0 + b0 > 0, a0 + a1 > 0, and b0 + b1 > 0. These include the Picard (also called Dirichlet) boundary conditions in

the special case a0 = 1 = b0 and a1 = 0 = b1. For the Neumann boundary conditions

g0
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= (z0 + z1)/2 − A = 0

and

g1
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= (zn−1 + zn)/2 − B = 0

while for the periodic boundary conditions

g0
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= y0 − yn = 0

and

g1
(
(y0, yn), ((z0 + z1)/2, (zn−1 + zn)/2)

)
= (zn−1 + zn)/2 − (z0 + z1)/2 = 0.

For these boundary conditions it is not difficult to show that the very strong discrete compatibility conditions become the

familiar ones usually assumed in the presence of lower and upper solutions; that is,

a0α1 − a1Dα1 < A < a0β1 − a1Dβ1,

b0αn + b1Dαn < B < b0βn + b1Dβn

for the linear Sturm-Liouville boundary conditions,

Dα1 > A,Dβ1 < A, Dαn < B,Dβn > B

for the Neumann boundary conditions, and

α1 = αn, β1 = βn, Dα1 > Dαn,Dβ1 < Dβn

for the periodic boundary conditions.

We will need the following result of (Thompson, 1996).

Lemma 5. Let α ≤ β be strict lower and strict upper solutions for (1) on [0, 1], and let G ∈ C(Δ̄ × R2; R2) be very
strongly compatible with α and β. Let ααα and βββ be the strict discrete lower and strict discrete upper solutions for (9) given
in Lemma 1 and N > 0. There exists δ3 ∈ (0, δ1) such that if 0 < h = 1

n < δ3, and Ψ = (ψ0, ψ1) ∈ C(Δ̄; R2) satisfies

|Ψ(C,D)| ≤ N, (41)

ψ0(α0,D) ≥ Dα1, ψ
0(β0,D) ≤ Dβ1 and (42)

ψ1(C, αn) ≤ Dαn, ψ
1(C, βn) ≥ Dβn, (43)

on Δ̄, then

G(C,D) � 0 for all (C,D) ∈ ∂Δ and (44)

d(G,ΔΔΔ, 0) � 0, (45)

where
G(C,D) = G((C,D);Ψ(C,D)) for all (C,D) ∈ Δ̄. (46)

We call G satisfying (45) for Ψ satisfying (41) through (43) very strongly discrete compatible with ααα and βββ at level N.

5. Existence of Solutions

We now present our main result.
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Theorem 6. Assume that there exist non-degenerate strict lower and strict upper solutions α ≤ β for (9), that the f
satisfies the Bernstein-Nagumo condition and that G ∈ C(� × R2,R2) is very strongly compatible with α and β. Then
there exists δ > 0 such that for 0 < h = 1/n < δ there exist solutions y and z of problems (5), (6) and (7) with ααα ≤ y ≤ βββ
and | zk |< L + 1 for k = 1, · · · , n and | z0 |< 2

βM−αm+2ε
h + L + 1.

Proof Choose

L > max
{
| α′(t) |, | β′(t) |, σ, | ψ(C,D) | : (C,D) ∈ �, t ∈ [0, 1]

}
+ 1, (47)

and ε > 0 such that

∫ L−1

σ

sds
φ(s) + ε

> βM − αm + 2ε = βε − αε

where αm = min{α(t) : t ∈ [0, 1]}, βM = max{β(t) : t ∈ [0, 1]}, αε := αm − ε, βε := βM + ε, αααε, j := αε and βββε, j := βε , for

j ∈ {0, · · · , n}.
By Lemmas 1 and 5 we may choose δ > 0 sufficiently small that for 0 < h = 1/n < δ, ααα and βββ given by (14) and (15) are

strict discrete lower and strict discrete upper solutions for (5) that are very strongly discrete compatible with G at level L.
Let Ψ = (ψ0, ψ1) be the discrete inwardly pointing vector field on �̄ with |Ψ| ≤ L. We modify fk for y not between ααα and

βββ. We show that a solution of the modified problem lies in the region where fk, k = 0, · · · , n is unmodified and hence is

the required solution. We use Brouwer degree theory to prove existence for the modified problem and compute the degree

using a homotopy; the modification is chosen to facilitate the construction of a suitable homotopy.

Consider the BVP

D2yk+1 = (1− | T (yk, αk, βk, ε) |)(
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4+

T (yk, αk, βk, ε)(| (
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4 | +ε) =:

∼
Fk, 1 ≤ k ≤ n − 1 (48)

zk =

k∑
i=1

(
∼
f i +

∼
f i−1)/2 + z0, 1 ≤ k ≤ n (49)

z0 = 2(y1 − y0)/h − z1 (50)

together with boundary conditions (7) where π, T , pi and
∼
f k are given in (20), (21), (6) and (22) respectively.

Clearly
∼
Fk is a bounded continuous function on Rn+1 × Rn+1, and satisfies Nagumo condition in Ωε . In particular

| D2yk+1 | ≤| (
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4 | +ε so that

≤ 1

4

(
φ(| zk+1 |) + 2φ(| zk |) + φ(| zk−1 |)

)
+ ε

and

| D2yk+1 |≤ φ(L) + ε = K, for all (yyy, zzz).

Now αααε = (αε,0, · · · , αε,n) is a strict discrete lower solution for the problem (48), (49). Since

D2αααε,k+1 = 0 > −(| ((∼fαααε)k+1 + 2(
∼
fαααε)k + (

∼
fαααε)k−1)/4 | +ε)

where ( f z)k = f (tk, zk,Dzk), and

(
∼
fαααε)k = f (tk, π(yk, αε , βε), π(Dαααε,k,−L, L)).

Since αααε is a contant vector, Dαααε = 0 so αααε is a strict discrete lower solution. Similarly βββε = (βε,0, βε,1, · · · , βε,n) is a strict

discrete upper solution for this equation. Since | D2yk+1 |≤ K = φ(L) + ε for all (ti, yi, zi) ∈ [0, 1] × Rn+1 × Rn+1 for all

| zi |≤ L, thus by Lemma 1, 2 and Theorem 3, the solutions (y, z) of (5) and (6) satisfy ααα ≤ y ≤ βββ and | zk |< L + 1 for

k = 1, · · · , n and | z0 |< 2
βM−αm+2ε

h + L+ 1 when (y0, yn) ∈ �. As (
∼
f k+1 + 2

∼
f k +

∼
f k−1)/4 and

∑k
i=1(

∼
f i +

∼
f i−1)/2+ z0 coincide

with ( fk+1 + 2 fk + fk−1)/4 and
∑k

i=1( fi + fi−1)/2+ z0 for k = 1, · · · , n− 1, i = 1, · · · , n in this region it suffices to show that

there are solutions (y, z) of (48), (49), (50) and (7) with (y0, yn) ∈ �̄. Let

Ωε =
{
(y, z) ∈ Rn+1 × Rn+1 : αε, j < y j < βε, j, | zk |< M for 0 ≤ j ≤ n, 0 ≤ k ≤ n

}
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where M = 2
βM−αm+2ε

h + L + 1, and Γε = Ωε × �. Define K : Rn+1 × Rn+1 → Rn−1, L : Rn+1 × Rn+1 → Rn+1 by

Kk(y, z) =

∼
f k+1+2

∼
f k+

∼
f k−1

4

Li(y, z)) =
∑i

s=1

∼
f s+

∼
f s−1

2
+ z0

for k = 1, · · · , n − 1, i = 1, · · · , n and L0(y, z) = 0, (y, z) ∈ Rn+1 × Rn+1. Define

H : Γ̄ε × [0, 1] → X by

H(y, z,C,D, λ)

=
((y

z

)
− 3λ

(
w(C,D)

(2(y1 − y0)/h − z1, 0, · · · , 0)

)
− (1 − 3λ)

(
(ᾱε + β̄ε)/2

0

)
,G(C,D)

)
for 0 ≤ λ ≤ 1

3
,

H(y, z,C,D, λ)

=
((y

z

)
− 3(λ − 1/3)

(
T(K(y, z))

L(y, z)

)
−

(
w(C,D)

(2(y1 − y0)/h − z1, 0, · · · , 0)

)
,G(C,D)

)
for

1

3
≤ λ ≤ 2

3
, and

H(y, z,C,D, λ)

=
((y

z

)
−

(
T(K(y, z))

L(y, z)

)
−

(
w(C,D)

(2(y1 − y0)/h − z1, 0, · · · , 0)

)
, S (y, z,C,D, λ)

)
for

2

3
≤ λ ≤ 1,

where ψ is given by (39) and (40), αααε = (αε,0, αε,1, · · · , αε,n) , βββε = (βε,0, βε,1, · · · , βε,n), and

S (y, z,C,D, λ) = G
(
(C,D),

(
3(λ − 2/3)((z0 + z1)/2, (zn−1 + zn)/2)

)
+ 3(1 − λ)ψ(C,D)

)
.

Clearly H is continuous. It is easy to see that (y, z) is a solution of (48), (49), (50) and (7) with (y, z,C,D) ∈ Γ̄ε iff

H(y, z,C,D, 1) = 0. If there is a solution of H(y, z,C,D, 1) = 0 with (y, z,C,D) ∈ ∂Γε then we are done. So we assume

there is no such solution in ∂Γε . We show H is a homotopy for the Brouwer degree on Γε at 0. We argue by contradiction

and assume solutions exist to H(y, z,C,D, λ) = 0 with λ ∈ [0, 1] and (y, z,C,D) ∈ ∂Γε .
We consider the cases λ ∈ [2/3, 1] and λ ∈ [1/3, 2/3); the case λ ∈ [0, 1/3) is trivial because G(C,D) � (0, 0) with

(C,D) ∈ ∂Δ and (
y
z

)
− 3λ

(
w(C,D)

2(y1 − y0)/h − z1, 0, · · · , 0
)
− (1 − 3λ)

(
(ᾱε + β̄ε)/2

0

)
�

(
0

0

)
for (y, z) ∈ ∂Ωε .
Case (i) λ ∈ [2/3, 1].

By assumption there is no solution with λ = 1. Assume there is solution (y, z,C,D) with λ ∈ [2/3, 1). We assume as

before that ααα ≤ y ≤ βββ, y0 = C and yn = D. Assume that (y0, yn) ∈ ∂�. If y0 = α0, then (z0 + z1)/2 ≥ Dα1. Thus

3(λ − 2/3)(z0 + z1)/2 + 3(1 − λ)ϕ0(y0, yn) ≥ Dα1

since Ψ is strongly inwardly pointing. It follows from the very strong discrete compatibility of G that S(y, z,C,D, λ) �
(0, 0), which is a contradiction. Similarly the other cases (C,D) = (y0, yn) ∈ ∂� also lead to a contradiction. Thus

(C,D) � ∂�.

Assume y ∈ ∂(αααε,βββε), so either y j = αααε, j or y j = βββε, j for some j ∈ {0, · · · , n}. Assume y j = αααε, j for some j ∈ {0, · · · , n}.
Again from the proof of Lemma 2, we get a contradiction. Similarly y j � βββε, j for some j ∈ {0, · · · , n}. Hence y � ∂Ωε .

Assume | z j |= 2
βM−αm+2ε

h + L + 1 for some j, 0 ≤ j ≤ n. By Theorem 3, | z j |≤ σ < L + 1 for some j ∈ {1, · · · , n} and

| z0 |< 2
βM−αm+2ε

h + L + 1 which is a contradiction, where z0 is given in (25). Thus z � ∂Ωε . Thus there are no solutions of

H(y, z,C,D) = 0 with λ ∈ [2/3, 1] and (y, z,C,D) ∈ ∂Γε .
Case (ii) λ ∈ [1/3, 2/3].

Since G is very strongly discrete compatible, there is no solution (y, z,C,D, λ) to H = 0 with (C,D) ∈ ∂Δ. The proof of

the case (y, z) ∈ ∂Ωε leads to a contradiction in a similar way as for [2/3, 1).
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Thus H is a homotopy for the Brouwer degree and since H(�, 0) = (I,G) where I is the identity on Rn+1 ×Rn+1 it follows

that

d(H(�, 1),Γε , 0) = d(H(�, 0),Γε , 0)

= d(G,�, (0, 0)) � 0.

Thus there is a solution (y, z,C,D) ∈ Γε of H(y, z,C,D, 1) = 0 and hence a solution (y, z) ∈ Rn+1 × Rn+1 to the problem

(5), (6) and (7).

Remark 7. Since ααα ≤ y ≤ βββ and | zk |< L + 1 for k = 1, · · · , n and | z0 |< 2
βM−αm+2ε

h + L + 1 it follows that | Dyk | and
| Dzk | are bounded independently of δ > 0. It follows that given ε > 0, there is δ > 0 such that for 0 < h < δ there is a
solution y, z of problem (5), (6) and (7) with

max{|y(t, y, z) − y(t)| : 0 ≤ t ≤ 1} ≤ ε
and

max{|z(t, y, z) − y′(t)| : 0 ≤ t ≤ 1} ≤ ε,
where y is a solution of (1) and (5),

y(t, y, z) = yk + (zk+1 + zk)(t − tk)/2, for tk ≤ t ≤ tk+1, 0 ≤ k ≤ n − 1 and

z(t, y, z) = zk + ( fk+1 + fk)(t − tk)/2, for tk ≤ t ≤ tk+1, 0 ≤ k ≤ n − 1.

Indeed, using an argument similar to that in the proof of (Gained, 1974, Theorem 2.5 ) it follows that (y(t, y, z), z(t, y, z))

converges uniformly to a solution of (1) and (5) together with (2) and hence to (y, y′) where y is a solution of (1) and (2).
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