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Abstract

This paper deals with an ordering-transfer policy to determine the retailer’s optimal order quantity and the number of
transferred units from the warehouse to the display area. It is assumed that the amount of display space is limited and the
demand rate depends on the selling price, instantaneous displayed stock level and the frequency of advertisement. The
objective is to maximize the average profit per unit time yielded by the retailer. Numerical examples are presented to
illustrate the model and the sensitivity analysis is also reported.
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1. Introduction

An inventory model usually considers a case in which depletion of inventory is caused by a constant or stock dependent
demand rate, but in real-life-situations, a customer may buy taking factors such as selling price, inventory level, seasonality
and so on into consideration.

A product is promoted now-a-days in the society through advertisement in modern electronic/mass media and/ or by
decorative and attractive display in showrooms/shops. Glamorous display in large numbers with the help of modern lights
and electronic arrangements attracts people to buy more units. As Levin et al. (1972) puts it “it is common believe that
large piles of consumer goods displayed in a supermarket will lead the customer to buy more”. Recent market research
also recognizes this relationship and thus many researchers have focused on the analysis of the inventory control which
describes the demand rate dependent on the displayed stock level. Again frequent advertisement through TV, Radio,
Magazines, Newspapers, sales representatives, etc., also affects the demand of the commodity. But for selecting an item
for use its selling price is one of the decisive factors. It is a common practice that the lower selling price of an item causes
a higher demand of that item where as a higher selling price has the reverse effect. Therefore we conclude that the demand
of an item may be a function of frequency of advertisement, selling price of an item and instantaneous displayed stock
level.

Gupta and Vrat (1986) assumed the demand rate as a function of initial stock level. Mandal and Phaujdar (1989) de-
veloped a production inventory model for deteriorating items with uniform rate of production and linearly stock-dependent
demand. Datta and Pal (1990) and Padmanabhan and Vrat (1995) concentrated on the situation that defined the de-
mand rate as a polynomial function dependent on the instantaneous stock level. Burwell et al. (1997) developed an
economic lot size model where demand is considered to be dependent on price. Teng and Chang (2005) established
an economic production quantity model for deteriorating items where the demand rate depends on the displayed stock
level and the selling price per unit. Pal et al. (2006) considered the problem of determining the lot size with the demand
rate dependent on displayed stock level, selling price of an item and frequency of advertisement. Gupta et al. (2007)
investigated an inventory model by considering a three component demand rate i.e. rate is dependent on selling price,
frequency of advertisement and displayed stock level. Mo et al. (2009) explored the inventory replenishment policy for
items in which demand is sensitive to stock and selling price.

In most of the models the holding cost per unit item is taken as a constant. However in real life situation the cost to
stock the product increases over time. This is particularly true in the storage of deteriorating and perishable items such
as food products. The longer these products are kept in storage, the more sophisticated the storage facilities and services
needed and therefore the higher holding cost. The variability in the holding cost was first introduced by Muhlemann and
Spanopoulous (1980). They developed an EOQ model with constant demand rate and expressing the holding cost as a
percentage of the average value of capital invested in the stock. Weiss (1982) studied the inventory system treating holding
cost per unit as a non-linear function of the length of time for which the item was held in stock. Goh (1994) and Giri
and Chaudhuri (1998) developed an EOQ model with non-liner holding cost. Shao et al. (2000) determined the optimal
target for a process with multiple markets and variable holding cost. Alfares (2007) studied a stock dependent demand
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model with storage time dependent holding cost by using profit maximization objective. Urban (2008) investigated
inventory model with discretely variable holding cost.

In the busy markets like Super markets, Municipality markets, etc., the storage area of items is limited. When an attractive
price discount for bulk purchase is available or demand of items is very high or there are some problems in frequent
procurement, management decides to purchase a large amount of items at a time, but these items cannot be stored in the
existing display area (DA) located at busy market place. In such a situation, for storing the excess items management has
to hire a separate large warehouse on rental basis which may be a little away from DA. It’s assumed that the holding cost
of the item in separate warehouse is greater than that in DA. The items are stored first in separate warehouse and a fixed
amount is transferred to DA at equal interval of periods. The demand of items is met up at DA only. In past, few researchers
have analyzed extensively the issue of two warehouse inventory. Sarma (1983) developed a deterministic inventory model
with two levels of storage and infinite production rate. Murdeshwar and Sathe (1985) made an extension to the case
of finite production rate. Pakkala and Achary (1991) developed a two warehouse probabilistic order level inventory
model for deteriorating items. Goswami and Chaudhuri (1992) considered two level storage models with and without
shortages allowing linearly increasing time dependent demand. Ishii and Nose (1996) investigated the optimal ordering
policies for a perishable product with different type of customer’s priority, different selling price specified and the owned
warehouse capacity constraint. Bhunia and Maiti (1998) studied a two-warehouse inventory model for deteriorating
items considering linearly time-dependent demand and shortage (for single period). Kar et al. (2001) developed a two
storage inventory model with linearly time-dependent demand over finite time horizon under inflation. Yang (2004)
considered a two-warehouse inventory model under inflation for constantly deteriorating items with constant demand
rate and completely back logged shortages. Wee (2005) developed two-warehouse inventory model under inflation with
partial back-ordering & weibull distribution deteriorating. Dey et al. (2008) proposed a two storage inventory problem
with dynamic demand under inflation and time value of money over finite time horizon. Goyal & Chang (2009) developed
an ordering-transfer inventory model to determine optimal order quantity and the number of transfers per order from the
warehouse to the display area. It is assumed that the amount of display space is limited and the demand rate depends on
the display stock level.

The present paper is an extension of Goyal and Chang (2009). They proposed an ordering transfer inventory model for
an infinite time horizon with the demand rate that is influenced by stock level. In the present paper an ordering transfer
inventory model is considered with demand rate that is influenced by selling price, instantaneously displayed stock level
and frequency of advertisement. The model is developed for finite planning horizon. A time dependent holding cost for the
rented warehouse is considered in the model. Numerical examples are provided to illustrate the optimization procedure.
In addition the sensitivity analysis of the optimal solution with respect to parameters of the system is carried out.

2. Assumptions and Notation

2.1 Assumptions

The following assumptions are adopted:

1. Shortages are not allowed.

2. To avoid a negative impression and to indicate the display space limit, we define the maximum allowable number
of displayed stocks in the display area asIm

3. The lead time between the retailer and the supplier is zero.

4. The time to transfer items from the warehouse to the display area is zero.

5. The ordering-transfer policy adopted in the paper is as follows:

the retailer orders quantity Q per order from a supplier and stocks these items in the warehouse. The items are transferred
from the warehouse to the display area in equal lots of q units until the inventory level in the warehouse falls to zero.

2.2 Notations

The following notations are used:

1. h1 is the unit carrying cost per item in the warehouse

2. h is the unit carrying cost per item in the display area, with h < h1

3. Im is the maximum allowable number of displayed stocks in the display area

4. s is the unit selling price of the product per unit
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5. c1 is the unit purchasing cost

6. A is the cost of placing per order

7. Atis the fixed cost per transfer from the rented warehouse to the display area

8. T is the replenishment cycle time in the warehouse

9. n is the integer number of transfers from the warehouse to the display area per order

10. t1 is the replenishment cycle time in the display area

11. Q is the order quantity placed on the supplier

12. q is the quantity per transfer from the warehouse to the display area, where 0 ≤ q ≤ 1

13. I(t) is the inventory level at any time t in the display area, which is always less than or equal to Im

14. B is the buffer stock of the items in the display area regarding the transfer of q items from the warehouse to the
display area

15. ADis frequency of advertisements in the cycle.

16. α1 is the scale parameter for an increment in holding cost in rented warehouse.

17. D(AD, s, I(t)) is the demand rate, which is depending on frequency of advertisement, unit selling price and instanta-
neous displayed stock level Demand rate D (AD, s, I (t)) = A

β
D

(a − b sα + c I (t)) , 0 < t ≤ t1 Where a, b, c, β, α >
0

3. Mathematical Models

3.1 The total cost per unit cycle in the rented warehouse

The retailer orders Q items per order from a supplier and stocks these items in the warehouse. The quantity q per transfer
is transferred from the warehouse to the display area until the inventory level in the warehouse falls to zero. Thus, we get
Q = nq. The total cost over the period [0, T] in the warehouse consists of

(i) The cost of placing orders = A

(ii) The cost of stock holding,Cwh =
∑n−1

j=1 {h1 + α1 ( j − 1) t1} (n − j) qt1

=

n−1∑
j=1

h1 (n − j) qt1 +

n−1∑
j=1

α1 ( j − 1) (n − j) qt2
1

=
1
6

n (n − 1) qt1 {3h1 + (n − 2)α1t1} . . . (1)

3.2 The total cost per unit cycle in the display area

At time t = 0, the inventory level I(t)reaches the top q+B (q + B ≤ Im)because the items are transferred from the warehouse
to the display area. The inventory level then gradually depletes to B at the end of the cycle. A graphical representation of
this inventory system is depicted. (Figure 1)

The differential equation expressing the inventory level at any time t can be written as follows:

dI (t)
dt
= −D (AD, s, I (t)) 0 ≤ t ≤ t1

Where D (AD, s, I (t)) = A
β
D

(a − bsα + cI (t))

dI (t)
dt
= −A

β
D

(a − bsα + cI (t)) 0 ≤ t ≤ t1 . . . (2)

Using boundary condition I (t1) = Bwe have

I (t) = BeA
β
D

c(t1−t) +
(a − bsα)

c

{
eA

β
D

c(t1−t) − 1
}
. . . (3)

The total cost over the period (0, t1)consists of
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(i) Fixed cost per transfer =At

(ii) Holding cost, Ch = h
∫ t1

0 I (t) dt

= h

∫ t1

0

{
BeA

β
D

c(t1−t) +
(a − bsα)

c

{
eA

β
D

c(t1−t) − 1
}}

dt

= h

⎡⎢⎢⎢⎢⎢⎣ 1

A
β
D

c

{
eA

β
D

ct1 − 1
} {

B +
(a − bsα)

c

}
− (a − bsα)

c
t1

⎤⎥⎥⎥⎥⎥⎦ . . . (4)

(iii) The revenue per cycle is (s − c1)
∫ t1

0 D (AD, s, I (t)) dt

= (s − c1)
∫ t1

0

[
A
β
D

(a − bsα + cI (t))
]

dt

= (s − c1) A
β
D

(a − bsα) t1 + (s − c1) A
β
D

c

∫ t1

0

{
BeA

β
D

c(t1−t)

+
(a − bsα)

c

{
eA

β
D

c(t1−t) − 1
}}

dt

= (s − c1) A
β
D

(a − bsα) t1 + (s − c1) A
β
D

c⎡⎢⎢⎢⎢⎢⎣ 1

A
β
D

c

{
eA

β
D

ct1 − 1
} {

B +
(a − bsα)

c

}
− (a − bsα)

c
t1

⎤⎥⎥⎥⎥⎥⎦ . . . (5)

Applying boundary condition in equation (3) It is obtained and I(0) = q + B

q + B = BeA
β
D

ct1 +
(a − bsα)

c

[
eA

β
D

ct1 − 1
]

q =

{
B +

(a − bsα)
c

} (
eA

β
D

ct1 − 1
)
. . . (6)

From equation (1) and equation (6) the cost of stock holding in the warehouse is

Cwh =
1
6

n (n − 1)
{

B +
(a − bsα)

c

} (
eA

β
D

ct1 − 1
)

t1 {3h1 + (n − 2)α1t1} . . . (7)

Hence, the total profit T P over the period [0,T ] is

T P (s, B) =revenue – (total cost in the warehouse) - (total cost in the display area)

= −A − nAt + nh
(a − bsα)

c
t1 +

{
B +

(a − bsα)
c

} (
eA

β
D

ct1 − 1
)

[n (s − c1)

− 1
2 n (n − 1) h1t1 − 1

6 n (n − 1) (n − 2)α1t2
1 − nh

A
β
D

c

]
. . . (8)

Hence, the average profit per unit time is

AP (s, B) = T P(s,B)
T

where T = nt1

= − A

nt1
− At

t1
+ h

(a − bsα)
c

+

{
B +

(a − bsα)
c

} (
eA

β
D

ct1 − 1
) [ (s − c1)

t1

− 1
2 (n − 1) h1 − 1

6 (n − 1) (n − 2)α1t1 − h

A
β
D

ct1

]
. . . (9)

4. Solution Procedure

According to equation (9), AP (s, B) is a function ofs and B. For fixed n andt1, the effect of sand B on the average profit
per unit time will be examined. Taking the first and second partial derivative of AP (s, B) with respect to s and B, we
obtain

∂AP

∂B
=

(
eA

β
D

ct1 − 1
) ⎡⎢⎢⎢⎢⎢⎣ (s − c1)

t1
− (n − 1)

2
h1 − 1

6
(n − 1) (n − 2)α1t1 − h

A
β
D

ct1

⎤⎥⎥⎥⎥⎥⎦ . . . (10)
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And
∂2AP

∂B2 = 0 (11)

∂AP

∂s
= −hbα

c
sα−1 − bα

c
sα−1
(
eA

β
D

ct1 − 1
) [ (s − c1)

t1
− (n − 1)

2
h1 − 1

6
(n − 1) (n − 2)α1t1

− h

A
β
D

ct1

⎤⎥⎥⎥⎥⎥⎦ + 1
t1

{
B +

(a − bsα)
c

} (
eA

β
D

ct1 − 1
)
. . . (12)

And ∂2AP
∂s2 = − hbα(α−1)

c
sα−2 − bα(α−1)

c
sα−2
(
eA

β
D

ct1 − 1
) [

(s−c1)
t1

− (n−1)
2 h1

−1
6

(n − 1) (n − 2)α1t1 − h

A
β
D

ct1

⎤⎥⎥⎥⎥⎥⎦ − 2bα

ct1
sα−1
(
eA

β
D

ct1 − 1
)
... (13)

∂2AP

∂s∂B
=

1
t1

(
eA

β
D

ct1 − 1
)
. . . (14)

To maximize average profit per unit timeAP (s, B), the optimal values of sand B can be obtained by solving the following
equations simultaneously.

∂AP

ds
= 0 and

∂AP

dB
= 0 (15)

i.e. ∂AP
∂B
=
(
eA

β
D

ct1 − 1
) [

(s−c1)
t1

− (n−1)
2 h1 − 1

6 (n − 1) (n − 2)α1t1 − h

A
β
D

ct1

]
= 0

and ∂AP
∂s
= − hbα

c
sα−1 − bα

c
sα−1
(
eA

β
D

ct1 − 1
) [

(s−c1)
t1

− (n−1)
2 h1 − 1

6 (n − 1) (n − 2)α1t1

− h

A
β
D

ct1

]
+ 1

t1

{
B +

(a−bsα)
c

} (
eA

β
D

ct1 − 1
)
= 0 provided rt − s2 =

(
∂2AP
∂B2

) (
∂2AP
∂s2

)
−
(
∂2AP
∂s∂B

)2
= −
(
∂2AP

∂s∂B

)2
< 0

The results show that AP (s, B) is a concave function of sand B for fixed n andt1. Therefore, there exists a unique value of
sand B such that AP (s, B)is maximum.

5. Special Cases

CASE 1:

If β = 0, then the demand rate reduces toD (AD, s, I (t)) = (a − b sα + c I (t)) , 0 < t ≤ t1That is, the demand rate depends
on unit selling price and instantaneous displayed stock level.

Hence, the inventory level at time t is given by the differential equation:

dI (t)
dt
= − (a − bsα + cI (t))

Therefore,

I (t) = Bec(t1−t) +
(a − bsα)

c

{
ec(t1−t) − 1

}
(16)

And the quantity per transfer from the warehouse to the display area is given by

q =

{
B +

(a − bsα)
c

} (
ect1 − 1

)
(17)

and the average profit per unit time AP (s, B) over the period [0, T] is reduced to

AP (s, B) = − A

nt1
− At

t1
+ h

(a − bsα)
c

+

{
B +

(a − bsα)
c

} (
ect1 − 1

) [ (s − c1)
t1

− 1
2 (n − 1) h1 − 1

6 (n − 1) (n − 2)α1t1 − h
ct1

]
. . . (18)

216 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

Taking the first and second partial derivative of AP (s, B) with respect to sandB, we obtain

∂AP

∂B
=
(
ect1 − 1

) [ (s − c1)
t1

− (n − 1)
2

h1 − 1
6

(n − 1) (n − 2)α1t1 − h

ct1

]
. . . (19)

And
∂2AP

∂B2 = 0 (20)

∂AP

∂s
= −hbα

c
sα−1 − bα

c
sα−1
(
ect1 − 1

) [ (s − c1)
t1

− (n − 1)
2

h1 − 1
6

(n − 1) (n − 2)α1t1

− h

ct1

]
+

1
t1

{
B +

(a − bsα)
c

} (
ect1 − 1

)
. . . (21)

And ∂2AP
∂s2 = − hbα(α−1)

c
sα−2 − bα(α−1)

c
sα−2 (ect1 − 1

) [ (s−c1)
t1

− (n−1)
2 h1

−1
6

(n − 1) (n − 2)α1t1 − h

ct1

]
− 2bα

ct1
sα−1
(
ect1 − 1

)
. . . (22)

∂2AP

∂s∂B
=

1
t1

(
ect1 − 1

)
. . . (23)

To maximize average profit per unit timeAP (s, B), the optimal values of sand B can be obtained by solving the following
equations simultaneously.

∂AP

ds
= 0 and

∂AP

dB
= 0 (24)

i.e. ∂AP
∂B
=
(
ect1 − 1

) [ (s−c1)
t1

− (n−1)
2 h1 − 1

6 (n − 1) (n − 2)α1t1 − h
ct1

]
= 0

and ∂AP
∂s
= − hbα

c
sα−1 − bα

c
sα−1 (ect1 − 1

) [ (s−c1)
t1

− (n−1)
2 h1 − 1

6 (n − 1) (n − 2)α1t1

− h

ct1

]
+

1
t1

{
B +

(a − bsα)
c

} (
ect1 − 1

)
= 0

provided rt − s2 =
(
∂2AP
∂B2

) (
∂2AP
∂s2

)
−
(
∂2AP
∂s∂B

)2
= −
(
∂2AP

∂s∂B

)2
< 0

The results show that AP (s, B) is a concave function of sand B for fixed n andt1. Therefore, there exists a unique value of
sand B such that AP (s, B)is maximum.

CASE 2: If c = 0, then the demand rate reduces to D (AD, s, I (t)) = A
β
D

(a − b sα) , 0 < t ≤ t1. That is, the demand rate
depends on frequency of advertisement and unit selling price.

Hence, the inventory level at time t is given by the differential equation :

dI (t)
dt
= −
[
A
β
D

(a − bsα)
]

Therefore,
I (t) = B + A

β
D

(a − bsα) (t1 − t) (25)

And the quantity per transfer from the warehouse to the display area is given by

q = A
β
D

(a − bsα) t1 . . . (26)

and the average profit per unit time AP (s, B) over the period [0, T] is reduced to

AP (s, B) = − A

nt1
− At

t1
− hB + A

β
D

(a − bsα)
[
(s − c1)

n

−1
2

(n − 1) h1 − 1
6

(n − 1) (n − 2)α1t1 − t1

2n

]
. . . (27)
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Taking the first order partial derivative of AP (s, B)with respect toB, we get

∂AP

∂B
= −h < 0 . . . (28)

It shows that AP is a decreasing function of B. Therefore, the optimal retransfer level of the item in the display area B*
should be zero.

Substituting B* = 0 into equation (27), we obtain AP (s, B)as a function of sas follows:

AP (s, B) = − A

nt1
− At

t1
+ A

β
D

(a − bsα)
[
(s − c1)

n
−1

2
(n − 1) h1 − 1

6
(n − 1) (n − 2)α1t1 − t1

2n

]
. . . (29)

Taking the first and second partial derivative of AP (s, B) with respect to s we obtain

∂AP

∂s
= −bαA

β
D

sα−1
[
(s − c1)

n
− (n − 1)

2
h1 − 1

6
(n − 1) (n − 2)α1t1 − t1

2n

]
+

1
n

A
β
D

(a − bsα) . . . (30)

And ∂2AP
∂s2 = −bα (α − 1) A

β
D

sα−2
[

(s−c1)
n

− (n−1)
2 h1

−1
6

(n − 1) (n − 2)α1t1 − t1

2n

]
−

2bαA
β
D

n
sα−1 < 0 . . . (31)

Provided
[

(s−c1)
n

− (n−1)
2 h1 − 1

6 (n − 1) (n − 2)α1t1 − t1
2n

]
> 0

The results show that AP (s, B) is a concave function of s for fixed n andt1. Therefore, there exists a unique value of s

such that AP (s, B)is maximum.

CASE 3:

If β=b=α1 = 0, then the demand rate reduces toD (AD, s, I (t)) = (a + c I (t)) , 0 < t ≤ t1.

That is, the demand rate depends only on instantaneous displayed stock level and the model reduces to Goyal and Chang
(2009). In the proposed model

1. The total cost per unit cycle in the warehouse

The total cost over the period [0, T] in the warehouse consists of

(i) the cost of placing orders = A

(ii) the cost of stock holding ,Cwh =
∑n−1

j=1 h1 (n − j) qt1

=
1
2

n (n − 1) h1qt1

2. The total cost per unit cycle in the display area

The inventory level at time t is given by the differential equation :

dI (t)
dt
= − (a + cI (t))

Therefore,
I (t) = Bec(t1−t) +

a

c

{
ec(t1−t) − 1

}
(32)

And the quantity per transfer from the warehouse to the display area is given by

q =

{
B +

a

c

} (
ect1 − 1

)
. . . (33)

Then the total cost of stock holding in the warehouse is

Cwh =
1
2

n (n − 1) h1

{
B +

a

c

} (
ect1 − 1

)
t1

and the average profit per unit time AP (s, B) over the period [0, T] is

AP (s, B) = − A
nt1

− At

t1
+ h a

c
+
{
B + a

c

} (
ect1 − 1

) [ (s−c1)
t1

− 1
2 (n − 1) h1 − h

ct1

]
(34)
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This reduces to the result of model proposed by Goyal and Chang (2009).

6. Numerical Example

Example1: When demand rate depends on unit selling price, instantaneous displayed stock level and frequency of adver-
tisement, a practical model is considered taking the following values for different parameters:

Cost per transfer from the warehouse to the display area At= Rs. 100, Ordering cost A= Rs. 200/order, Item cost c1 = Rs.
5 per unit, Holding cost in the warehouse h1= 0.6 per unit, Holding cost in the display area h= 0.5 per unit, a= 575, b=
28, c= 0.2, α = 1.2 ,α1=0.2, β = 0.02, frequency of advertisements in the cycle AD= 4, n=3 and t1=4

Using the solution procedure described above the results obtained are, the selling price s= Rs.10.90 for which Average
profit AP (s, B) becomes maximum. Hence the optimum values of s and B are Rs.10.90 and 9.6605 respectively, and the
maximum Average profit AP (s∗, B∗)= Rs. 165.77. We then have T ∗ = nt1 = 12, q∗ = 541.77 and Q = nq = 1625.31

Example2: Based on Case 1, when demand rate depends on unit selling price and instantaneous displayed stock level, a
practical model is considered taking the following values for different parameters:

Cost per transfer from the warehouse to the display area At= Rs. 100, Ordering cost A= Rs. 200/order, Item cost c1 = Rs.
5 per unit, Holding cost in the warehouse h1= 0.6 per unit, Holding cost in the display area h= 0.5 per unit, a= 575, b=
28, c= 0.2, α = 1.2, α1=0.2, β = 0, frequency of advertisements in the cycle AD= 4, n=3 and t1=4

Using the solution procedure described above the results obtained are, the selling price s= Rs.10.97 for which Average
profit AP (s, B) becomes maximum. Hence the optimum values of s and B are Rs.10.97 and 46.279 respectively, and the
maximum Average profit AP (s∗, B∗)= Rs. 156.5. We then have T ∗ = nt1 = 12 , q∗ = 542.43 and Q = nq = 1627.29

Example3: Based on Case 2, when demand rate depends on frequency of advertisement and unit selling price, a practical
model is considered taking the following values for different parameters:

Cost per transfer from the warehouse to the display area At= Rs. 100, Ordering cost A= Rs. 200/order, Item cost c1 = Rs.
4 per unit, Holding cost in the warehouse h1= 0.6 per unit, Holding cost in the display area h= 0.5 per unit, a= 575, b=
28, c= 0, α = 1.2,α1=0.2, β = 0.02, frequency of advertisements in the cycle AD= 4, n=3 and t1=4

Using the solution procedure described above the results obtained are, the selling price s= Rs.10.52 for which Aver-
age profit AP (s, B) becomes maximum. Hence the optimum values of s is Rs.10.52, and the maximum Average profit
AP (s∗, B∗)= Rs. 26.37. We then have T ∗ = nt1 = 12 , q∗ = 424.99 and Q = nq = 1274.97

7. Sensitivity Analysis

To study the effect of changes of the parameters on the optimal profit derived by proposed method, a sensitivity analysis
is performed considering the numerical examples given above. Sensitivity analysis is performed by changing (increasing
or decreasing) the parameters by 20% & 50% and taking one parameter at a time, keeping the remaining parameters at
their original values. The results are shown in Table 1, Table 2 & Table 3 for Examples1, 2 & 3 respectively.

A careful study of Table 1 reveals the following:

1. s is slightly sensitive to changes in the values of parameter h1,α1& c, it is moderately sensitive to changes in h and
neutral to changes in b & α.

2. B is highly sensitive to changes in h, h1, α, α1, b & c.

3. q is slightly sensitive to changes in the values of parameters h, h1 & α1, it is moderately sensitive to changes in b &
c and highly sensitive to changes in α.

4. AP is slightly sensitive to changes in the values of parameters h, c & α1, it is moderately sensitive to changes in b

& h1 and highly sensitive to changes in α

A careful study of Table 2 reveals the following:

1. s is slightly sensitive to changes in the values of parameter h, h1,α1& c and neutral to changes in b & α.

2. B is moderately sensitive to changes in h1 & α1 highly sensitive to changes in h, α, b & c.

3. q is slightly sensitive to changes in the values of parameters h, h1, b, c & α1 and highly sensitive to changes in α.

4. AP is slightly sensitive to changes in the values of parameters h, h1 & α1, it is moderately sensitive to changes in b

& c and highly sensitive to changes in α
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A careful study of Table 3 reveals the following:

1. s is slightly sensitive to changes in the values of parameter h1,α1& b, it is highly sensitive to changes in α and
neutral to changes in h.

2. q is slightly sensitive to changes in the values of parameters h1,α1& b, it is moderately sensitive to changes in α and
neutral to changes in h.

3. AP is slightly sensitive to changes in the values of parameters h1 & α1, it is highly sensitive to changes in b & α
and neutral to changes in h.

8. Conclusions

In this paper, an ordering-transfer inventory model is developed when the amount of display area is limited and warehouse
is taken to store the items. The demand rate depends on unit selling price, instantaneously displayed stock level and
frequency of advertisement. A time dependent holding cost for the rented warehouse is considered in the model. Optimal
selling price, optimal buffer stock, ordering quantity and optimal number of units transferred from the rented warehouse
to the display area for maximizing the average profit per unit are determined. Results obtained imply that the effect of
time dependent holding cost, three component demand rate and concept of buffer stock on the average profit is more
significant than a policy which ignores the effects of these factors. An analytic formulation of the problem on the frame
work described above and an optimal solution procedure to find optimal ordering transfer policy is presented. Sensitivity
analysis with respect to various parameters has been carried out.

Thus this model incorporates some realistic features that are likely to be associated with some kind of inventory. The
model could be very useful in retail business. It can be used for electronic components, fashionable goods, clothes and
other products which have more likely the characteristics above.

The present study can be further extended for some other factors involved in the inventory system.

9. Appendix

Let dI(t)
dt
= −D (AD, s, I (t))

Where D (AD, s, I (t)) = A
β
D

(a − bsα + cI (t))

Let λ = A
β
D

(a − bsα)and μ = A
β
D

c

Then D (AD, s, I (t)) = λ + μI (t)
dI (t)

dt
= − {λ + μI (t)}

I (t) = −λ
μ
+ xe−μt

Where x is any constant of integration

Using boundary condition I (t1) = Bwe get

x = eμt1

(
B +

λ

μ

)
Thus, I (t) = Beμ(t1−t) + λ

μ

{
eμ(t1−t) − 1

}
Hence I (t) = BeA

β
D

c(t1−t) +
(a−bsα)

c

{
eA

β
D

c(t1−t) − 1
}
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Table 1.

Parameter % change in
h

% change in
s

% change in
B

% change in
q

% change in
AP

h -50 -0.1116 -56.1855 -0.5117 -0.1347
-20 -0.0446 -22.6836 -0.2073 0.0662
20 0.0446 22.9482 0.2105 -0.2287
50 0.1116 57.8428 0.5321 -0.8806

h1 -50 -0.1101 -34.2797 -0.0231 0.9693
-20 -0.0367 -11.5019 -0.0075 0.3256
20 0.0367 11.5748 0.0072 -0.3280
50 0.1101 34.9361 0.0211 -0.9910

b -50 0.0000 -149.3018 -0.5000 3.7101
-20 0.0000 -59.7208 -0.2000 1.4840
20 0.0000 59.7208 0.2000 -1.4841
50 0.0000 149.3017 0.5000 -3.7102

c -50 0.2231 281.9056 1.0822 -2.8061
-20 0.0558 42.8687 0.2636 -0.3115
20 -0.0372 -18.6654 -0.1729 0.0663
50 -0.0744 -29.5422 -0.3436 0.0210

α -50 0.0000 -232.6122 -0.8807 5.6502
-20 0.0000 -135.2405 -0.5491 3.2376
20 0.0000 246.7263 1.1288 -5.7437
50 0.0000 1045.2295 5.2878 -23.6853

α1 -50 -0.0489 -15.3194 -0.0100 0.4336
-20 -0.0196 -6.1435 -0.0040 0.1739
20 0.0196 6.1643 0.0039 -0.1747
50 0.0489 15.4489 0.0096 -0.4379

Table 2.

Parameter % change in
h

% change in
s

% change in
B

% change in
q

% change in
AP

h -50 -0.1140 -12.1359 -0.5120 -0.0979
-20 -0.0456 -4.9006 -0.2074 0.0918
20 0.0456 4.9591 0.2108 -0.2690
50 0.1140 12.5019 0.5327 -1.0096

h1 -50 -0.1094 -7.1725 -0.0229 1.0281
-20 -0.0365 -2.4064 -0.0074 0.3453
20 0.0365 2.4215 0.0072 -0.3479
50 0.1094 7.3082 0.0210 -1.0509

b -50 0.0000 -31.5616 -0.5000 3.9595
-20 0.0000 -12.6246 -0.2000 1.5838
20 0.0000 12.6246 0.2000 -1.5838
50 0.0000 31.5616 0.5000 -3.9595

c -50 0.2280 61.4681 1.0839 -3.1597
-20 0.0570 9.4247 0.2639 -0.3642
20 -0.0380 -4.1501 -0.1731 0.0887
50 -0.0760 -6.6248 -0.3437 0.0556

α -50 0.0000 -49.2580 -0.8812 6.0370
-20 0.0000 -28.6717 -0.5497 3.4619
20 0.0000 52.4273 1.1320 -6.1508
50 0.0000 222.6025 5.3116 -25.4019

α1 -50 -0.0486 -3.2051 -0.0099 0.4599
-20 -0.0195 -1.2853 -0.0039 0.1845
20 0.0194 1.2896 0.0039 -0.1852
50 0.0486 3.2319 0.0096 -0.4644
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Table 3.

Parameter % change in h % change in s % change in q % change in
AP

h -50 0.0000 0.0000 0.0000
-20 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000

h1 -50 -0.0419 0.2285 1.3473
-20 -0.0140 0.0765 0.4184
20 0.0140 -0.0768 -0.3875
50 0.0421 -0.2316 -1.0692

b -50 0.4717 0.9357 15.3177
-20 0.1227 0.3689 3.3250
20 -0.0842 -0.3644 -1.6962
50 -0.1706 -0.9053 -2.5642

α -50 6.1910 0.9317 171.4017
-20 0.5128 0.7035 14.1599
20 -1.0000 -1.0000 -1.0000
50 -1.0000 -1.0000 -1.0000

α1 -50 -0.0186 0.1019 0.5647
-20 -0.0075 0.0408 0.2193
20 0.0075 -0.0409 -0.2105
50 0.0187 -0.1025 -0.5097

Figure 1.
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