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Abstract

In this paper, Multi objective two stage Fuzzy transportation problem is solved in a feasible method. For this solution
zero suffix method is used in which the supplies and demands are trapezoidal fuzzy numbers and fuzzy membership of
the objective function is defined. Here a numerical example is solved to check the validity of the proposed method.
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1. Introduction

Transportation problems are one of the powerful frame works which ensures efficient movement and timely availability
of the raw materials and finished goods. This transportation problem is a linear programming problem obtained from
a network structure consisting of a defined numbers of nodes and arcs attached to them. Let us consider in which a
production is to be transported from m sources to n destinations and their capacities a1, a2, · · · , am and b1, b2, · · · , bn

respectively. In addition to this there is a penalty Ci j associated with transporting unit of production from source i to
destination j this penalty may be either cost or delivery time or safety delivery.

A variable xi j represents the unknown quantity to be shipped from source i destination j. But in general the real life
problems are modeled with multi-objective which are measured in difference scales and at the same time in conflict. In
some situations due to storage constraints designations are unable to receive the quantity in excess of their minimum
demand. After consuming the parts of whole of this initial shipment they are prepared to receive the excess quantity
in the second stage. According to Sonia and Rita Malhotra in such situations the product transported to destination has
two stages. Just enough of the product is shipped in stage I so that the minimum requirements of the destinations are
satisfied and having done this the surplus quantities (if any) at these sources are shipped to destinations according to cost
consideration. In both stages the transportations of the product from sources to destinations is done in parallel.

Lot of efficient algorithms had been developed for solving the transportation problems when the cost coefficients and the
supply and demand quantities are known exactly. However, there are cases that these parameters may not be presented in
an exact manner. For example the unit shipping cost may vary in a time frame. The supplies and demands may be uncertain
due to some uncontrollable factors. To deal quantitatively with not exact information in making decisions, Bellman and
Zadeh and Zadeh introduce the notion of fuzziness. Since the transportation problem is almost a linear programme one
straightforward idea is to apply the existing fuzzy linear programming techniques to the fuzzy transportation problems.

Unfortunately most of the existing techniques only provide crisp solutions. The method of Julien and Parraet al is able to
find the possibility distribution of the objective values provided all the inequality constraints are of ” ≤ ” type or ” ≥ ”
type. However due to the structure of the transportation problem in some cases, their method requires the refinement of
the problem parameters to be able to derive bounce of the objective value. There are also some studies discussing the
fuzzy transportation problem. Chanas et al, investigates the transportation problems with fuzzy supplies and demands and
solve them via the parametric programming techniques in terms of Bellman-Zadhe criterion.

Their method is to derive the solution which simultaneously satisfies the constraints and the goal to a maximal degree.
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Chanas and Kuchta discuss the type the transportation problems with fuzzy cost coefficients and transforms the problem
to bicriterial transportation with crisp objective function. Their method is able to determine the efficient solutions of the
transformed problem, unless only crisp solutions are provided. Verma et al applied the fuzzy programming technique with
hyperbolic and exponential membership function to solve a multi-objective transportation problem, the solution derived
is a compromise solution. Similarly to the method Chanas and Kuchta, only crisp solution is provided. Obviously when
the cost coefficients or the supply and the demand quantities are fuzzy numbers, the total transportation cost will be fuzzy
as usual.

This paper finds the best compromise solution among the set of feasible solution for the multi-objective two stage trans-
portation problem using zero suffix method. To illustrate the proposed method, an example is used. Finally some conclu-
sions are obtained from the discussion.

2. Definitions

2.1 Fuzzy Number

A real fuzzy number ā is a fuzzy subset of the real number R with membership function μā satisfying the following
conditions

• μā is continuous from R to the closed interval [0, 1]

• μā is strictly increasing and continuous on [a1, a2]

• μā is strictly decreasing and continuous on [a2, a3]

where a1, a2, a3 and a4 are real numbers, and the fuzzy denoted by ā = [a1, a2, a3, a4] is called fuzzy trapezoidal number.

2.2 Trapezoidal Number

The fuzzy number ā is a trpezoidal number, denoted by [a1, a2, a3, a4] its membership function μā is given by fig 1.

< Figure 1 >

2.3 α-level set

The α-level set of the fuzzy number ā and b̄ is defined as the ordinary set Lα(ā, b̄) for which the degree of their memeber-
ship function exceeds the level α ∈ [0, 1]

Lα(ā, b̄) = {a, b ∈ Rm/μā(ai, b j) ≥ α, i = 1, 2, · · · ,m, j = 1, 2, · · · , n}
2.4 Compromise Solution

A feasible vector x∗ ∈ S is called a compromise solution of P1 iff x∗ ∈ E and F(x∗) ≤ ∧
x ∈ s F(x) where ∧ stands for

’minimum’ and E is set of feasible solutions. From a practical point of view the knowledge of the set of feasible E is not
always necessary. In such a case, a procedure is needed to determine a compromise solution. The purpose of this paper is
to present a fuzzy programming approach to find an optimal compromise solution of a transportation problem with several
objective in which the quantities are transported in two stages. Numerical example is given to illustrate the approach.

3. Theoretical Development

Let b̄ j be the minimum fuzzy requirement of a homogeneous product at the destination j and āi the fuzzy availability of
the same at source i. Fk(x) = {F1(x), F2(x), · · · , Fn(x)} is a vector of K objectives and the superscript of both Fk(x) and
Ck

i j are used to identify the number of objectives functions, without loss of generality it will be assumed in the whole
paper that ai > 0∀i, b j > 0∀ j, ck

i j > 0∀i, j and
∑
i

āi =
∑

j
b̄ j. The Multi-objective Tow-stage Fuzzy Cost Minimization

Transportation Problem (MOTSFTP) deals with supplying the destinations their minimum requirement is state-I and the
quantity

∑
i

āi − ∑
j

b̄ j is supplied to the destination is stage-II from the sources which have surplus quantity left after the

completion of stage-I, Mathematically stated the stage-I problem is

min
x∈s1

[Fk(x)] = min
x∈s1

[max
|x|

(Ck
i j(xi j))] (1)

Where the set S 1 is given by

S 1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

j=1
xi j ≤ āi, i = 1, 2, · · · ,m

m∑
i=1

xi j = b̄ j, j = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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x̄i j ≥ 0∀(i, j) Corresponding to a feasible solution X = (xi j) of the stage-I problem, the set

S 2 = {X̄ = (x̄i j)} of feasible solutions of the stage-II problem is given by

S 2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

j=1
xi j ≤ āi, i = 1, 2, · · · ,m

m∑
i=1

xi j ≥ b̄ j, j = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
x̄i j ≥ 0,∀(i, j) where āi is the quantity available at the ith source on completion so the stage-I, that is ā′i j = āi − ∑

j
xi j.

Clearly
∑
i

ā′i =
∑
i

āi −∑
j

b̄ j. Thus the stage-II problem would be mathematically formulated as:

min
x∈s2

[Fk(x)] = min
x∈s2

[max
|x|

(Ck
i j(xi j))] (2)

We aim at finding that schedule x = (xi j) of the stage-I problem corresponding to which the optimal cost for stage-II is
such that the sum of the shipment if the least. The Multi-objective two stage fuzzy cost minimizing transportation problem
can, therefore, be stated as,

MinFk(x) = min
x∈s1

[Ck
1(x) +min

x∈s2
{Ck

2(x)}] (3)

Also from a feasible solution of the problem (3) can be obtained. Further the problem (3) can be solved by following
fuzzy cost minimizing transportation problem.

P(1) : min
x∈s2

[Fk(x′)] = min
x′∈s2

[max
|x|

(Ck
i j(x′i j))] (4)

where S 2

S 2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

j=1
x′i j = āi, i = 1, 2, · · · ,m

m∑
i=1

x′i j = b̄ j, j = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
x′i j ≥ 0∀(i, j), where āi and b̄ j represent fuzzy parameters involved in the constraints with their membership functions
for μā a certain degree α together with the concept of α level set of the fuzzy numbers āi, b̄ j. Therefore problem two
stage MOFCMTP can be understood as following non fuzzy α-general two stage transportation problem ( α-two stage
MOFCMTP).

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

j=1
xi j = āi, i = 1, 2, · · · ,m

m∑
i=1

xi j = b̄ j, j = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ai, b j ∈ Lα(āi, b̄ j)

Where ai, b j ∈ Lα(āi, b̄ j) are the α-level set of the fuzzy number (āi, b̄ j), let x(āi, b̄ j) denote the constraint set of the
problem and supposed to be non empty. On the basis of the α-level set of the fuzzy numbers, we give the concept of
α-optimal solution in the following definition.

A point x∗ ∈ x(āi, b̄ j) is said to be α-optimal solution (α-two stage FCMTP), if and only if there does not exist another
x, y ∈ x(a, b), a, b ∈ Lα(āi, b̄ j), such that ci jxi j ≤ ci jx

∗
i j with strict inequality holding for at least one ci j where for

corresponding values of paramenters (āi, b̄ j) are called α-level optimal parameters.

The problem (α-two stage MOFCMTP) can be re written in the following equivalent form (α′-two stage MOFCMTP)

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

j=1
xi j = āi, i = 1, 2, · · · ,m

m∑
i=1

xi j = b̄ j, j = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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h◦i ≤ ai ≤ H◦
i , h

◦
j ≤ b j ≤ H◦

j

xi j ≥ 0∀i, j

It should be noted that the constraint ai, b j ∈ Lα(āi, b̄ j) has been replaced by the constraint h◦i ≤ ai ≤ H◦
i and h◦j ≤ b j ≤ H◦

j

Where h◦i and H◦
i and h◦j and H◦

j are lower and upper bounds and ai, b j are constants.

The parametric study of the problem ( α’-two stage MOFCMTP) where h◦i ,H◦
i and h◦j ,H

◦
j , are assumed to be parameters

rather than constants and ( renamed h◦i ,H◦
i and h◦j ,H

◦
j ) can be understood as follows.

Let X(h,H) denoted the decision space of problem (α’-two stage FCMTP) defined by

X(h,H) = (Xi j, ai, b j) ∈ Rn(n+1)

ai −∑
j

xi j ≥ 0, b j −∑
i

xi j ≥ 0

Hi − ai ≥ 0,Hj − b j ≥ 0

ai − hi ≥ 0, b j − h j ≥ 0, xi j ≥ 0, i ∈ I, j ∈ J

4. Zero Suffix Method

We, now introduce a new method called the zero suffix method for finding an optimal solution to the transportation
problem.

The zero suffix method proceeds as follows.

Step 1: Construct the transportation table.

Step 2: Subtract each row entries of the transportation table from the corresponding row minimum after that subtract each
column entries of the transportation table from the corresponding column minimum.

Step 3: In the reduced cost matrix there will be atleast one zero in each row and column, then find the suffix value of all
the zeros in the reduced cost matrix by following simplification, the suffix value is denoted by S ,

Therefore S =
Add the costs of nearest adjacent sides of zero which are greater than zero

No. of costs added

Step 4: Choose the maximum of S , if it has one maximum value then first supply to that demand corresponding to the
cell. If it has more equal values then select {ai, b j} and supply to that demand maximum possible.

Step 5: After the above step, the exhausted demands (column) or supplies(row) to be trimmed. The resultant matrix must
possess at least one zero is each row and column, else repeat Step 2.

Step 6: Repeat Step 3 to Step 5 until the optimal solution is obtained.

5. Solution Algorithm

Step 1: Construct the Transportation problem

Step 2: Supply and Demand are fuzzy number (a1, a2, a3, a4) and (b1, b2, b3, b4) in the formulation Problem(two stage
MOFCMTP).

Step 3: Convert the problem (α-two stage MOFCMTP) in the form of the(α′ two stage MOFCMTP)

Step 4: Formulate the (α′-two stage FCMTP) in the parametric form.

Step 5: Apply the zero suffix method to get optimal value in stage-I and stage-II.

Step 6: The optimal value of the objective function of the problem is Min(C1 +C2)

6. Numerical Example

Consider the following two stage cost minimizing transportation problem. Here supplies and demands are trapezoidal
fuzzy numbers.

a1 = (4, 5, 7, 8), a2 = (6, 7, 8, 9), a3 = (5, 6, 7, 8), a4 = (4, 6, 8, 9) and b1 = (1, 2, 4, 5), b2(4, 5, 6, 7), b3 = (3, 4, 5, 7), b4 =

(4, 5, 6, 7), b5 = (2, 3, 4, 5),

b6 = (3, 4, 5, 6).

Consider the α-level set to be α = 0.75, then we get 4.5 ≤ a17.5, 6.5 ≤ a2 ≤ 8.5, 5.5 ≤ a3 ≤ 7.5, 5.0 ≤ a4 ≤ 8.5, 1.5 ≤
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b1 ≤ 4.5, 4.5 ≤ b2 ≤ 6.5, 3.5 ≤ b3 ≤ 6.0, 4.5 ≤ b4 ≤ 6.5, 2.5 ≤ b5 ≤ 4.5, 3.5 ≤ b6 ≤ 5.5.

The α-optimal parameters are

a1 = 6, a2 = 8, a3 = 7, a4 = 7

b1 = 3, b2 = 5, b3 = 5, b4 = 6, b5 = 4, b6 = 5

Penalties:

C1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 3 5 11 4 2
4 7 9 5 10 4
12 25 9 6 26 12
8 7 9 24 10 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and C2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 7 7 4 2
1 9 3 4 5 8
8 9 4 6 6 2
3 4 9 10 5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Stage - I

We assign a1 = 3, a2 = 4, a3 = 3, a4 = 3

b1 = 1, b2 = 2, b3 = 3, b4 = 3, b5 = 2, b6 = 2

With respect to C1, apply the zero suffix method which gives following allocation

X13 = 1, X15 = 2, X21 = 1, X22 = 1, X26 = 2, X34 = 3, X43 = 3 and Minimum Z = 75

With respect to C2, apply the zero suffix method which gives following allocation

X12 = 2, X15 = 1, X21 = 1, X24 = 3, X33 = 3, X45 = 1, X46 = 2 and Minimum Z = 40

Stage -II

We assign a1 = 3, a2 = 4, a3 = 4, a4 = 4

b1 = 2, b2 = 3, b3 = 2, b4 = 3, b5 = 2, b6 = 3

With respect to C1, apply the zero suffix method which gives following allocation

X12 = 1, X15 = 2, X21 = 2, X22 = 2, X33 = 1, X34 = 3, X43 = 1, X46 = 3 and Minimum Z = 93

With respect to C2, apply the zero suffix method which gives following allocation

X12 = 3, X21 = 2, X24 = 2, X33 = 2, X34 = 1, X35 = 1, X45 = 1, X46 = 3 and Minimum Z = 44

The optimal value of the objective function is obtained function is obtained by combining stage-I and stage-II, therefore
Minimum F1(x) = 75 + 93 = 168 and Minimum F2(x) = 40 + 44 = 84

7. Conclusion

Transportation models have wide applications in logistics and supply chain for reducing the cost. Some previous studies
have devised solution procedures for fuzzy transportation problems. In this paper zero suffix method is used to determine
the optimal compromise solution for a multi-objective two stage fuzzy transportation problem, in which supplies, demands
are trapezoidal fuzzy numbers and fuzzy membership of the objective function is defined. In real world applications, the
parameters in transportation problem may not be known precisely due to some uncontrollable factors .If the obtained
results are crisp values then it might lose some helpful information. Since the objective value is expressed by membership
function rather than by a crisp value, more information is provided for making decisions.

References

Bellman R.Zadeh L.A. (1970). Decision making in a fuzzy environment. Management Sci., 17(B) 141-164.

Buckly J.J. (1988). Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets and Systems, 26, 135-138.

Buckly J.J. (1988). Solving possibilistic programming problems. Fuzzy Sets and Systems, 31 329-341.

Chanas S., Kuchta D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients.
Fuzzy Sets and Systems, 82, 299-305.

Chanas S., Kolodziejczyk W., Machaj A. (1984). A fuzzy approach to the transportation problem. Fuzzy Sets and Systems,
13.

Fang S.C., Hu C.F., Wang H.F., Wu S.Y. (1999). Linear programming with fuzzy coefficients in constraints. Computers

and Mathematics with Applications, 37, 63-76.

Julien B. (1994). An extension to possibilistic linear programming. Fuzzy Sets and Systems, 64, 195-206.

Luhandjula M.K. (1987). Linear programming with a possibilistic objective function. European Journal of Operational

Research, 31, 110-117.

Published by Canadian Center of Science and Education 139



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

Omar M.Saad and Samir A.Abbas. (2003). A Parametric study on Transportation problem under fuzzy Environment. The

Journal of Fuzzy Mathematics, 11, No.1,, 115-124.

Parra M.A., Terol A.B., Uria M.V.R. (1999). Solving the multiobjective possibilistic linear programming problem. Euro-

pean Journal of Operational Research, 117, 175-182.

Rommelfanger H., Wolf J., Hanuscheck R. (1989). Linear programming with fuzzy objectives. Fuzzy Sets and Systems,
29, 195.

Sonia and Rita Malhotra. (2003). A Polynomial Algorithm for a Two Stage Time Minimizing Transportation Problem,
OPSEARCH, 39, No.5 and 6, , 251-266

Tanaka H., Ichihashi H., Asai K. (1984). A formulation of fuzzy linear programming based on comparison of fuzzy
numbers. Control and Cybernetics, 13, 185-194.

Verma R., Biswal M., Bisawas A. (1997). Fuzzy programming technique to solve multiple objective transportation prob-
lems with some nonlinear membership functions. Fuzzy Sets and Systems, 91, 37-43.

Zadeh L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3-28.

�

�

�
�

�
��

1

0 a1 a2 a3 a4
X
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Figure 1. Membership function of a fuzzy number ā
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