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Abstract

The quasi-stationary distributions {a j} for a linear birth and death process is determined by two methods. The first method

obtains our desired results by computing directly while the second method bases on the relationship between {a j} and its

limiting of probability generating function. In addition, we also obtain the stationary distribution for a linear birth, death

and immigration process with the second method.
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1. Introduction

We are interested in the long-term behavior of absorbing Markov processes. The processes will be absorbed eventually,

however, they often persist for extended periods of time and in fact appear to reach an equilibrium before reaching the

absorbing state. The key to analyze the behavior of the processes before they die out is to simplify condition on their

not having been absorbed, which leads us to consider quasi-stationary distributions and limiting conditional distributions,

rather than the classical stationary and limiting distributions for irreducible processes. Quasi-stationary distributions

and limiting conditional distributions for Markov processes have been studied by Vere-Jones (1969), Flaspohler (1974),

Pollett (1988), Darlington and Pollett (2000) and Moler et.al (2000) in the general setting of absorbing continuous-time

denumerable Markov chains.

As we all know, birth and death processes are the most important class of Markov processes and their relatively simple

structure can make us study them with a rather extensive analysis. Quasi-stationary distribution for birth and death

processes have been studied by Cavender (1978), Pollett (1988), Van Doorn (1991), Schoutens (2000) and Clancy and

Pollett (2003). Again, the linear birth and death processes are the most important class of birth and death processes. In this

paper we will study the quasi-stationary distributions in the setting of a linear birth and death process on a semi-infinite

lattice of integers, the finite boundary point being an absorbing state which is reached with certainly.

In this article, we will calculate the quasi-stationary distributions for a linear birth and death process by two different

methods. Meanwhile, we also obtain the stationary distribution for a linear birth, death and immigration process with our

methods.

2. Preliminaries

Let E be the set {0,1,2,. . . } of non-negative integers, and let {λn, n ≥ 0} and {μn, n ≥ 0} be sequences of non-negative

numbers. A continuous-time Markov Chain {X(t), t ≥ 0} having state E and q-matrix given by

qi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λi if j = i + 1, i ≥ 0

μi if j = i − 1, i ≥ 1

−(λi + μi) if j = i, i ≥ 0

0 otherwise,

(1)

is called a birth and death process on E, with birth coefficients λn, n ≥ 0, and death coefficient μn, n ≥ 0. Suppose

λ0 = μ0 = 0, λn > 0, μn > 0, n ≥ 1, then Q will be conservative and 0 is an absorbing state and C={1,2,. . . } is irreducible

for the minimal Q-function, F, and hence for any Q-function.

As usual we define the potential coefficients π = {πi, i ∈ C} and

π1 = 1, πn =
λ1λ2 · · · λn−1

μ2μ3 · · · μn
, n ≥ 2 (2)

The transition probability {Pi j(t), i, j ∈ E, t ≥ 0} of a birth and death process satisfies the following conditions∑
j

Pi j(t) ≤ 1, (3)

Pi j(t) ≥ 0, (4)
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Pi j(0) = δi j, (5)

Pi j(s + t) =
∑

k

Pik(s)Pk j(t) (6)

P′i j(t) =
∑

k

qikPk j(t), (7)

P′i j(t) =
∑

k

Pik(t)qk j, (8)

for i, j ∈ E and t, s ≥ 0, where δi j is the Kronecker delta. The equations (6), (7) and (8) are called the Chapman-

Kolmogorov equations, the backward equations(BE) and the forward equations(FE), respectively. We know, each Q-

function, Pi j(t), satisfies (7) since Q is conservative but might not satisfy (8).

We define

T = inf{t ≥ 0 : X(t) = 0} (9)

the absorption (hitting) time at 0. We shall only be interested in processes for which EiT < ∞ for all i ≥ 1.

We will assume the eventual absorption at 0 is certain, which is equivalent to assuming

∞∑
n=0

1

λnπn
= ∞. (10)

Imposing (10) implies that the condition
∞∑

n=0

1

λnπn

n∑
i=0

πi = ∞ (11)

is satisfied, and as a consequence (see for example Reuter (1957), Kemperman (1962)), the transition probabilities Pi j(t)
constitute, under some obvious side conditions, the unique solution of the equation (7) with initial conditions (5).

Also, imposing (10) (and hence (11)) implies that the process is non-explosive and therefore honest (see for example

Reuter (1957), Kemperman (1962)), that is

∞∑
j=0

Pi j(t) = 1, i ∈ E, t ≥ 0. (12)

Given a transition function Pi j(t) , a set {ui, i ∈ E} of non-negative numbers such that∑
i∈E

uiPi j(t) = u j for all j ∈ E and t ≥ 0,

is called an invariant measure for Pi j(t). If, furthermore,
∑

i∈E ui = 1, then u = {ui, i ∈ E} is called a stationary distribution.

Suppose that Pi j(t) is an irreducible transition function, then the limits u j = limt→∞ Pi j(t) exist and are independent of i
for all j ∈ E. The set {ui, i ∈ E} of numbers is an invariant measure and either

(a) u j = 0 for all j ∈ E, or

(b) u j > 0 for all j ∈ E and
∑
j∈E

u j = 1. (13)

We call A = {a j} the limiting conditional distribution (LCD) if for each j ≥ 1

a j = lim
t→∞ Pi(X(t) = j|T > t) and

∑
a j = 1 (14)

provided the limits exists for some (and hence for all) i.

We say a measure A = {a j} on C is a quasi-stationary distribution (QSD) if
∑

ai = 1 and for each j ≥ 1 and t > 0

a j = PA(X(t) = j|T > t). (15)

For the above concepts on LCD and QSD, we can refer to Pakes (1995) or Ferrari et al. (1995). From Van Doorn (1991)

and Vere-Jones (1969) we know that any QSD is a (proper) LCD and any (proper) LCD is a QSD. In this paper, we focus

on the process which starts from an single state i and derive the corresponding results.
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Our study will use three particular families of distributions: geometric, Pascal and Poisson. Their probabilities generating

functions are respectively:

g(s) =
(1 − p)s
1 − sp

, for the geometric distribution with parameter p (0 < p < 1) (16)

g(s) = eρ(s−1), for the Poisson distribution with parameter ρ (17)

g(s) =

(
1 − p
1 − sp

)r

, for the Pascal distribution with parameters r and p (r > 0, 0 < p < 1) (18)

3. Quasi-stationary distributions of birth and death processes

In this section we mainly study the quasi-stationary distributions for a linear birth and death process and its generator

determined by

λi = iλ, μi = iμ, i ≥ 0, (19)

where 0 < λ < μ. The constants λ and μ are called the birth and death rates.

It is clear that (10) and (11) are all satisfied. The properties of this process have been established in detail in Karlin and

McGregor (1958). We know that Van Doorn (1991) obtained the quasi-stationary distributions by Karlin and McGregor’s

spectral representation of the transition probabilities of the process. However, the smallest point in the support of ψ is a

slight difficult to be calculated. Here, we will calculate the quasi-stationary distributions with two other ways. The two

methods base on the specificity that we have know the transition function of the process. The explicit form for Pi j(t)
follows from Anderson (1991) or Karlin and McGregor (1958):

Pi j(t) = γ j
(1 − σ

γ
)i+ j

(1 − σ)i+ j

i∧ j∑
k=0

(
i
k

)
(−1)k

⎛⎜⎜⎜⎜⎜⎝1 − σ
γ2

1 − σ
γ

⎞⎟⎟⎟⎟⎟⎠
k ⎛⎜⎜⎜⎜⎜⎝1 − σ

1 − σ
γ

⎞⎟⎟⎟⎟⎟⎠
k

(i) j−k

( j − k)!
, (20)

where i ∧ j = min(i, j) and

σ = γe−(μ−λ)t, γ =
λ

μ
, (a)k =

{
a(a + 1) · · · (a + k) k ≥ 1

1 k = 0
,

and its probability generating function

Gi(z, t) =
∞∑
j=0

Pi j(t)z j =

(
rμ − 1

rλ − 1

)i

, i ≥ 1, |z| ≤ 1, (21)

where

r = e−(μ−λ)t
(

1 − z
μ − λz

)
.

3.1 The first method

In this section we obtain QSD (15) by computing LCD (14). Obviously, when the process starts from an single state i,
(15) and (14) are equivalent. Aslo (14) can be written as

a j = lim
t→∞

Pi j(t)
Pi(T > t)

. (22)

First, we introduce the first method, that is, the quasi-stationary distributions of the process is obtained directly by taking

the limit for (22).

Let β = e−(μ−λ)t, then the equation (20) becomes

Pi j(t) = γ j (1 − β)i+ j

(1 − γβ)i+ j

i∧ j∑
k=0

(
i
k

)
(−1)k

(
γ − γ2β − β + γβ2

γ(1 − β)2

)k
(i) j−k

( j − k)!
. (23)

Again, since T is absorption time and hence

Pi(T > t) = 1 − Pi(T ≤ t) = 1 − Pi0(t) = 1 − (1 − β)i

(1 − γβ)i . (24)

Then

Pi j(t)
1 − Pi0(t)

=
1

(1 − γβ)i − (1 − β)i

⎧⎪⎪⎨⎪⎪⎩γ j (1 − β)i+ j

(1 − γβ) j

i∧ j∑
k=0

(
i
k

)
(−1)k

(
γ − γ2β − β + γβ2

γ(1 − β)2

)k
(i) j−k

( j − k)!

⎫⎪⎪⎬⎪⎪⎭ . (25)
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Obviously, the expressions is 0
0

type when take the limit, we use L’Hôspital’s Rule to tackle it. After a series of operations,

we have

(25) → 1

i(1 − γ)

⎧⎪⎪⎨⎪⎪⎩γ j(i + j − jγ)

i∧ j∑
k=0

(
i
k

)
(−1)k (i) j−k

( j − k)!
+ γ j−1(γ − 1)2

i∧ j∑
k=0

(
i
k

)
(−1)k (i) j−k

( j − k)!
k

⎫⎪⎪⎬⎪⎪⎭
=

γ j−1

i(γ − 1)

i∧ j∑
k=0

(
i
k

)
(−1)k (i) j−k

( j − k)!

[
(i + j − jγ)γ + k(γ − 1)2

]
as t → ∞.

Let i ≥ j, then, setting

Aj =
γ j−1

i(γ − 1)

j∑
k=0

(
i
k

)
(−1)k (i) j−k

( j − k)!

[
(i + j − jγ)γ + k(γ − 1)2

]
. (26)

By (26), it is not hard to find A1 = 1 − γ, A2 = (1 − γ)γ, A3 = (1 − γ)γ2, recursively, we conjecture Aj = (1 − γ)γ j−1, j ≥
1. Below, we will use the method of mathematical induction to testify. Suppose Aj = (1 − γ)γ j−1, then, Aj+1 = (1 − γ)γ j.
Actually, from (26) and assumption, we see easily

j∑
k=0

(
i
k

)
(−1)k (i) j−k

( j − k)!

[
(i + j − jγ)γ + k(γ − 1)2

]
= −i(1 − γ)2 (27)

Obviously, the left of (27) is independent of j, and so

Aj+1 =
γ j

i(γ − 1)

j+1∑
k=0

(
i
k

)
(−1)k (i) j+1−k

( j + 1 − k)!

[
(i + j + 1 − ( j + 1)γ)γ + k(γ − 1)2

]
=

γ j

i(γ − 1)
(−i)(1 − γ)2 = (1 − γ)γ j (28)

Therefore, we obtain

a j = (1 − γ)γ j−1 = (1 − λ

μ
)(
λ

μ
) j−1, j ≥ 1. (29)

The result is in keeping with Van Doorn (1991).

Remark: The above proof course only considers the situation i ≥ j, actually, because of the feature of
(i) j−k

( j−k)!
, we know the

result is invariable when i ≤ j.

3.2 The second method

In this section we will introduce the second method and the idea partly refers to Karlin and Iavaré (1982). From (21), we

see that

Gi(z, t) =
[

1 − β + (β − γ)z
1 − βγ − zγ(1 − β)

]i

, i ≥ 1, |z| ≤ 1, (30)

where β = e−(μ−λ)t, γ = λ
μ
.

To yield our result more conveniently,we induct the following lemma.

Lemma 3.1.
lim
t→∞ β

−1(Gi(z, t) − 1) = iA(z), i ≥ 1,

where

A(z) =
(1 − γ)(z − 1)

1 − zγ
, 0 ≤ z ≤ 1.

Proof: From (30), we have

Gi(z, t) =
[
1 +

(1 − γ)(z − 1)β

1 − βγ − zγ + βzγ

]i

=

i∑
k=0

(
i
k

) [
(1 − γ)(z − 1)β

1 − βγ − zγ + βzγ

]k

and so,

Gi(z, t) − 1 =

i∑
k=1

(
i
k

) [
(1 − γ)(z − 1)β

1 − βγ − zγ + βzγ

]k

,

and thus,

lim
t→∞ β

−1(Gi(z, t) − 1) = lim
t→∞

i(1 − γ)(z − 1)

1 − βγ − zγ + βzγ
=

i(1 − γ)(z − 1)

1 − zγ
= iA(z).
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Moreover, from (12), we have

Pi(T > t) =
∞∑
j=1

Pi(X(t) = j) = Gi(1, t) −Gi(0, t).

To establish (14), we use lemma 3.1 to see that for 0 ≤ z ≤ 1,

∞∑
j=1

Pi(X(t) = j|T > t)z j =
Gi(z, t) −Gi(0, t)
Gi(1, t) −Gi(0, t)

=
(Gi(z, t) − 1)β−1 − (Gi(0, t) − 1)β−1

(Gi(1, t) − 1)β−1 − (Gi(0, t) − 1)β−1

→ A(z) − A(0)

A(1) − A(0)
=

z − zγ
1 − zγ

as t → ∞,

and hence, from (16) we see that a j = limt→∞ Pi(X(t) = j|T > t) is geometric distribution with parameter γ = λ
μ
, so we

obtain

a j = (1 − λ

μ
)(
λ

μ
) j−1, j ≥ 1. (31)

Obviously, (31) is in accord with (29) and Van Doorn (1991). Certainly, some authors led to the same conclusion by other

techniques, we may refer to Cavender (1978), Pollett (1988) and Van Doorn (1991).

4. Stationary distribution of linear birth,death and immigration processes

In this section, we will adopt the method of section (3.2) to compute stationary distribution for a linear birth, death and

immigration process defined by

λi = a + iλ, μi = iμ, i ≥ 0, (32)

where a > 0, λ ≥ 0, μ ≥ 0. The constants a, λ, μ are called the immigration, birth, and death rates.

Obviously, the (10) and (11) are all satisfied. And therefore

Pi(T > t) =
∞∑
j=0

Pi(X(t) = j) = Gi(1, t) = 1.

We discuss the following several situations to calculate the stationary distribution of the processes.

Case 1. 0 < λ < μ.

The probability generating function

Gi(z, t) =
[

1 − β − z(γ − β)

1 − βγ − γz(1 − β)

]i[
1 − γ

1 − βγ − γz(1 − β)

]δ
, i ≥ 0, (33)

where

β = e−(μ−λ)t, γ =
λ

μ
, δ =

a
λ
.

From (33), we have

Gi(z, t) →
(

1 − γ
1 − δz

)δ
as t → ∞,

and from (18), we know u j = limt→∞ Pi j(t) is Pascal distribution with parameters γ and δ, hence

u j = Cδ−1
j+δ−1γ

j(1 − γ)δ = (1 − γ)δγ j (δ) j

j!
, j ≥ 0. (34)

Case 2. 0 = λ < μ.

The probability generating function is

Gi(z, t) = (1 − β + zβ)ieδ(1−β)(z−1), (35)

where

β = e−μt, δ =
a
μ
.

So,

Gi(1, t) → eδ(z−1) as t → ∞. (36)
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From (36), we know that u j is Poisson distribution with parameter δ, and so

u j =
1

j!
δ je−δ, j ≥ 0.

Case 3. 0 < λ < μ, 0 = μ < λ, 0 < λ = μ.

For these three conditions, we all have

Gi(z, t) → 0, (37)

and so,

u j = lim
t→∞ Pi j(t) = 0. (38)

From (38) and (13a), we know u j is invariant measure.
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