Fuzzy Anti-2-Normed Linear Space

B. Surender Reddy

Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad, A.P., India

E-mail: bsrmathou@yahoo.com

Received: December 14, 2010 Accepted: December 28, 2010 doi:10.5539/jmr.v3n2p137

Abstract

In this paper, we study fuzzy anti-2-norm on a linear space and some results are introduced in fuzzy anti-2-norms on a linear space. We shall introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-2-normed linear space and also introduce the concept of compact subset and bounded subset in fuzzy anti-2-normed linear space.

Keywords: Fuzzy norm, Fuzzy anti-norm, Fuzzy 2-norm, Fuzzy anti-2-norm

AMS Mathematics Subject Classification: 46S40, 03E72.

1. Introduction

Fuzzy set theory is a useful tool to describe situations in which the data are imprecise or vague. Fuzzy sets handle such situation by attributing a degree to which a certain object belongs to a set. The idea of fuzzy norm was initiated by Katsaras in [1984]. Felbin [1992] defined a fuzzy norm on a linear space whose associated fuzzy metric is of Kaleva and Seikkala type [1984]. Cheng and Mordeson [1994] introduced an idea of a fuzzy norm on a linear space whose associated metric is Kramosil and Michalek type [1975].

Bag and Samanta in [2003] gave a definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [1975]. They also studied some properties of the fuzzy norm in [2005] and [2008]. Bag and Samanta discussed the notions of convergent sequence and Cauchy sequence in fuzzy normed linear space in [2003]. They also made in [2008] a comparative study of the fuzzy norms defined by Katsaras [1984], Felbin [1992], and Bag and Samanta [2003].

In [2010] Iqbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending on the idea of fuzzy anti-norm was introduced by Bag and Samanta [2008] and investigated their important properties.

In this paper, we study fuzzy anti-2-norm on a linear space and some results are introduced in fuzzy anti-2-norms on a linear space. We shall introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-2-normed linear space and also introduce the concept of compact subset and bounded subset in fuzzy anti-2-normed linear space.

In [1992], Felbin introduced the concept of a fuzzy norm based on a Kaleva and Seikkala type [1984] of fuzzy metric using the notion of fuzzy number. Let X be a vector space over R(set of real numbers). Let $\| \bullet \| : X \longrightarrow R^*(I)$ be a mapping and let the mappings $L, U : [0,1] \times [0,1] \longrightarrow [0,1]$, be symmetric, non-decreasing in both arguments and satisfying L(0,0) = 0 and U(1,1) = 1. Write $[\|x\|]_{\alpha} = [\|x\|_{\alpha}^{1} R \|x\|_{\alpha}^{2}]$ for $x \in X$, $0 < \alpha \le 1$ and suppose for all $x \in X$, $x \ne 0$ there exists $\alpha_0 \in (0,1]$ independent of x such that for all $\alpha \le \alpha_0$,

(A)
$$||x||_{\alpha}^{2} < \infty$$
 (B) $\inf ||x||_{\alpha}^{1} > 0$

The quadruple $(X, \| \bullet \|, L, U)$ is called a Felbin-fuzzy normed linear space and $\| \bullet \|$ is a Felbin-fuzzy norm if

- (i) ||x|| = 0 if and only if x = 0 (the null vector),
- (ii) $||rx|| = |r| ||x||, x \in X, r \in R$,
- (iii) For all $x, y \in X$, (a) Whenever $s \le ||x||_1^1$, $t \le ||y||_1^1$ and $s + t \le ||x + y||_1^1$,

$$||x + y||(s + t) \ge L(||x||(s), ||y||(t)).$$

(b) Whenever $s \ge ||x||_1^1$, $t \ge ||y||_1^1$ and $s + t \ge ||x + y||_1^1$,

$$||x + y||(s + t) \le U(||x||(s), ||y||(t)).$$

Definition 1.1. Let X be a vector space over R (set of real numbers). Let $\| \bullet, \bullet \| : X \times X \longrightarrow R^*(I)$ be a mapping and let the mappings $L, U : [0,1] \times [0,1] \longrightarrow [0,1]$, be symmetric, non-decreasing in both arguments and satisfying L(0,0) = 0 and U(1,1) = 1. Write $[\|x,z\|]_{\alpha} = [\|x,z\|_{\alpha}^{1}R\|x,z\|_{\alpha}^{2}]$ for $x,z \in X$, $0 < \alpha \le 1$ and suppose for all $x,z \in X$, $x \ne 0$, $z \ne 0$, there exists $\alpha_0 \in (0,1]$ independent of x,z such that for all $\alpha \le \alpha_0$,

(A)
$$||x, z||_{\alpha}^{2} < \infty$$
 (B) $\inf ||x, z||_{\alpha}^{1} > 0$

The quadruple $(X, \| \bullet, \bullet \|, L, U)$ is called a Felbin-fuzzy 2-normed linear space and $\| \bullet, \bullet \|$ is a Felbin-fuzzy 2-norm if

- (i) ||x, z|| = 0 if and only if x, z are linearly dependent,
- (ii) $||rx, z|| = |r| ||x, z||, x, z \in X, r \in R$
- (iii) ||x, z|| is invariant under any permutation of x, z,
- (iv) For all $x, y, z \in X$, (a) Whenever $s \le ||x, z||_1^1$, $t \le ||y, z||_1^1$ and $s + t \le ||x + y, z||_1^1$,

$$||x + y, z||(s + t) \ge L(||x, z||(s), ||y, z||(t)).$$

(b) Whenever $s \ge ||x, z||_1^1$, $t \ge ||y, z||_1^1$ and $s + t \ge ||x + y, z||_1^1$,

$$||x + y, z||(s + t) \le U(||x, z||(s), ||y, z||(t)).$$

2. Fuzzy 2-Norms on a Linear Space

This section contains a few basic definitions and preliminary results which will be needed in the sequel.

Definition 2.1. [Somasundaram, 2009]. Let X be a real linear space of dimension greater than one and let $\|\bullet, \bullet\|$ be a real valued function on $X \times X$ satisfying the following conditions

 $2N_1$: ||x, y|| = 0 if and only if x and y are linearly dependent

 $2N_2$: ||x, y|| = ||y, x||

 $2N_3$: $||\alpha x, y|| = |\alpha| ||x, y||$, for every $\alpha \in R$

 $2N_4$: $||x, y + z|| \le ||x, y|| + ||x, z||$

then the function $\|\bullet, \bullet\|$ is called a 2-norm on X and the pair $(X, \|\bullet, \bullet\|)$ is called a 2-normed linear space.

Definition 2.2. [Somasundaram, 2009]. Let X be a linear space over a field F. A fuzzy subset N of $X \times X \times R$ is called a fuzzy 2-norm on X if the following conditions are satisfied for all $x, y, z \in X$.

- (2 N1): For all $t \in R$ with $t \le 0$, N(x, y, t) = 0,
- (2 N2): For all $t \in R$ with t > 0, N(x, y, t) = 1 if and only if x, y are linearly dependent
- (2-N3): N(x, y, t) is invariant under any permutation of x, y
- (2-N4): For all $t \in R$ with t > 0, $N(x, cy, t) = N(x, y, \frac{t}{|c|})$ if $c \neq 0$, $c \in F$
- (2 N5): For all $s, t \in R$, $N(x, y + z, s + t) \ge \min\{N(x, y, s), N(x, z, t)\}$
- (2-N6): N(x,y,t) is a non-decreasing function of $t \in R$ and $\lim_{t \to \infty} N(x,y,t) = 1$.

Then N is said to be a fuzzy 2-norm on a linear space X and the pair (X, N) is called a fuzzy 2-normed linear space (briefly F-2-NLS).

The following condition of fuzzy 2-norm N will be required later on.

(2 - N7): For all $t \in R$ with t > 0, N(x, y, t) > 0, implies that x, y are linearly dependent.

Example 2.3. [Bag, 2003]. Let $(X, \| \bullet, \bullet \|)$ be a 2-normed linear space. Define

$$N(x, y, t) = \frac{t}{t + ||x, y||}, \text{ when } t > 0, t \in R, x, y \in X$$

= 0, when $t \le 0, t \in R, x, y \in X$.

Then (X, N) is an F-2-NLS.

Example 2.4. [Bag, 2003]. Let $(X, \| \bullet, \bullet \|)$ be a 2-normed linear space. Define

$$N(x, y, t) = 0$$
, when $t \le ||x, y||$, $t \in R$, $x, y \in X$
= 1, when $t > ||x, y||$, $t \in R$, $x, y \in X$.

Then (X, N) is an F-2-NLS.

Theorem 2.5. Let (X, N) be a fuzzy 2-normed linear space. Define $||x, y||_{\alpha} = \inf\{t : N(x, y, t) \ge \alpha\}$; $\alpha \in (0, 1)$. Then $\{||\bullet, \bullet||_{\alpha} : \alpha \in (0, 1)\}$ is an ascending family of 2-norms on X. These 2-norms are called α -2-norms on X corresponding to fuzzy 2-norm on X.

Theorem 2.6. Let $\{\|\bullet, \bullet\|_{\alpha} : \alpha \in (0, 1)\}$ be an ascending family of 2-norms on linear space X. Define a function $N': X \times X \times R \longrightarrow [0, 1]$ as

$$N'(x, y, t) = \sup\{\alpha \in (0, 1) : ||x, y||_{\alpha} \le t\}, \text{ when } (x, y, t) \ne 0,$$

= 0, when $(x, y, t) = 0$.

Then N' is a fuzzy 2-norm on X

If the index set (0, 1) of the family of crisp 2-norms $\{\|\bullet, \bullet\|_{\alpha} : \alpha \in (0, 1)\}$ of Theorem 2.6 is extended to (0, 1] then a fuzzy 2-norm N is generated, satisfying an additional property that N(x, y, t) attains the value 1 at some finite value t.

Theorem 2.7. Let $\{\|\bullet, \bullet\|_{\alpha} : \alpha \in (0, 1]\}$ be an ascending family of 2-norms on linear space X. Define a function $N': X \times X \times R \longrightarrow [0, 1]$ as

$$N'(x, y, t) = \sup\{\alpha \in (0, 1] : ||x, y||_{\alpha} \le t\}, \text{ when } (x, y, t) \ne 0,$$

= 0, when $(x, y, t) = 0$.

Then (a) N' is a fuzzy 2-norm on X

(b) For each $x, y \in X$, $\exists t = t(x, y) > 0$ such that N'(x, y, s) = 1, for all $s \ge t$.

Example 2.8. Let $X = R^3$ be a linear space over R. Define $\| \bullet, \bullet \| : X \times X \times R \longrightarrow [0, 1]$ by

$$||x, y|| = \max\{|x_1y_2 - x_2y_1|, |x_2y_3 - x_3y_2|, |x_3y_1 - x_1y_3|\},\$$

where $(x_1, x_2, x_3) \in \mathbb{R}^3$ and $(y_1, y_2, y_3) \in \mathbb{R}^3$ then $(X, \| \bullet, \bullet \|)$ is a 2-normed linear space.

Define $N: X \times X \times R \longrightarrow [0, 1]$ by

$$\begin{split} N(x,y,t) &= 1, & \text{if } t > \|x,y\| \\ &= 0.5, & \text{if } \frac{1}{2}\|x,y\| < t \le \|x,y\| \\ &= 0, & \text{if } t \le \frac{1}{2}\|x,y\| \end{split}$$

Then (X, N) is a fuzzy 2-normed linear space. Define $||x, y||_{\alpha} = \inf\{t : N(x, y, t) \ge \alpha\}, \alpha \in (0, 1)$. Then $\{\|\bullet, \bullet\|_{\alpha} : \alpha \in (0, 1)\}$ be an ascending family of 2-norms on a linear space X. The α -2-norms corresponding to fuzzy 2-norm on X are given by

$$||x, y||_{\alpha} = ||x, y|| \text{ if } 1 > \alpha > 0.5$$

= $\frac{1}{2} ||x, y|| \text{ if } 0 < \alpha \le 0.5$

If the index set (0, 1) of the family of crisp 2-norms $\{\| \bullet, \bullet \|_{\alpha} : \alpha \in (0, 1)\}$ of Theorem 2.6 is extended to (0, 1] then a fuzzy 2-norm N is generated, satisfying an additional property that N(x, y, t) attains the value 1 at some finite value t.

Let $\{\|\bullet, \bullet\|_{\alpha} : \alpha \in (0, 1]\}$ be an ascending family of 2-norms on linear space X. Define a function

$$N': X \times X \times R \longrightarrow [0,1] \text{ as } N'(x,y,t) = \sup\{\alpha \in (0,1]: ||x,y||_{\alpha} \le t\}, \text{ when } (x,y,t) \ne 0,$$

= 0, when $(x,y,t) = 0$.

Then N' is a fuzzy 2-norm on X.

Definition 2.9. Let (X, N) be a fuzzy 2-normed linear space. Let $\{x_n\}$ be a sequence in X then $\{x_n\}$ is said to be convergent if there exists $x \in X$ such that $\lim_{n \to \infty} N(x_n - x, y, t) = 1$, for all t > 0.

Definition 2.10. Let (X, N) be a fuzzy 2-normed linear space. Let $\{x_n\}$ be a sequence in X then $\{x_n\}$ is said to be a Cauchy sequence if $\lim_{n \to \infty} N(x_{n+p} - x_n, y, t) = 1$, for all t > 0 and $p = 1, 2, 3, \ldots$

Definition 2.11. A subset *B* of a fuzzy 2-normed linear space (X, N) is said to be bounded if and only if there exists t > 0 and 0 < r < 1 such that N(x, y, t) > 1 - r for all $x, y \in B$.

Definition 2.12. A subset *B* of a fuzzy 2-normed linear space (X, N) is said to be compact if any sequence $\{x_n\}$ in *B* has a subsequence converging to an element of *B*.

3. Fuzzy Anti-2-Norms on a Linear Space

In this section, we introduce the notion of fuzzy anti-2-normed linear space and investigate their important properties.

Definition 3.1. Let U be a linear space over a real field F. A fuzzy subset N^* of $U \times U \times R$ such that for all $x, y, u \in U$

 $(2 - N^*1)$: For all $t \in R$ with $t \le 0$, $N^*(x, y, t) = 1$,

 $(2 - N^*2)$: For all $t \in R$ with t > 0, $N^*(x, y, t) = 0$ if and only if x, y are linearly dependent

 $(2 - N^*3)$: $N^*(x, y, t)$ is invariant under any permutation of x, y

 $(2 - N^*4)$: For all $t \in R$ with t > 0, $N^*(x, cy, t) = N^*(x, y, \frac{t}{|c|})$ if $c \neq 0$, $c \in F$

 $(2 - N^*5)$: For all $s, t \in R$, $N^*(x, y + u, s + t) \le \max\{N^*(x, y, s), N^*(x, u, t)\}$

 $(2 - N^*6)$: $N^*(x, y, t)$ is a non-increasing function of $t \in R$ and $\lim_{t \to \infty} N^*(x, y, t) = 0$.

Then N^* is said to be a fuzzy anti-2-norm on a linear space U and the pair (U, N^*) is called a fuzzy anti-2-normed linear space (briefly Fa-2-NLS).

The following condition of fuzzy anti-2-norm N^* will be required later on.

 $(2 - N^*7)$: For all $t \in R$ with t > 0, $N^*(x, y, t) < 1$, implies that x, y are linearly dependent.

Example 3.2. Let $(U, \| \bullet, \bullet \|)$ be a 2-normed linear space. Define

$$N^*(x, y, t) = \frac{\|x, y\|}{t + \|x, y\|}, \text{ when } t > 0, t \in R, x, y \in U$$
$$= 1, \text{ when } t \le 0, t \in R, x, y \in U.$$

Then (U, N^*) is an Fa-2-NLS.

Proof. Now we have to show that $N^*(x, y, t)$ is a fuzzy anti-2-norm in U.

 $(2 - N^*1)$: For all $t \in R$ with $t \le 0$, we have by definition $N^*(x, y, t) = 1$.

 $(2 - N^*2)$: For all $t \in R$ with t > 0,

$$N^*(x, y, t) = 0 \Leftrightarrow \frac{\|x, y\|}{t + \|x, y\|} = 0 \Leftrightarrow \|x, y\| = 0 \Leftrightarrow x, y \text{ are linearly dependent}$$

 $(2 - N^*3)$: As ||x, y|| is invariant under any permutation of x, y, it follows that $N^*(x, y, t)$ is invariant under any permutation of x, y

 $(2 - N^*4)$: For all $t \in R$ with t > 0 and $c \neq 0$, $c \in F$, we get

$$N^*(x, cy, t) = \frac{\|x, cy\|}{t + \|x, cy\|} = \frac{|c| \|x, y\|}{t + |c| \|x, y\|} = \frac{\|x, y\|}{\frac{t}{|c|} + \|x, y\|} = N^*(x, y, \frac{t}{|c|}).$$

 $(2 - N^*5)$: For all $s, t \in R$ and $x, y, u \in U$. We have to show that $N^*(x, y + u, s + t) \le \max\{N^*(x, y, s), N^*(x, u, t)\}$. If (a) s + t < 0 (b) s = t = 0 (c) s + t > 0; s > 0, t < 0; t > 0, then in these cases the relation is obvious. If (d) t > 0, t > 0, t > 0, t > 0, t > 0. Then assume that

$$N^{*}(x, y, s) \leq N^{*}(x, u, t) \Rightarrow \frac{\|x, y\|}{s + \|x, y\|} \leq \frac{\|x, u\|}{t + \|x, u\|} \Rightarrow \|x, y\|(t + \|x, u\|) \leq \|x, u\|(s + \|x, y\|)$$
$$\Rightarrow t\|x, y\| \leq s\|x, u\|$$

Now
$$\frac{\|x,y+u\|}{s+t+\|x,y+u\|} - \frac{\|x,u\|}{t+\|x,u\|} \le \frac{\|x,y\|+\|x,u\|}{s+t+\|x,y\|+\|x,u\|} - \frac{\|x,u\|}{t+\|x,u\|} = \frac{t\|x,y\|-s\|x,u\|}{(s+t+\|x,y\|+\|x,u\|)(t+\|x,u\|)}.$$

By using equation (1), we get
$$\frac{\|x,y+u\|}{s+t+\|x,y+u\|} \le \frac{\|x,u\|}{t+\|x,u\|}$$
. Similarly $\frac{\|x,y+u\|}{s+t+\|x,y+u\|} \le \frac{\|x,y\|}{s+\|x,y\|}$.

Hence
$$N^*(x, y + u, s + t) \le \max\{N^*(x, y, s), N^*(x, u, t)\}.$$

 $(2 - N^*6)$: If $t_1 < t_2 \le 0$, then we have $N^*(x, y, t_1) = N^*(x, y, t_2) = 1$. If $0 < t_1 < t_2$ then

$$\frac{\|x,y\|}{t_1+\|x,y\|}-\frac{\|x,y\|}{t_2+\|x,y\|}=\frac{\|x,y\|(t_2-t_1)}{(t_1+\|x,y\|)(t_2+\|x,y\|)}>0 \Rightarrow N^*(x,y,t_1)\geq N^*(x,y,t_2).$$

Thus $N^*(x, y, t)$ is a non-increasing function of $t \in R$. Again

$$\lim_{t \to \infty} N^*(x, y, t) = \lim_{t \to \infty} \frac{\|x, y\|}{t + \|x, y\|} = 0, \text{ for all } x, y \in U. \text{ Hence } (U, N^*) \text{ is an Fa-2-NLS}.$$

Example 3.3. Let $(U, \| \bullet, \bullet \|)$ be a 2-normed linear space. Define $N^*: U \times U \times R \longrightarrow [0, 1]$ by

$$N^*(x, y, t) = 0$$
, when $t > ||x, y||, t \in R, x, y \in U$
= 1, when $t \le ||x, y||, t \in R, x, y \in U$.

(1)

Then (U, N^*) is an Fa-2-NLS.

Proof. It can be easily verified that (U, N^*) is an Fa-2-NLS.

Remark 3.4. N^* is a fuzzy anti-2-norm on $U \Leftrightarrow 1 - N^*$ is a fuzzy 2-norm on U.

Lemma 3.5. Let (U, N^*) is an Fa-2-NLS. Then $N^*(x, y - u, t) = N^*(x, u - y, t)$ for all $x, y, u \in U$ and $t \in (0, \infty)$.

Proof. For $x, y, u \in U$ and $t \in (0, \infty)$, $N^*(x, y - u, t) = N^*(x, -(u - y), t) = N^*(x, u - y, \frac{t}{|L|}) = N^*(x, u - y, t)$.

Definition 3.6. Let N^* be a fuzzy anti-2-norm on U satisfying $(2 - N^*7)$. Define

 $||x, y||_{\alpha}^* = \inf\{t > 0 : N^*(x, y, t) < \alpha, \ \alpha \in (0, 1]\}.$

Lemma 3.7. Let (U, N^*) be a Fa-2-NLS. For each $\alpha \in (0, 1]$ and $x, y, u \in U$. Then we have

- (i) $||x,y||_{\alpha_1}^* \ge ||x,y||_{\alpha_2}^*$ for $0 < \alpha_1 < \alpha_2 \le 1$,
- (ii) $||x, cy||_{\alpha}^* = |c| ||x, y||_{\alpha}^*$ for any scalar c,
- (iii) $||x, y + u||_{\alpha}^* \le ||x, y||_{\alpha}^* + ||x, u||_{\alpha}^*$.

Proof. (i) For $0 < \alpha_1 < \alpha_2 \le 1$, we note that

 $\inf\{t > 0: N^*(x, y, t) < \alpha_1\} \ge \inf\{t > 0: N^*(x, y, t) < \alpha_2\} \Rightarrow \|x, y\|_{\alpha_1}^* \ge \|x, y\|_{\alpha_2}^*.$

(ii) For any scalar c and for all $\alpha \in (0, 1]$,

$$\begin{aligned} \|x,cy\|_{\alpha}^* &= \inf\{t>0: N^*(x,cy,t) < \alpha, \alpha \in (0,1]\} = \inf\{t>0: N^*(x,y,\tfrac{t}{|c|}) < \alpha, \alpha \in (0,1]\} \\ &= |c| \ \inf\{t>0: N^*(x,y,t) < \alpha, \alpha \in (0,1]\} = |c| \ \|x,y\|_{\alpha}^*. \end{aligned}$$

(iii) For any $\alpha \in (0, 1]$,

$$||x,y||_{\alpha}^{*} + ||x,u||_{\alpha}^{*} = \inf\{t > 0 : N^{*}(x,y,t) < \alpha\} + \inf\{s > 0 : N^{*}(x,u,s) < \alpha\}$$

$$\geq \inf\{s + t > 0 : N^{*}(x,y,t) < \alpha, N^{*}(x,u,s) < \alpha\} = ||x,y+u||_{\alpha}^{*}.$$

Theorem 3.8. Let (U, N^*) be a Fa-2-NLS. Then $\{\|\bullet, \bullet\|_{\alpha}^* : \alpha \in (0, 1]\}$ is a decreasing family of 2-norms on a linear space U.

Proof. By lemma 3.7 it can be easily verified.

Theorem 3.9. Let $\{\|\bullet, \bullet\|_{\alpha}^* : \alpha \in (0, 1]\}$ be a decreasing family of 2-norms on a linear space U. Now define a function $N_1^* : U \times U \times R \longrightarrow [0, 1]$ as

$$N_1^*(x, y, t) = \inf\{\alpha \in (0, 1] : ||x, y||_{\alpha}^* \le t\}, \text{ when } (x, y, t) \ne 0,$$

= 1, when $(x, y, t) = 0$.

Then (a) N_1^* is a fuzzy anti-2-norm on U.

(b) For each $x, y \in U$, $\exists r = r(x, y) > 0$ such that $N_1^*(x, y, t) = 1$.

Proof. (a) Now we have to show that N_1^* is a fuzzy anti-2-norm on U.

```
(2 - N^*1): (i) For all t \in R with t < 0, \{\alpha \in (0, 1] : ||x, y||_{\alpha}^* \le t\} = \Phi, \forall x, y \in U, we have N_1^*(x, y, t) = \inf\{\alpha \in (0, 1] : ||x, y||_{\alpha}^* \le t\} = 1.
```

- (ii) For t = 0 and $x \neq 0$, $y \neq 0$, $\{\alpha \in (0,1] : ||x,y||_{\alpha}^* \leq t\} = 0$, $\forall x, y \in U$, we have $N_1^*(x,y,t) = 1$.
- (iii) For t = 0 and $x \neq 0$, $y \neq 0$, then from the definition $N_1^*(x, y, t) = 1$.

Thus for all $t \in R$ with $t \le 0$, $N_1^*(x, y, t) = 1$, $\forall x, y \in U$.

 $(2-N^*2)$: For all $t \in R$ with t > 0, $N_1^*(x, y, t) = 0$. Choose any $\varepsilon \in (0, 1)$. Then for any t > 0, $\exists \alpha_1 \in (\varepsilon, 1]$ such that $||x,y||_{\alpha_1}^* \le t$ and hence $||x,y||_{\varepsilon}^* \le t$. Since t > 0 is arbitrary, this implies that $||x,y||_{\varepsilon}^* = 0$ then x,y are linearly dependent. If x,y are linearly dependent then for t > 0, $N_1^*(x,y,t) = \inf\{\alpha \in (0,1] : ||x,y||_{\alpha}^* \le t\} = 0$. Thus for all $t \in R$ with t > 0, $N_1^*(x,y,t) = 0$ if and only if x,y are linearly dependent.

 $(2-N^*3)$: As $||x,y||_{\alpha}^*$ is invariant under any permutation of x,y, it follows that $N_1^*(x,y,t)$ is invariant under any permutation of x,y.

 $(2-N^*4) \text{: For all } t \in R \text{ with } t > 0 \text{, and } c \neq 0, c \in F, \text{ we have } N_1^*(x,cy,t) = \inf\{\alpha \in (0,1]: \|x,cy\|_\alpha^* \leq t\} = \inf\{\alpha \in (0,1]: \|x,y\|_\alpha^* \leq$

 $(2 - N^*5)$: We have to show that $\forall s, t \in R$ and $\forall x, y, u \in U, N_1^*(x, y + u, s + t) \le \max\{N_1^*(x, y, s), N_1^*(x, u, t)\}$.

Suppose that $\forall s, t \in R$ and $\forall x, y, u \in U$, $N_1^*(x, y + u, s + t) > \max\{N_1^*(x, y, s), N_1^*(x, u, t)\}$. Choose k such that $N_1^*(x, y + u, s + t) > k > \max\{N_1^*(x, y, s), N_1^*(x, u, t)\}$.

Now $N_1^*(x, y + u, s + t) > k \Rightarrow \inf\{\alpha \in (0, 1] : ||x, y + u||_{\alpha}^* \le s + t\} > k \Rightarrow ||x, y + u||_{k}^* \le s + t \Rightarrow ||x, y||_{k}^* + ||x, u||_{k}^* > s + t$. Again $k > \max\{N_1^*(x, y, s), N_1^*(x, u, t)\} \Rightarrow k > N_1^*(x, y, s)$ and $k > N_1^*(x, u, t) \Rightarrow ||x, y||_{k}^* \le s$ and $||x, u||_{k}^* \le t \Rightarrow ||x, y||_{k}^* + ||x, u||_{k}^* \le s + t$. Thus $s + t < ||x, y||_{k}^* + ||x, u||_{k}^* \le s + t$, which is a contradiction. Hence $N_1^*(x, y + u, s + t) \le \max\{N_1^*(x, y, s), N_1^*(x, u, t)\}$.

 $(2-N^*6): \text{Let } x,y \in U, \ \alpha \in (0,1). \ \text{Now } t > \|x,y\|_{\alpha}^* \Rightarrow N_1^*(x,y,t) = \inf\{\beta \in (0,1]: \|x,y\|_{\beta}^* \leq t\} \leq \alpha. \ \text{So } \lim_{t \to \infty} N_1^*(x,y,t) = 0.$ Next we verify that $N_1^*(x,y,t)$ is a non-increasing function of $t \in R$. If $t_1 < t_2 \leq 0$, then $N_1^*(x,y,t_1) = N_1^*(x,y,t_2) = 1$, $\forall \ x,y \in U.$ If $0 < t_1 < t_2$ then $\{\alpha \in (0,1]: \|x,y\|_{\alpha}^* \leq t_1\} \subseteq \{\alpha \in (0,1]: \|x,y\|_{\alpha}^* \leq t_2\} \Rightarrow \inf\{\alpha \in (0,1]: \|x,y\|_{\alpha}^* \leq t_1\} \geq \inf\{\alpha \in (0,1]: \|x,y\|_{\alpha}^* \leq t_2\} \Rightarrow N_1^*(x,y,t_1) \geq N_1^*(x,y,t_2).$ Thus $N_1^*(x,y,t)$ is a non-increasing function of $t \in R$ and N_1^* is a fuzzy anti-2-norm on U.

(b) For each $x \neq \underline{0}$, $y \neq \underline{0}$, $||x,y||_{\alpha}^* > 0$. Thus $\exists r = r(x,y) > 0$ such that $||x,y||_{\alpha}^* \geq r(x,y) > 0 \Rightarrow ||x,y||_{\alpha}^* > r(x,y)$, $\forall \alpha \in (0,1] \Rightarrow \inf\{\alpha \in (0,1] : ||x,y||_{\alpha}^* \leq t\} = 1 \Rightarrow N_1^*(x,y,t) = 1$.

Definition 3.10. Let (U, N^*) be a Fa-2-NLS. A sequence $\{x_n\}$ in U is said to be convergent to $x \in U$ if given t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that $N^*(x_n - x, y, t) < r$, for all $n \ge n_0$.

Theorem 3.11. In a Fa-2-NLS (U, N^*) , a sequence $\{x_n\}$ converges to $x \in U$ if and only $\lim_{n \to \infty} N^*(x_n - x, y, t) = 0, \forall t > 0$.

Proof. Fix t > 0. Suppose $\{x_n\}$ converges to $x \in U$. Then for a given r, 0 < r < 1 there exists an integer $n_0 \in N$ such that $N^*(x_n - x, y, t) < r$, for all $n \ge n_0$, and hence $N^*(x_n - x, y, t) \to 0$, as $n \to \infty$. Conversely, if for each t > 0, $N^*(x_n - x, y, t) \to 0$, as $n \to \infty$, then for every r, 0 < r < 1, there exists an integer n_0 such that $N^*(x_n - x, y, t) < r$, for all $n \ge n_0$. Hence $\{x_n\}$ converges to x in U.

Definition 3.12. Let (U, N^*) be a Fa-2-NLS. A sequence $\{x_n\}$ in U is said to be a Cauchy sequence if given t > 0, 0 < r < 1, there exists an integer $n_0 \in N$ such that $N^*(x_{n+p} - x_n, y, t) < r$, for all $n \ge n_0$, p = 1, 2, 3, ...

Theorem 3.13. In a Fa-2-NLS (U, N^*) , a sequence $\{x_n\}$ is a Cauchy sequence in U if and only if $\lim_{n \to \infty} N^*(x_{n+p} - x_n, y, t) = 0$, for $p = 1, 2, 3, \ldots$ and t > 0.

Proof. Fix t > 0. Suppose $\{x_n\}$ is a Cauchy sequence in U. Then for a given r, 0 < r < 1 and p = 1, 2, 3, ... there exists an integer $n_0 \in N$ such that $N^*(x_{n+p} - x_n, y, t) < r$, for all $n \ge n_0$, and hence $N^*(x_{n+p} - x_n, y, t) \to 0$, as $n \to \infty$. Conversely, if for each t > 0, and $p = 1, 2, 3, ..., N^*(x_{n+p} - x_n, y, t) \to 0$, as $n \to \infty$, then for every r, 0 < r < 1, there exists an integer n_0 such that $N^*(x_{n+p} - x_n, y, t) < r$, for all $n \ge n_0$. Hence $\{x_n\}$ is a Cauchy sequence in U.

Theorem 3.14. If a sequence $\{x_n\}$ in a Fa-2-NLS (U, N^*) is convergent then its limit is unique.

Proof. Let $\{x_n\}$ converges to x and z. Also let $s, t \in R^+$ then $\lim_{n \to \infty} N^*(x_n - x, y, t) = 0$ and $\lim_{n \to \infty} N^*(x_n - x, y, s) = 0$. Now

$$N^*(x-z, y, t+s) = N^*(x-x_n+x_n-z, t+s) \le \max\{N^*(x-x_n, y, t), N^*(x_n-z, y, s)\}$$

= $\max\{N^*(x_n-x, y, t), N^*(x_n-z, y, s)\}.$

Taking limit, we have $N^*(x-z,y,t+s) \le \max\{\lim_{n\to\infty} N^*(x_n-x,y,t), \lim_{n\to\infty} N^*(x_n-z,y,s)\}$ $\Rightarrow N^*(x-z,y,t+s) = 0, \ \forall \ s,t\in R^+ \Rightarrow x-z = \underline{0} \Rightarrow x=z.$

Theorem 3.15. In a Fa-2-NLS (U, N^*) , every subsequence of a convergent sequence converges to the limit of a sequence.

Proof. The proof is obvious.

Theorem 3.16. Let L be a linear space, N^* be a fuzzy anti-2-norm on L and $\widehat{N} = (1 - N^*)$ be a fuzzy 2-norm on L. Then (a) $\{x_n\}$ is a convergent sequence in (L, N^*) if and only if $\{x_n\}$ is a convergent sequence in (L, \widehat{N}) .

(b) $\{x_n\}$ is a Cauchy sequence in (L, N^*) if and only if $\{x_n\}$ is a Cauchy sequence in (L, \widehat{N}) .

Proof. (a) Let $\{x_n\}$ be a convergent sequence in $(L, N^*) \Leftrightarrow \lim_{n \to \infty} N^*(x_n - x, y, t) = 0$, for all $t > 0 \Leftrightarrow \lim_{n \to \infty} \widehat{N}(x_n - x, y, t) = 1$ for all $t > 0 \Leftrightarrow \{x_n\}$ is a convergent sequence in (L, \widehat{N}) .

(b) Let $\{x_n\}$ be a Cauchy sequence in $(L, N^*) \Leftrightarrow \lim_{n \to \infty} N^*(x_{n+p} - x_n, y, t) = 0, \ p = 1, 2, 3, \dots$, for all $t > 0 \Leftrightarrow \lim_{n \to \infty} \widehat{N}(x_{n+p} - x_n, y, t) = 1, \ p = 1, 2, 3, \dots$, for all $t > 0 \Leftrightarrow \{x_n\}$ is a Cauchy sequence in (L, \widehat{N}) .

Theorem 3.17. In a Fa-2-NLS (U, N^*) , every convergent sequence is a Cauchy sequence.

Proof. Let $\{x_n\}$ be a convergent sequence in a Fa-2-NLS (U, N^*) then $\lim_{n\to\infty} N^*(x_n - x, y, t) = 0$, for all t > 0. Let $s, t \in R^+$ and $p = 1, 2, 3, \ldots$, we have

$$\begin{split} N^*(x_{n+p}-x_n,y,s+t) &= N^*(x_{n+p}-x+x-x_n,s+t) \leq \max\{N^*(x_{n+p}-x,y,s),N^*(x-x_n,y,t)\} \\ &= \max\{N^*(x_{n+p}-x,y,s),N^*(x_n-x,y,t)\}. \end{split}$$

Taking limit, we have $\lim_{n\to\infty} N^*(x_{n+p}-x_n,y,s+t) \le \max\{\lim_{n\to\infty} N^*(x_{n+p}-x,y,s),\lim_{n\to\infty} N^*(x_n-x,y,t)\} = 0$

 $\Rightarrow \lim_{n\to\infty} N^*(x_{n+p}-x_n,y,s+t)=0, \ \forall \ s,t\in R^+ \ \text{and} \ p=1,2,3,\ldots \ \text{Thus} \ \{x_n\} \ \text{is a Cauchy sequence in Fa-2-NLS} \ (U,N^*).$

The converse of the above theorem is not necessarily true. This is justified by the following example.

Example 3.18. Let $(X, \| \bullet, \bullet \|)$ be a 2-normed linear space and $N^* : X \times X \times R \longrightarrow [0, 1]$. Define

$$N^*(x, y, t) = \frac{\|x, y\|}{t + \|x, y\|}, \text{ when } t > 0, t \in R, x, y \in X$$

= 1, when $t \le 0, t \in R, x, y \in X$.

Then (X, N^*) is an Fa-2-NLS. Let $\{x_n\}$ be a sequence in X, then

- (a) $\{x_n\}$ is a Cauchy sequence in $(X, \|\bullet, \bullet\|)$ if and only if $\{x_n\}$ is a Cauchy sequence in (X, N^*) .
- (b) $\{x_n\}$ is a convergent sequence in $(X, \|\bullet, \bullet\|)$ if and only if $\{x_n\}$ is a convergent sequence in (X, N^*) .

Proof. (a) Let $\{x_n\}$ be a Cauchy sequence in $(X, \|\bullet, \bullet\|) \Leftrightarrow \lim_{n \to \infty} \|x_{n+p} - x_n, y\| = 0$, for all $p = 1, 2, 3, \dots$

$$\Leftrightarrow \lim_{n \to \infty} N^*(x_{n+p} - x_n, y, t) = \lim_{n \to \infty} \frac{\|x_{n+p} - x_n, y\|}{t + \|x_{n+p} - x_n, y\|} = 0, \text{ for all } t > 0, \ p = 1, 2, 3, \dots$$

$$\Leftrightarrow \lim_{n \to \infty} N^*(x_{n+p} - x_n, y, t) = 0, \text{ for all } t > 0, \ p = 1, 2, 3, \dots \Leftrightarrow \{x_n\} \text{ is a Cauchy sequence in } (X, N^*).$$

(b) Let $\{x_n\}$ be a convergent sequence in $(X, \|\bullet, \bullet\|) \Leftrightarrow \lim_{n \to \infty} \|x_n - x, y\| = 0$

$$\Leftrightarrow \lim_{n \to \infty} N^*(x_n - x, y, t) = \lim_{n \to \infty} \frac{||x_n - x, y||}{t + ||x_n - x, y||} = 0, \text{ for all } t > 0 \Leftrightarrow \lim_{n \to \infty} N^*(x_n - x, y, t) = 0$$

$$\Leftrightarrow \{x_n\} \text{ is a convergent sequence in } (X, N^*).$$

Remark 3.19. If there exist a 2-normed linear space $(X, \| \bullet, \bullet \|_0)$ which is not complete, then the fuzzy anti-2-norm induced by such a crisp 2-norm $\| \bullet, \bullet \|_0$ on a incomplete linear space X, is an incomplete Fa-2-NLS.

Definition 3.20. Let (U, N^*) be a Fa-2-NLS. A subset B of U is said to be closed if for any sequence $\{x_n\}$ in B converges to $x \in B$, that is $\lim_{n \to \infty} N^*(x_n - x, y, t) = 0$, $\forall t > 0$ implies that $x \in B$.

Definition 3.21. Let (U, N^*) be a Fa-2-NLS. A subset W of U is said to be the closure of $B \subset W$ if for any $w \in W$, there exists a sequence $\{x_n\}$ in B such that $\lim_{n\to\infty} N^*(x_n-x,y,t)=0, \forall t\in R^+$, we denote the set W by \overline{B} .

Definition 3.22. A subset *B* of a Fa-2-NLS (U, N^*) is said to be bounded if and only if there exists t > 0 and 0 < r < 1 such that $N^*(x, y, t) < r$, $\forall x, y \in B$.

Definition 3.23. A subset *B* of a Fa-2-NLS (U, N^*) is said to be compact if any sequence $\{x_n\}$ in *B* has a subsequence converging to an element of *B*.

Theorem 3.24. Let (U, N^*) be a Fa-2-NLS then every Cauchy sequence in (U, N^*) is bounded.

Proof. Let $\{x_n\}$ be a Cauchy sequence in a Fa-2-NLS (U, N^*) . Then $\lim_{n\to\infty} N^*(x_{n+p}-x_n,y,t)=0$, for $p=1,2,3,\ldots$, and t>0. Choose a fixed $\alpha_0, 0<\alpha_0<1$. Then we have $\lim_{n\to\infty} N^*(x_n-x_{n+p},y,t)=0<1-\alpha_0, \forall t>0$, $p=1,2,3,\ldots\Rightarrow$ For t'>0, $\exists n'_0=n'_0(t')$ such that $\lim_{n\to\infty} N^*(x_n-x_{n+p},y,t')<1-\alpha_0, \forall n\geq n'_0,t>0$, $p=1,2,3,\ldots$ Since $\lim_{n\to\infty} N^*(x,y,t)=0$, we have for each $x_i, \exists t'_i>0$ such that $N^*(x_i,y,t)<1-\alpha_0, \forall t>t'_i, i=1,2,3,\ldots$ Let $t'_0=t'+\max\{t'_1,t'_2,\ldots,t'_{n_0}\}$. Then $N^*(x_n,y,t'_0)\leq N^*(x_n,y,t'+t'_{n_0})=N^*(x_n-x_{n'_0}+x_{n'_0},y,t'+t'_{n_0})\leq \max\{N^*(x_n-x_{n'_0},y,t'),N^*(x_{n'_0},y,t'_{n_0})\}=(1-\alpha_0), \forall n\geq n'_0$. i.e., $N^*(x_n,y,t'_0)\leq (1-\alpha_0), \forall n\geq n'_0$. Therefore $\{x_n\}$ is bounded in (U,N^*) .

Conclusion

One can introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-n-normed linear space and also introduce the concept of compact subset and bounded subset in fuzzy anti-n-normed linear space.

Acknowledgment

The author would like to thank the referees for their valuable comments and suggestions in rewriting the paper in the present form.

References

Bag, T & Samanta, T. K. (2003). Finite dimensional fuzzy normed linear spaces, *The Journal of Fuzzy Mathematics*, 11(3), 687-705.

Bag, T & Samanta, T. K. (2005). Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151, 513-547.

Bag, T & Samanta, T. K. (2008). A comparative study of fuzzy norms on a linear space, *Fuzzy Sets and Systems* 159, 670-684.

Cheng, S. C. & Mordesen, J. N. (1994). Fuzzy linear operators and fuzzy normed linear spaces, *Bull. Cal. Math. Soc.*, 86, 429-436.

Felbin, C. (1992). Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48, 239-248.

Iqbal H. Jebril & Samanta, T. K. (2010). Fuzzy Anti-Normed space, Journal of Mathematics Technology, February, 66-77.

Kaleva, O. & Seikkala, S. (1984). On fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215-229.

Katsaras, A. K. (1984). Fuzzy topological vector spaces, Fuzzy Sets and Systems, 12, 143-154.

Kramosil, I. & Michalek, J. (1975). Fuzzy metric and statistical metric space, Kybernetica, 11, 326-334.

Somasundaram R. M. & Thangaraj Beaula. (2009). Some Aspects of 2-Fuzzy 2-Normed Linear Spaces, *Bull. Malaya. Math. Sci. Soc.*, 32(2), 211-221.