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Abstract

This paper combines the least squaress estimate, least absolute deviation estimate, least median estimate with Bootstrap
method. When the overall error distribution is unknown or it is not the normal distribution, we estimate the regression co-
efficient and confidence interval of coefficient, and through data simulation, obtain Bootstrap method, which can improve
stability of regression coefficient and reduce the length of confidence interval.

Keywords: Bootstrap method, Linear regression, Confidence interval, Least squares estimate, Least absolute deviation
estimate, Least median estimate

1. Bootstrap Regression

This paper focuses on linear regression. The traditional regression analysis method assumes that the regression equation
is yi = β0 + β1xi + εi, (i = 1, 2, · · · , n), where random error εi ∼ N(0, σ2). Under the assumption of error normality, the
coefficient β can be estimated, while in the significant test of regression, the corresponding distribution of test statistics is
obtained.

However, when the error ε is not normal or its distribution is unknown, how to estimate the regression coefficient ,how to
estimate the confidence interval of coefficient and how to significantly test the regression equation? The following uses
Bootstrap method to solve the above problems. According to the different regression relationships, Bootstrap re-sampling
methods can be divided into two types.

1.1 Model-based Bootstrap regression

The independent variable x in correlation model regression is a controllable variable(general variable) and only y is a
random variable. Random sampling error is εi, (i = 1, 2, · · · , n). εi in regression equation accords with Gauss-Markov
assumption:

E(εi) = 0; Var(εi) = σ2; Cov(εi, ε j) = 0, (i � j) (1)

But εi is not always a normal distribution. It is be noted that σ2 is not the variance of residual ei = yi − ŷ. Normalize
the residual ei to obtain the revised residual ri = ei − E(ei)/

√
Var(ei), (i = 1, 2, · · · , n). In order to better model the actual

distribution of residual with the experience distribution, the revised residual can be centralized. Denoted the revised

residual after centralizing r =
n∑

i=1
ri by r̃i = ri − r.

Based on model-based re-sampling in linear regression: x1, x2, · · · , xn are unchanged, i.e. x∗i = xi, (i = 1, 2, · · · , n)
and re-sample the regression residuals. Firstly, establish regression model with all samples and estimate the regression
coefficients β̂0, β̂1.Then re-sample the random residual r∗i and calculate the dependent variables, that is (X∗

i ,Y
∗
i ) in y∗i =

β̂0 + β̂1xi + ε
∗
i , (i = 1, 2, · · · , n) is a model-based Bootstrap sample.

1.2 Cases Bootstrap Regression

The independent variable x and dependent variable y in correlation model regression are random variables and accord
with joint distribution F(x, y).

E(yi|xi) = f (xi) = β0 + β1xi, (i = 1, 2, · · · , n), (2)

where β0, β1 are determined constants independent with X and n is the sample number. Assume

yi = β0 + β1xi + εi, (i = 1, 2, · · · , n), (3)

where εi matches Gauss-Markov assumption, that is , matches equations (1), (2) and (3).

Based on cases re-sampling in linear regression: Random select (x∗i , y
∗
i ) in original samples, i.e. cases Bootstrap sample.

1.3 Confidence Interval for Bootstrap Regression Coefficient β

Since the error εi and the distributions of β0 and β1 are unable to determine, it is difficult to get a statistic θ(x) whose
distribution is known. Bootstrap-t method can avoid this difficulty well. The following gives its specific steps, where
takes β1 for example.

64 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 2, No. 4; November 2010

1. Re-sample a group of Bootstrap samples {x∗1, x∗2, · · · , x∗n} ≡ X∗ from the samples. Bootstrap samples are used to

calculate θ∗ = (β̂∗1 − β̂1)/{σ̂∗/
√

n∑
i=1

(xi − x)2}, where σ̂ =
√

(n − 2)−1
n∑

i=1
(yi − (β̂0 + β̂1xi))2.

2. σ̂∗ =
√

(n − 2)−1
n∑

i=1
(y∗

i
− (β̂0 + β̂1x∗

i
))2.

3. Repeat step 1 B times and the last statistic values form a data set {θ∗j | j = 1, 2, · · · , B} and sort this statistics {θ∗j | j =
1, 2, · · · , B} satisfying θ∗(1) ≤ θ∗(2) ≤ · · · ≤ θ∗(B).

4. Approximating θ1−α/2 with ω̂α/2 = θ∗[(1−α/2)B], we can get 1 − α confidence interval of β1

(β̂1 − ω̂α/2σ̂/
√√

n∑
i=1

(xi − x)2, β̂1 + ω̂α/2σ̂/

√√
n∑

i=1

(xi − x)2).(HiroshiKon,2003)

Thus, even if the overall distribution is uncertain, we can also estimate some statistics and their confidence intervals to
solve parameters interval estimation and hypothesis testing problems which are difficult by conventional methods.

2. Estimation Method of Regression Coefficient β

The following describes three common estimation methods of regression coefficient β, and combines them with Bootstrap
method.

2.1 Least Squares Method Estimate(OLS)

According to the basic principles of least squares method, the best fit line should make the distance between those points
and the straight line minimum, which can also be expressed as the squares sum of distance minimum, even if the error

squares sum
n∑

i=1
(yi − β̂0 − β̂1xi)2 is minimal. In the model-based least squares method, assume εi ∼ N(0, σ2), thus

yi ∼ N(β0 + β1x, σ2). The regression coefficient

β̂0 = y − β̂1x, β̂1 =

n∑
i=1

(xi − x)(yi − y)/
n∑

i=1

(xi − x)2 (4)

is gotten.

For the cases regression function, from equation (2) we can prove EX[E(Y |X)] = E(Y) holds. Then

E[{Y − E(Y)}{X − E(X)}] = EX[X{E(Y |X) − E(Y)}]. (5)

From equation (5), we have

β0 = E(Y) − (Cov(X,Y)/Var(X))E(X) = y − β̂1x(HiroshiKon,2003),

β1 = Cov(X,Y)/Var(X) =
n∑

i=1
(xi − x)(yi − y)/

n∑
i=1

(xi − x)2(HiroshiKon,2003).
(6)

Although coefficients of (6) and (4), obtained by least squares method, are the same, the model-based least squares
method is derived under the assumption that ε ∼ N(0, σ2). However, the cases least squares method doesn’t assume that
ε ∼ N(0, σ2). When the samples are consistent with Gauss-Markov assumption (1), adopting classic OLS can obtain
satisfactory results, but if existing extraordinary points or heavy-tailed (Gauss-Markov assumption doesn’t hold), the
results obtained by OLS is difficult to accept.

Here are two kinds of robust regression estimation methods of the regression coefficient β .

2.2 Least Absolute Deviation Regression (LAD)

The first robust estimation method of regression coefficient β was the least absolute deviation estimation regression pre-
sented by the Edgeworth in 1887, whose principle is that the least absolute deviation of regression equation minimizes,

that is min
βo,β1

{ n∑
i=1
|yi − (β0 + β1xi)|}. This paper uses the simplest LAD estimation regression algorithm.

1. Take any two points a(xi, yi), b(xi, yi)(1 ≤ i ≤ j ≤ n) in the n sample points and the coefficients of straight line equation
passing a and b points are β̂0 = y j, β̂1 = (y j − yi)/(x j − xi). Let

βi, j = (β̂0, β̂1), di, j =

n∑
i=1

|yi − (β0 + β1xi)|.
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2. Take d = min
i, j
{di, j}.

3. βi, j = (β̂0, β̂1) corresponding to d is the LAD regression coefficient.(YadolahDodge,2008)

That LAD regression takes Bootstrap re-sampling method in any case will like sample median number, so the distribution
between the coefficient difference by Bootstrap re-sampling and ordinary least absolute deviation regression and difference
by regression coefficient obtained by LAD regression and real coefficient isn’t relevant, and they are similar only in the
case of large samples. Application of smooth Bootstrap can improve estimation accuracy.(A.C.Davison,1997)

2.3 Least Median Squares Regression(LMS)

The least median squares regression makes the residual squares median minimum. For linear regression situation,
median(yi − (β0 + β1xi))2 minimizes, where using original LMS cured Algorithm. Its specific proof can be found in
the book: Algorithms and Complexity for Least Median of Squaress Regression.

1. Let d̂ = ∞, (β̂0, β̂1) = (∞,∞), (i, j, k) = (1, 1, 1),

2. Reorder xi, x j, xk, (i, j, k = 1, 2, · · · , n) satisfying xi < x j < xk,

3. Calculate β1 = yi − yk/xi − xk, β0 = (y j + yk − β1(x j + xk)),

4. di, j,k = med(yi − (β0 + β1xi))2, (i = 1, 2, · · · , n),

5. If di, j,k < d̂, let d̂ = d, (β̂0, β̂1) = (β0, β1),

6. Repeat 4∼7 until (i, j, k) takes all {(m, n, q)|(m, n, q = 1, 2, · · · , n)},
7. (β̂0, β̂1) is the LAD median regression coefficient.(J.MS teele,1956)

Table 1 briefly summarizes a few basic properties of three regression coefficient estimate methods, where the estimate

variance of β̂1 is Varβ̂1 = σ̂
2/

n∑
i=1

(xi − x)2, σ̂2 =
n∑

i=1
(yi − ŷi)2/n − 2.

3. Data Simulation

In this section, data simulation uses computer-generated pseudo-random number technique, where draw out data from
known distributions to regression analyze by Bootstrap method, and then according to regression results, test fit situation
of Bootstrap method results and assumption distribution.

3.1 Model-based Bootstrap Regression Analysis

According to the definition of model-based regression model, we establish a known distribution

yi = β00 + β10xi + εi, (7)

where εi matches Gauss-Markov assumptions. Without loss of generality, we assume β00 = 0, β10 = 37,Var(εi) = 1, x ∼
U(0, 10) and samples number n = 14 in this experiment.

In order to explain the effects of Bootstrap method in condition that error is normally distributed and is not normal
distribution. There particularly takes distributions of two common errors: normal distribution and uniform distribution,
i.e. do model-based Bootstrap regression analysis under εi ∼ N(0, 1) and εi ∼ U(−√12,

√
12).

For a more intuitive analysis for Bootstrap method estimate results of model-based regression model, the distribution of
regression coefficients β̂1 and 1−α confidence interval for the former 20 groups of β̂1 of 2000 groups of Bootstrap samples
by OLS estimate method, respectively.

Since y ∼ N(β0 + β1x, σ2),T ∼ t(n − 2), graphic 2 is close to the normal distribution. Comparing the upper and lower
limits for standard deviation of OLS, LAD and LMS confidence intervals, OLS estimate is slightly larger than that of
LAD and LMS, and the upper and lower limits for standard deviation of LAD is slightly larger than that of LMS, but the
mean and median degree close to β10 of LAD and LMS has no absolute relationship; that is, when the error is not large,
the robustness advantage of LAD and LMS methods can’t be reflected. The mean and median of β̂1 are close, which
should take OLS estimate with simple calculation.

Uniform distribution is more discrete than normal distribution. So the standard deviations of all the statistics in Table 3
increase than that of Table 2, the maximum and minimum values of upper and lower limit for confidence interval in Table
2correspondingly increase, mean and median decrease; that is, confidence interval fluctuates larger and the size of interval
decrease. Mean of β̂ is close to 37 and the median deviation is relatively large. It is seen that using LAD and LMS can
obtain more accurate value.

Comparing the standard deviation of upper and lower limits for confidence interval of OLS, LAD and LMS , estimate of
OLS is larger than that of LMS which is larger than that of LAD, but β̂1 standard deviation of LMS is smaller than that of
LAD, peak of LMS is more obvious and confidence interval range is the smallest. Thus, when error εi ∼ U(−√12,

√
12),
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re-sampling Bootstrap and LMS method can obtain more stable and accurate values.

3.2 Case Bootstrap Regression Analysis

By computer we randomly select original samples from two-dimensional normal distribution N(0, 1, 1, 1, ρ) to do cases
Bootstrap regression analysis simulation. According to the properties of two-dimensional normal distribution, we have
N(μX , μY , σ

2
X , σ

2
Y , ρ),

E(Yi|Xi) = μY + ρXi. (8)

Under the condition that error μY = β00, ρ = β10, extract a set of original samples from distribution N(μX , μY , σ
2
X , σ

2
Y , ρ)

complying with cases regression equation (3), where β = (β00, β10)(HiroshiKon,2003).

For the confidence interval is almost symmetrical about 0, only the confidence interval limit statistics are given here.
Table 9 shows that the tandard deviation for absolute value of β̂1 s in cases Bootstrap regression is not larger than that
of model-based Bootstrap regression, but relative β̂1 value is larger than that of model-based Bootstrap regression. The
reason is that x, y values in N(μX , μY , σ

2
X , σ

2
Y , ρ) is small and rounding error in calculation relatively increases, leading that

the regression results are not satisfactory, which is the cause that LAD estimation results in Table 4 are not accurate than
that of OLS. In the process of LAD regression iteration, every step has some rounding errors, but OLS need not iteration
and rounding error should not be influenced greatly.

In the three methods, β̂1 value of LMS estimate is most accuration and its standard deviation is the smallest. So in
order to get most accurate linear regression coefficient β̂1 estimation, we should adopt the combination of cases Bootstrap
re-sampling and LMS estimation to apply cases linear regression analysis.
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Table 1. Comparsion between regression and least squares regression

OLS LAD LMS

Estimation principle
n∑

i=1
(yi − β̂0 − β̂1xi)2

n∑
i=1
|yi − (a + bxi)| median(yi − (β0 + β1xi))2

Contamination data irresistible pollution resistible light pollution resistible grave pollution
Breakdown point 0% 0% 50%

Regression coefficient a unique solution multiple solutions possibly a unique solution
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Table 2. Simulation regression results of Model-based error normal distribution

(εi ∼ N(0, 1), B = 2000, α = 0.05)

β1 statistic OLS LAD LMS
confidence interval number containing β10 1964 1939 1976

minimum 36.94 35.23 35.26
lower limit of maximum 37.79 36.86 37.24

confidence interval mean 37.29 36.35 36.61
median 37.29 36.37 36.61

standard deviation 0.007844 0.1870 0.1624
minimum 36.08 36.71 36.75

limit of maximum 37.13 38.38 38.63
confidence interval mean 36.80 37.25 37.44

median 336.80 37.23 37.43
standard deviation 0.1017 0.1640 0.1406

minimum 36.77 36.46 36.53
maximum 37.43 37.11. 37.47

β̂1 mean 37.04 36.80 37.03
median 37.04 36.79 37.01

standard deviation 0.07261 0.06818 0.1062

Table 3. Simulation regression results of Model-based error uniform distribution

(εi ∼ U(−√12,
√

112), B = 2000, α = 0.05)

β1 statistic OLS LAD LMS
confidence interval number containing β10 1990 1977 1995

minimum 36.993 36.98 36.87
lower limit of maximum 37.085 37.21 37.04

confidence interval mean 37.029 37.07 36.95
median 37.029 37.07 36.95

standard deviation 0.01088 0.02321 0.01605
minimum 36.900 37.78 36,96

higher limit of maximum 37.015 37.03 37.12
confidence interval mean 36.961 36.92 37.04

median 36.961 36.92 37.04
standard deviation 0.012646 0.02437 0.01411

minimum 36.97 36.94 36.94
maximum 37.04 37.06 37.06

β̂1 mean 36.99 36.99 36.99
median 37.00 36.99 36.99

standard deviation 0.008011 0.01203 0.009643

Table 4. Case simulation regression results

(B = 2000, α = 0.05, ρ = 0.7)

β1 statistic OLS LAD LMS
confidence interval number containing β10 1982 1934 1977

minimum 0.0000 0.0000 0.0000
limit of maximum 0.2772 0.7562 0.3789

confidence interval mean 0.0001386 0.001302 0.0001894
median 0.0000 0.0000 0.0000

standard deviation 0.006198 0.02932 0.008471
minimum 0.4059 0.9689 0.9368
maximum 0.9517 0.2201 0.3942

β̂1 mean 0.7190 0.6693 0.6926
median 0.7194 0.6492 0.6937

standard deviation 0.0737 0.7488 0.07223
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Figure 1. Histogram of coefficient β1 estimation by OLS method for model-based Bootstrap model (error is normal
distribution )

Figure 2. Confidence interval of coefficient β1 estimation by OLS method for model-based Bootstrap model(error is
normal distribution and B = 2000)
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