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Abstract

In this paper, we study fuzzy anti-2-norm on a linear space and some results are introduced in fuzzy anti-2-norms on
a linear space. We shall introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-2-normed linear
space and also introduce the concept of compact subset and bounded subset in fuzzy anti-2-normed linear space.
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1. Introduction

Fuzzy set theory is a useful tool to describe situations in which the data are imprecise or vague. Fuzzy sets handle such
situation by attributing a degree to which a certain object belongs to a set. The idea of fuzzy norm was initiated by
Katsaras in [1984]. Felbin [1992] defined a fuzzy norm on a linear space whose associated fuzzy metric is of Kaleva and
Seikkala type [1984]. Cheng and Mordeson [1994] introduced an idea of a fuzzy norm on a linear space whose associated
metric is Kramosil and Michalek type [1975].

Bag and Samanta in [2003] gave a definition of a fuzzy norm in such a manner that the corresponding fuzzy metric is
of Kramosil and Michalek type [1975]. They also studied some properties of the fuzzy norm in [2005] and [2008]. Bag
and Samanta discussed the notions of convergent sequence and Cauchy sequence in fuzzy normed linear space in [2003].
They also made in [2008] a comparative study of the fuzzy norms defined by Katsaras [1984], Felbin [1992], and Bag
and Samanta [2003].

In [2010] Igbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending on the idea of fuzzy
anti-norm was introduced by Bag and Samanta [2008] and investigated their important properties.

In this paper, we study fuzzy anti-2-norm on a linear space and some results are introduced in fuzzy anti-2-norms on
a linear space. We shall introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-2-normed linear
space and also introduce the concept of compact subset and bounded subset in fuzzy anti-2-normed linear space.

In [1992], Felbin introduced the concept of a fuzzy norm based on a Kaleva and Seikkala type [1984] of fuzzy metric
using the notion of fuzzy number. Let X be a vector space over R(set of real numbers). Let ||e | : X — R*(1) be
a mapping and let the mappings L, U : [0, 1] x [0, 1] — [0, 1], be symmetric, non-decreasing in both arguments and
satisfying L(0,0) = O and U(1, 1) = 1. Write [||x|[], = [||x||(lYR||x||§] forx € X,0 <a <1 and suppose forall x € X, x # 0
there exists ¢ € (0, 1] independent of x such that for all @ < «y,

(A) [Ixlly < oo (B) infllxll, > 0
The quadruple (X, || e ||, L, U) is called a Felbin-fuzzy normed linear space and || e || is a Felbin-fuzzy norm if
(1) ||x]l = 0 if and only if x = O (the null vector),
(D) |lrxll = Irl Ixll, x € X, r € R,
(iii) For all x,y € X, (a) Whenever s < ||x||}, t< ||y||} and s +1 < ||x + yII},
llx + YlICs + 1) = L(IxlICs), [yl @2)).
(b) Whenever s > ||x||{, t> IIyII{ and s+ 1> ||x +y||1,
llx + ¥lI(s + 1) < U(lIxICs), [Iyl1(2)).

Definition 1.1. Let X be a vector space over R(set of real numbers). Let ||e, o|| : X X X — R*(I) be a mapping and let the
mappings L, U : [0, 1] x [0, 1] — [0, 1], be symmetric, non-decreasing in both arguments and satisfying L(0,0) = 0 and
U(1,1) = 1. Write [||x, 2], = [IIx,zII(lYRIIx,zlli] for x,z € X, 0 < @ < 1 and suppose for all x,z € X, x # 0, z # 0, there
exists @ € (0, 1] independent of x, z such that for all @ < «y,

A) lIx, 22 <o B)inflx,zll, >0

The quadruple (X, ||e, o||, L, U) is called a Felbin-fuzzy 2-normed linear space and ||e, e|| is a Felbin-fuzzy 2-norm if
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@) |lx, zll = O if and only if x, z are linearly dependent,
@ai) ||lrx, zll = |l l|lx, 2ll, x,z € X, r € R
(iii) ||x, z|| is invariant under any permutation of x, z,
(iv) For all x,y,7 € X, (a) Whenever s < |1, 2|}, £ < ||y, zll! and s + 7 < [lx + y, zI|!,
llx +y, zll(s + 2) = L(|lx, zl(s), [ly, zl|(®)).
(b) Whenever s > ||x, zll{, t >y, zll% and s+t 2> ||x+y, Z||%,
llx + v, 2ll(s + 1) < U (llx, 2l|(s), [ly, zl[(1)).
2. Fuzzy 2-Norms on a Linear Space
This section contains a few basic definitions and preliminary results which will be needed in the sequel.

Definition 2.1. [Somasundaram, 2009]. Let X be a real linear space of dimension greater than one and let ||e, o|| be a real
valued function on X X X satisfying the following conditions

2N;: ||lx, yll = O if and only if x and y are linearly dependent

2Nz: I yll = Hly, I

2Ns: |lax, yll = le| ||x, yl|, for every @ € R

2Ng: lx,y + 2l < e, i+ [, 2]

then the function ||e, e|| is called a 2-norm on X and the pair (X, ||e, o||) is called a 2-normed linear space.

Definition 2.2. [Somasundaram, 2009]. Let X be a linear space over a field F. A fuzzy subset N of X X X X R is called a
fuzzy 2-norm on X if the following conditions are satisfied for all x,y,z € X.

(2—-N1): Forall t € Rwitht <0, N(x,y,t) =0,

(2 - N2): For all t € R with t > 0, N(x,y,t) = 1 if and only if x, y are linearly dependent
(2= N3): N(x,y,t)is invariant under any permutation of x, y

(2—-N4): Forallt € Rwitht >0, N(x,cy,t) = N(x,y, ﬁ) ifc#0,ceF

(2 —N5): Forall s, € R, N(x,y + 2,5 + 1) > min{N(x, y, s), N(x, z, 1)}

(2 — N6): N(x,y,1)is a non-decreasing function of # € R and rllglo N(x,y,t) = 1.

Then N is said to be a fuzzy 2-norm on a linear space X and the pair (X, N) is called a fuzzy 2-normed linear space (briefly
F-2-NLS).

The following condition of fuzzy 2-norm N will be required later on.

(2= NT7): For all t € R with t > 0, N(x,y,1) > 0, implies that x, y are linearly dependent.
Example 2.3. [Bag, 2003]. Let (X, ||e, o||) be a 2-normed linear space. Define

t
£+ lx ¥l
0, whenr<0, reR, x,yeX.

N(x,y,1)

, whent>0,t€eR, x,yeX

Then (X, N) is an F-2-NLS.
Example 2.4. [Bag, 2003]. Let (X, ||e, o||) be a 2-normed linear space. Define
N(x,y,t) = 0, whent <|x,y|l, teR, x,ye X
= 1, whent>|x,y||, t€R, x,ye X.
Then (X, N) is an F-2-NLS.

Theorem 2.5. Let (X, N) be a fuzzy 2-normed linear space. Define ||x,y||, = inf{z : N(x,y,#) > a}; € (0,1). Then
{lle, ®]|, : @ € (0, 1)} is an ascending family of 2-norms on X. These 2-norms are called @-2-norms on X corresponding to
fuzzy 2-norm on X.

Theorem 2.6. Let {|le,o|, : @ € (0,1)} be an ascending family of 2-norms on linear space X. Define a function
N :XXxXXR—[0,1] as

N'(x,y,1)

sup{a € (0, 1) : [|x,yll, <1}, when (x,y,1) #0,
0, when (x,y,1) = 0.
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Then N’ is a fuzzy 2-norm on X

If the index set (0, 1) of the family of crisp 2-norms {||e, e||, : @ € (0, 1)} of Theorem 2.6 is extended to (0, 1] then a fuzzy
2-norm N is generated, satisfying an additional property that N(x, y, ¢) attains the value 1 at some finite value ?.

Theorem 2.7. Let {|le,e|, : @ € (0, 1]} be an ascending family of 2-norms on linear space X. Define a function
N :XXXXR—10,1] as

N'(x,y,5) = supf{a € (0,1]:|lx,yll, <}, when (x,y,7) #0,
0, when (x,y,1) = 0.

Then (a) N’ is a fuzzy 2-norm on X

(b) For each x,y € X, At = t(x,y) > 0 such that N'(x,y, s) = 1, forall s > 1.

Example 2.8. Let X = R® be a linear space over R. Define ||, o] : X x X X R — [0, 1] by
Ilx, Il = max{lxiyz — xay1l, [x2y3 — x3¥2l, [x3y1 = x1yslh

where (x1, X2, x3) € R® and (y1, y2,v3) € R> then (X, ||e, o||) is a 2-normed linear space.

Define N : X X X xR — [0, 1] by

N(x,y,1)

1, if £ > |lx, yll

1
0.5, if Ellx,yll <t < |lxyll

1
0, ifr < Zllx

Then (X, N) is a fuzzy 2-normed linear space. Define ||x, y||, = inf{t : N(x,y,7) > @}, @ € (0, 1). Then {||e, o], : @ € (0, 1)}
be an ascending family of 2-norms on a linear space X. The @-2-norms corresponding to fuzzy 2-norm on X are given by

I,y if 1> a> 0.5

l1x, Ylla

1
5||x,y|| if0<a<05

If the index set (0, 1) of the family of crisp 2-norms {||e, e||, : @ € (0, 1)} of Theorem 2.6 is extended to (0, 1] then a fuzzy
2-norm N is generated, satisfying an additional property that N(x, y, ¢) attains the value 1 at some finite value ?.
Let {||e, o]|, : @ € (0, 1]} be an ascending family of 2-norms on linear space X. Define a function
N :XXXxR—[0,1] as N'(x,y,t) = sup{a € (0,1]:|lx,ylle <1}, when (x,y,1) # 0,
0, when (x,y,1) =0.

Then N’ is a fuzzy 2-norm on X.

Definition 2.9. Let (X, N) be a fuzzy 2-normed linear space. Let {x,} be a sequence in X then {x,} is said to be convergent
if there exists x € X such that lim N(x, — x,y,t) = 1, for all > 0.
n—oo

Definition 2.10. Let (X, N) be a fuzzy 2-normed linear space. Let {x,} be a sequence in X then {x,} is said to be a Cauchy
sequence if lim N(x,4, — X,,y,1) = 1, forallt >0and p = 1,2,3,....

Definition 2.11. A subset B of a fuzzy 2-normed linear space (X, N) is said to be bounded if and only if there exists > 0
and 0 < r < 1 such that N(x,y,t) > 1 —rforall x,y € B.

Definition 2.12. A subset B of a fuzzy 2-normed linear space (X, N) is said to be compact if any sequence {x,} in B has a
subsequence converging to an element of B.

3. Fuzzy Anti-2-Norms on a Linear Space

In this section, we introduce the notion of fuzzy anti-2-normed linear space and investigate their important properties.
Definition 3.1. Let U be a linear space over a real field F. A fuzzy subset N* of U X U X R such that for all x,y,u € U
(2—=N*1): Forallt € Rwitht <0, N*(x,y,1) = 1,

(2—-N*2): For all t € R with t > 0, N*(x, y,t) = 0 if and only if x, y are linearly dependent

(2= N*3): N*(x,y,t) is invariant under any permutation of x, y

(2 - N*4): Forall 1 € Rwith t > 0, N*(x.cy.1) = N*(x,y, &) if ¢ # 0, c € F
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(2 - N*5): For all s,t € R, N*(x,y +u, s + 1) < max{N"(x,y, s), N (x, u, 1)}
(2= N*6): N*(x,y,1) is a non-increasing function of # € R and tlim N*(x,y,t) = 0.

Then N* is said to be a fuzzy anti-2-norm on a linear space U and the pair (U, N*) is called a fuzzy anti-2-normed linear
space (briefly Fa-2-NLS).

The following condition of fuzzy anti-2-norm N* will be required later on.

(2= N*7): For all t € R with t > 0, N*(x,y,1) < 1, implies that x, y are linearly dependent.

Example 3.2. Let (U, ||e, o||) be a 2-normed linear space. Define

llx, yli

t+ [yl
1, whent <0, teR, x,yeU.

N*(x,v,1) whenr>0,teR, x,ye U

Then (U, N*) is an Fa-2-NLS.

Proof. Now we have to show that N*(x, y, ) is a fuzzy anti-2-norm in U.
(2= N71): For all t € R with ¢t < 0, we have by definition N*(x, y,t) = 1.
(2—-N*2): Forall t € R witht > 0,

[lx, ¥l

N*(x,)”t) =0 ————
1+ |, yll

=0 & [|x,y|]l = 0 & x,y are linearly dependent
(2—-N*3): As ||x,y| is invariant under any permutation of x, y, it follows that N*(x, y, 7) is invariant under any permutation
of x,y

(2—N*4): Forallt € Rwitht>0andc # 0, c € F, we get

R llx, eyl lel llx yll [l i . t
N*(x,cy, 1) = = == =N"(x,y, —).
t+ eyl r+lellleyll g+ 1yl lcl

(2 = N*5): For all s,t € R and x,y,u € U. We have to show that N*(x,y + u, s + 1) < max{N*(x,y, s), N*(x,u, t)}. If (a)
s+t<0M)s=t=0()s+t>0;,5>0,t<0;s5s <0, >0, then in these cases the relation is obvious. If (d) s > 0,
t >0, s +t> 0. Then assume that

llx, yli llx, ull

N*(x,y,8) < N*(x,u,t) = <
s+ eyl o+l ull

= [l YICE + lx, ull) < [l ull(s + lx, yI)

= fllx, yll < sllx, ul| (D

llx, y + ull llx, ull [, yII + {1, ull llx, ull flx, Il = sllx, ull

s+t+lly+ull o r+lxnul T s+ eyl + ol 4 llxull (s 4z eyl e ulD e ul)

X,y +u X, U .. X,y +u X
byl el eyl o

By using equation (1), we get < < .
y using equation (1), we get <= = el stitloytal = s+ ool

Hence N*(x,y+u,s + 1) < max{N"(x,y,s), N (x,u,1)}.
(2 - N*6): If t; < 1, <0, then we have N*(x,y,1;) = N*(x,y,1,) = 1. If 0 < t; < t, then

s s s -t * «
beoll__leoll Bl

nleyl n+lyl @+ Iy + lxyl)

Thus N*(x, y, t) is a non-increasing function of r € R. Again

lim N ey, 1) = Tim —22 — 0 forall xy € U, Hence (U, N*) is an Fa-2-NLS.
[—o0

i=eo 1+ ||x, ¥l

Example 3.3. Let (U, ||e, o||) be a 2-normed linear space. Define N* : U x U x R — [0, 1] by

N*(x,y,f) = 0, whent>|x,y|, t€R, x,ye U
= 1, whent<|x,y|l, t€R, x,y e U.
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Then (U, N*) is an Fa-2-NLS.

Proof. It can be easily verified that (U, N*) is an Fa-2-NLS.

Remark 3.4. N* is a fuzzy anti-2-norm on U & 1 — N* is a fuzzy 2-norm on U.

Lemma 3.5. Let (U, N*) is an Fa-2-NLS. Then N*(x,y — u,t) = N*(x,u — y,t) for all x,y,u € U and t € (0, c0).
Proof. For x,y,u € U and t € (0, c0), N*(x,y — u,t) = N*(x,—(u — y),t) = N*(x,u —y, ﬁ) =N*"(x,u—y,1).
Definition 3.6. Let N* be a fuzzy anti-2-norm on U satisfying (2 — N*7). Define

llx, ¥II;, = inf{r > 0 : N*(x,y,1) < @, a € (0, 1]}.

Lemma 3.7. Let (U, N*) be a Fa-2-NLS. For each « € (0, 1] and x,y,u € U. Then we have

@) el = el for 0 < @y < an < 1,

(i) llx, eylll, = lel llx, yll;, for any scalar c,

(i) [1x, y + ull, < 11x, ylly + [l ull; -

Proof. (i) For 0 < a; < a» < 1, we note that

inf{£ > 0: N*(x,y,0) <a} zinf{t > 0: N*(x,y,1) < az} = [lx. )y, = x5,
(i1) For any scalar ¢ and for all @ € (0, 1],

llx, eyll;, = inf{r > 0 : N*(x,cy, 1) < @, € (0, 1]} = inf{r > 0 : N*(x,y, ﬁ) <a,a€ (0,1]}
=lc| inf{t > 0 : N*(x,y,0) < @, @ € (0, 11} = ] ||x, yIl},-

(iii) For any « € (0, 1],

e, Y15 + [, ully, = inf{z > 0 : N*(x,y,1) < @} +inf{s > 0 : N*(x,u, s) < a}
>inf{s+1>0: N*(x,y,1) <@, N'(x,u,s) <a}=|x,y+ull,.

Theorem 3.8. Let (U, N*) be a Fa-2-NLS. Then {||e, o||, : @ € (0, 1]} is a decreasing family of 2-norms on a linear space
U.

Proof. By lemma 3.7 it can be easily verified.
Theorem 3.9. Let {||e, o]}, : @ € (0, 1]} be a decreasing family of 2-norms on a linear space U. Now define a function

Ny :UXUXR—[0,1] as

Ni(x,y,1) inf{a € (0, 1] : |lx, yll, < 7}, when (x,y,1) # 0,

1, when (x,y,t) = 0.

Then (a) Ny is a fuzzy anti-2-norm on U.
(b) For each x,y € U, A r = r(x,y) > 0 such that Ny (x,y,1) = 1.
Proof. (a) Now we have to show that N} is a fuzzy anti-2-norm on U.

(2-N*1): (i) Forall t € Rwitht < 0, {@ € (0, 1] : ||x,y|[, <t} =D,V x,y € U, we have
Ni(x,y,1) = inf{a € (0,17 : |lx, |, < 1} = 1.

(i) Fort=0and x# 0,y #0,{@ € 0,1]: [lx,yll, <t} =D,V x,y € U, we have N{(x,y,0) = L.
(iii) For = 0 and x # O, y # O, then from the definition Nj(x,y,?) = 1.
Thus forall t € R with 7 < 0, N{(x,y,0) =1,V x,y € U.

(2= N*2): Forall r € R with t > 0, N{(x,y,7) = 0. Choose any & € (0, 1). Then for any > 0, 3 a1 € (g, 1] such that
[|x, yllf;] < tand hence ||x, yll; < 7. Since 7 > 0 is arbitrary, this implies that [|x, yl|> = O then x,y are linearly dependent.
If x,y are linearly dependent then for # > 0, N{(x,y,) = inf{a € (0,1] : [lx, |, <} = 0. Thus for all # € R with ¢ > 0,
Nj(x,y,t) = 0if and only if x, y are linearly dependent.

(2—-N73): As ||x, ylI}, is invariant under any permutation of x, y, it follows that N7 (x, y, ) is invariant under any permutation
of x,y.

(2—N*4): Forallt € Rwitht >0, and ¢ # 0, c € F, we have N (x,cy,t) = inf{a € (0, 1] : [lx,oyll;, < #} = inf{a € (0, 1] :
lel llx, e <} =infle € (0,17 : Ix )l < 5} = Ni(xy, i) YV x,y € U.

(2 = N*5): We have to show that V 5,7 € Rand ¥ x,y,u € U, N{(x,y + u, s + 1) < max{Ny(x,y, s), Ny (x, u, 1)}.

Suppose that ¥ 5,7 € Rand ¥V x,y,u € U, Nj(x,y + u, s + 1) > max{N(x,y, s), N] (x, u, 1)}. Choose k such that Nj(x,y +
u, s + 1) >k >max{Ny(x,y, s), Ny (x, u, 0)}.
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Now Nj(x,y+u,s+1) > k = infla € (0,17 : |lx,y + ull, < s+1} > k= |lx,y + ully < s+t = [lx, ¥l +lx, ull; > s+1. Again
k > max{Nj(x,y, s), N;(x,u, 1)} = k > Nj(x,y,s) and k > N{(x,u,1) = |lx,ylly < sand [|lx,ull; <t = |lx,yll; + llx,ull; <
s+1. Thus s+ < ||x, yll; +lx, ull; < s+1, whichis a contradiction. Hence Nj(x,y+u, s +1) < max{N{(x,y, s), Ny (x, u, 1)}.
(2-N76): Letx,y € U, a € (0,1). Now > |Ix, y|l, = Nj(x,y,1) = inf{B € (0, 1] : ||x,y||; <t} < a. Solim Ni(x,y,1) = 0.
t—00
Next we verify that Ni(x, y,?) is a non-increasing function of € R. If 11 < £, < 0, then N{(x,y,11) = Nj(x,y,12) = 1,
Vx,yeU. If0 <1 <tpthen{a € (0,1] : |l ¥, < i} S{a € (0,11 : |lx )}, < n} = infle € (0,1] : |lx, ), < 11} >
inf{a € (0,1] : [Ix,yll;, < ©2} = Nj(x,y,t1) > N{(x,y,12). Thus Nj(x,y,1) is a non-increasing function of 7 € R and N is a
fuzzy anti-2-norm on U.

(b) Foreach x # 0,y # 0, |lx,y|[, > 0. Thus 3 r = r(x,y) > 0 such that [|lx,yll;, > r(x,y) > 0 = [lx,yll, > r(x,y),
Yae(0,1]=infla € (0,17 : |lx,yll, <t} =1 = N{(x,y,0) = L.

Definition 3.10. Let (U, N*) be a Fa-2-NLS. A sequence {x,} in U is said to be convergent to x € U if given ¢t > 0,
0 < r < 1, there exists an integer ny € N such that N*(x, — x,y,1) < r, for all n > ny.

Theorem 3.11. In a Fa-2-NLS (U, N*), a sequence {x,} converges to x € U if and only lim N*(x, — x,y,¢) =0,V ¢ > 0.

Proof. Fix t > 0. Suppose {x,} converges to x € U. Then for a given r, 0 < r < 1 there exists an integer nyp € N
such that N*(x, — x,y,t) < r, for all n > ng, and hence N*(x, — x,y,f) — 0, as n — co. Conversely, if for each t > 0,
N*(x, — x,y,t) = 0, as n — oo, then for every r, 0 < r < 1, there exists an integer ny such that N*(x, — x,y, ) < r, for all
n > ng. Hence {x,} converges to x in U.

Definition 3.12. Let (U, N*) be a Fa-2-NLS. A sequence {x,} in U is said to be a Cauchy sequence if given r > 0,
0 < r < 1, there exists an integer ng € N such that N* (x4, — X5, y,2) < r,foralln >ng, p =1,2,3,....

Theorem 3.13. In a Fa-2-NLS (U, N*), a sequence {x,} is a Cauchy sequence in U if and only if
lim N*(xp4p = X4, ¥,8) =0, for p=1,2,3,... and ¢ > 0.

n—oo

Proof. Fix r > 0. Suppose {x,} is a Cauchy sequence in U. Then for a givenr,0 < r < land p = 1,2,3,... there exists
an integer ng € N such that N*(x,., —x,,y,1) < r, for all n > ng, and hence N*(x,4+, — X,,y, 1) — 0, as n — oco. Conversely,
ifforeacht>0,and p = 1,2,3,..., N*(Xy1p — Xp,y,1) = 0, as n — oo, then for every r, 0 < r < 1, there exists an integer
ng such that N*(x,.4,, — x,,y,1) < r, for all n > ny. Hence {x,} is a Cauchy sequence in U.

Theorem 3.14. If a sequence {x,} in a Fa-2-NLS (U, N*) is convergent then its limit is unique.
Proof. Let {x,} converges to x and z. Also let s,7 € R* then '1113010 N*(x, — x,y,t) = 0 and
nh_)rgo N*(x, — z,y,5) = 0. Now
N (x—2z,y,t+5)=N"(x—x, +x, — 2, t +5) <max{N"(x — x,,y,1), N"(x,, — 2,5, 5)}

= max{N*(x, — x,y,1), N (x, — 2, ¥, 5)}.
Taking limit, we have N*(x — z,y,¢ + s) < max{lim N*(x, — x,y, ), lim N*(x, — z,y, 5)}
:>N*(x—z,y,l+s)=0,Vs,leR*zx—zero;x:Z. o
Theorem 3.15. In a Fa-2-NLS (U, N*), every subsequence of a convergent sequence converges to the limit of a sequence.
Proof. The proof is obvious.
Theorem 3.16. Let L be a linear space, N* be a fuzzy anti-2-norm on L and N=(-N)bea fuzzy 2-norm on L. Then
(a) {x,} is a convergent sequence in (L, N*) if and only if {x,} is a convergent sequence in (L, N ).
(b) {x,} is a Cauchy sequence in (L, N*) if and only if {x,} is a Cauchy sequence in (L, JV).
Proof. (a) Let {x,} be a convergent sequence in (L, N*) & ’}1_{1010 N*(x, —x,y,t) =0, forall >0 & }1_&10 ﬁ(x,, -xy,0)=1
for all t > 0 © {x,} is a convergent sequence in (L, N ).
(b) Let {x,} be a Cauchy sequence in (L, N*) & ’}Lr?o N*(Xpep — X, y,) =0, p=1,2,3,.. . forallt >0 & ’!1_{2) ]V(x,,ﬂ, -
Xy, 0) =1, p=1,2,3,..., forall t > 0 & {x,} is a Cauchy sequence in (L, N).
Theorem 3.17. In a Fa-2-NLS (U, N*), every convergent sequence is a Cauchy sequence.
Proof. Let {x,} be a convergent sequence in a Fa-2-NLS (U, N*) then lim N*(x, — x,y,f) = 0, forall # > 0. Let s, € R*
and p =1,2,3,..., we have o

N*(xn+p - Xp, Y, 8+ t) = N*(xn+p —XtX— X, S+ t) < max{N*(er—p - XY, S),N*(X — XY, t)}
= max{N"(Xpp — X, ¥, 8), N"(x, — x,y,D)}.

Taking limit, we have lim N* (x4, — X5, ¥, s + 1) < max{lim N*(x,4, — X, ¥, 5), lim N*(x, — x,y,0)} =0
n—00 n—oo n—o0
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= lim N*(Xy4p — %, 9,5 +1) =0, Vs, € R and p = 1,2,3,... Thus {x,} is a Cauchy sequence in Fa-2-NLS (U, N*).

n—o0

The converse of the above theorem is not necessarily true. This is justified by the following example.
Example 3.18. Let (X, ||e, o||) be a 2-normed linear space and N* : X X X X R — [0, 1]. Define
llx, yll

t+ |l yll
= 1, whenr<0,teR, x,yeX

N*(x,y,1) whent>0,1€eR, x,yeX

Then (X, N*) is an Fa-2-NLS. Let {x,} be a sequence in X, then
(a) {x,} is a Cauchy sequence in (X, ||e, o||) if and only if {x,} is a Cauchy sequence in (X, N*) .
(b) {x,} is a convergent sequence in (X, ||e, o||) if and only if {x,} is a convergent sequence in (X, N¥) .

Proof. (a) Let {x,} be a Cauchy sequence in (X, e, o)) & lim [|x,;, — x,,yl| =0, forall p = 1,2,3, ...

. B — X Yl
& lim N*(X,1p — X, ¥, 1) = lim mp

———— =0, forallt >0, p=1,2,3,...
n—eo n—eo f + ||xn+p - xn,y”

& lim N*(X1p — X5, 9,1) =0, forallt >0, p=1,2,3,--- & {x,} is a Cauchy sequence in (X, N*).

n—oo

(b) Let {x,} be a convergent sequence in (X, ||e, ¢|[) & lim ||lx, — x,y]| =0
n—oo

. " . Xn — X, . .
o lim N*(x, — x,y,t) = llmuzo, forallt >0 & lim N*(x, — x,y,1) =0
n—oo n—oo f + ||xn - X, y” n—o0

< {x,} is a convergent sequence in (X, N*).
Remark 3.19. If there exist a 2-normed linear space (X, ||e, ®||y) which is not complete, then the fuzzy anti-2-norm induced
by such a crisp 2-norm ||e, ||y on a incomplete linear space X, is an incomplete Fa-2-NLS.
Definition 3.20. Let (U, N*) be a Fa-2-NLS. A subset B of U is said to be closed if for any sequence {x,} in B converges
to x € B, thatis lim N*(x, — x,y,1) = 0, V t > 0 implies that x € B.
n—oo

Definition 3.21. Let (U, N*) be a Fa-2-NLS. A subset W of U is said to be the closure of B C W if for any w € W, there
exists a sequence {x,} in B such that lim N*(x,, — x,y,1) = 0, Y t € R*, we denote the set W by B.

Definition 3.22. A subset B of a Fa-2-NLS (U, N*) is said to be bounded if and only if there exists # > 0 and 0 < r < 1
such that N*(x,y,1) <r,VY x,y € B.

Definition 3.23. A subset B of a Fa-2-NLS (U, N*) is said to be compact if any sequence {x,} in B has a subsequence
converging to an element of B.

Theorem 3.24. Let (U, N*) be a Fa-2-NLS then every Cauchy sequence in (U, N*) is bounded.
Proof. Let {x,} be a Cauchy sequence in a Fa-2-NLS (U, N*). Then lim N*(x,, — X,,y,¢) = 0, for p = 1,2,3,..., and
t > 0. Choose a fixed ag, 0 < a9 < 1. Then we have lim N*(x, — X1, y,0) =0 <1 -y, ¥Vt >0,p=1,2,3,... = For

n—oo
Y >0,3 n6 = nf)(t’) such that lim N*(x, = X4, 9, 1) <1—ap, Vn> n’o, t>0,p=1,2,3,.... Since lim N*(x,y,1) =0,
n—oo n—oo
we have for each x;, 37/ > 0 such that N*(x;,y,1) <1 -ao, YVt >1,i=1,2,3,.... Lett; = t' + max{t],1,. .. ,t;lo}. Then

N7, y,10) < N* (X, y, 1+ 13,) = N* (X = Xy + X, 3, 1+ 1) < max{NT(x, = Xy, ¥, 1), N* (X, v, 17,0} = (1= o), ¥ 1 = g,
ie., N*(xn, y, 1)) < (1 — ap), ¥ n > n,. Therefore {x,} is bounded in (U, N*).
Conclusion

One can introduce the notions of convergent sequence, Cauchy sequence in fuzzy anti-n-normed linear space and also
introduce the concept of compact subset and bounded subset in fuzzy anti-n-normed linear space.
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