
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

Strict Interpolation of a Smooth Function and Its First Derivative

Using a Linearly-Trained Radial Basis Function Neural Network

J.S.C. Prentice

Department of Applied Mathematics, University of Johannesburg

P.O. Box 524, Auckland Park, 2006, South Africa

Tel: 27-115-593-145 E-mail: jprentice@uj.ac.za

Abstract

We present a neural network, based on Gaussian functions, for interpolating a univariate function and its first derivative.

The network is linearly trained, and constitutes a continuous piecewise approximation. It is based on the superposition of

three standard Gaussian-based radial basis function networks. Analysis indicates that this network is a better approxima-

tion than the standard network.

Keywords: Radial basis function, Neural network, Approximation, Strict interpolation, Gaussian, First derivative

1. Introduction

Neural network approximation of continuous functions typically involves training algorithms that use discrete values of

the function only, rather than its first derivative, in addition. In this paper, we suggest a linear algorithm for training a

network to approximate a smooth function, using values of the function and its first derivative at discrete points. In a sense,

we are trying to reproduce the idea of Hermite polynomial interpolation in the context of neural network approximation.

In the next section, we briefly describe standard radial basis function neural network interpolation. Thereafter, we describe

our algorithm, discuss its stability present an error analysis, consider the possibility of optimizing the network, and present

some numerical examples.

2. Standard Radial Basis Function Neural Network interpolation [Bishop, 2000; Haykin, 1999]

Let f : R → R be a continuous function. Assume that (xi, f (xi)) , i = 1, ...,N are available, where the nodes xi are unique.

The data (xi, f (xi)) are used to construct an approximation of the form

R(x) =

N∑
i=1

wiφi (x) (1)

where the wi are referred to as weights and the φi are N linearly independent radially symmetric basis functions (also called

neurons). The linear combination above is called a radial basis function neural network (RBFNN). The most commonly

used basis functions are Gaussians
φi (x) = exp

(
−a2

i (x − ci)
2
)

(2)

where ai > 0 is the width parameter and ci is the center. Note that

a2
i =

1

2σ2
i

(3)

where σi is the standard deviation of the Gaussian. Often, σi is chosen as the minimum of or some average of

{(xi − xi−1), (xi+1 − xi)}

so that, if the nodes are equispaced, ai is the same for each basis function. In this work we will consider the width

parameter to be an adjustable parameter whose value will be determined subject to an optimizing condition.

Determination of the weights is referred to as training the network. In the case of strict interpolation (sometimes known

as exact interpolation), we require that R(xi) = f (xi) at each of the available nodes xi. So, if there are N distinct nodes we

have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ1 (x1) φ2 (x1) · · · φN (x1)

φ1 (x2) φ2 (x2) φN (x2)
...

. . .
...

φ1 (xN) φ2 (xN) · · · φN (xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸���︷︷���︸
Φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1

w2

...
wN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸��︷︷��︸
W

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1
f2
...
fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�︷︷�︸
F

(4)

140 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

in which the interpolation matrix Φ, the weight vector W and the target vector F have been defined. Solvability of this

system depends on the determinant of the interpolation matrix; it has been shown that Φ is invertible for several types

of basis function, including Gaussians [Michelli, 1986], provided that the nodes are distinct (for non-strict interpolation,

when the number of nodes is different to the number of basis functions, the matrix Φ is not square and the linear system

is solved by taking the pseudoinverse of Φ).

The strict interpolation problem described above is thus a straightforward one - invertibility is ensured for Gaussian basis

functions, and solving linear systems computationally is easily accomplished using modern numerical software.

Our objective is to design a strict interpolation RBFNN that is trained linearly and that also interpolates the first derivative

of f (x), in the spirit of Hermite polynomial interpolation [Mhaskar & Pai, 2000]. Of course, one expects, as in the case

of Hermite interpolation, that interpolation of the first derivative, in addition to the function itself, will result in a more

accurate approximation. To the best of our knowledge, this has not been attempted before, and so constitutes a gap in the

body of research in this field. It is our intention to attempt to fill this gap. Our algorithm, designated the superposition
network (SPN), is described in the next section.

3. Description of the SPN algorithm

Assume that
{
xi, fi, f ′i

}
, i = 1, ...,N are available, where fi ≡ f (xi) and f ′i ≡ f ′ (xi). An algorithm for constructing an

RBFNN approximation to f (x) on a subinterval [xi, xi+1], which interpolates (xi, fi) ,
(
xi, f ′i

)
, (xi+1, fi+1) and

(
xi+1, f ′i+1

)
proceeds as follows:

1. Choose a width parameter ai by simply taking σi to be the average spacing have between the nodes on [xi−1, xi+2].

We then have a2
i =

1
2h2

ave
.

2. Construct three standard RBFNNs, using width parameters ai√
2
, ai and

√
3
2
ai. These networks each interpolate

(xi, fi) and (xi+1, fi+1) . The number of neurons in each network should be at least two, although we will use four

in this work, centered at the nodes {xi−1, xi, xi+1, xi+2}. We will refer to these networks as component networks, and

we denote them by R1,R2 and R3. These component networks are constructed on the subinterval [xi−1, xi+2] and

each of them interpolates { fi−1, fi, fi+1, fi+2} , hence the use of [xi−1, xi+2] to determine the width parameter ai. It is

important to note that the guaranteed inversion of Φ ensures that these three component networks do exist.

3. We now determine

Δνp ≡ f ′ (xν) − R′p (xν) (5)

for v ∈ {i, i + 1} and p = 1, 2, 3. These Δs are the differences between the derivatives of the component networks

and the objective function f (x) at the nodes xi and xi+1, and we will refer to them as derivative residuals.

4. We now seek α, β and γ such that

α + β + γ = 1

f ′ (xi) − αR′1(xi; ai) − βR′2(xi; ai) − γR′3(xi; ai) = 0 (6)

f ′ (xi+1) − αR′1(xi+1; ai) − βR′2(xi+1; ai) − γR′3(xi+1; ai) = 0

which gives

(α + β + (1 − α − β)) f ′ (xi)

−αR′1(xi; ai) − βR′2(xi; ai)

− (1 − α − β) R′3(xi; ai) = 0 (7)

(α + β + (1 − α − β)) f ′ (xi+1)

−αR′1(xi+1; ai) − βR′2(xi+1; ai)

− (1 − α − β) R′3(xi+1; ai) = 0. (8)

Hence,

αΔi
1 + βΔ

i
2 + (1 − α − β)Δi

3 = 0 (9)

αΔi+1
1 + βΔ

i+1
2 + (1 − α − β)Δi+1

3 = 0 (10)

which may be written as [
Δi

1
− Δi

3
Δi

2
− Δi

3

Δi+1
1
− Δi+1

3
Δi+1

2
− Δi+1

3

]
︸�����������������������������������︷︷�����������������������������������︸

T

[
α
β

]
=

[−Δi
3−Δi+1

3

]
. (11)

Published by Canadian Center of Science and Education 141

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

5. If we now form the linear combination

Ri,i+1(x; ai) ≡ αR1(x; ai) + βR2(x; ai) + (1 − α − β) R3(x; ai) (12)

then Ri,i+1(x; ai) is a superposition of standard RBFNNs, and Ri,i+1(x) interpolates (xi, fi) ,
(
xi, f ′i

)
, (xi+1, fi+1) and(

xi+1, f ′i+1

)
. We write Ri,i+1(x; ai) since Ri,i+1(x; ai) is valid only on [xi, xi+1]. Our notation also emphasizes the

dependence of Ri,i+1,R1,R2 and R3 on the parameter ai.

6. For the subintervals at the extreme left and extreme right of the interval, [x1, x2] and [xN−1, xN], the same procedure

applies except that we determine the derivative residuals at {x1, x2} and {xN−1, xN} , respectively.

7. We apply the above procedure on each subinterval, so generating N − 1 networks Ri,i+1, i = 1, ...,N − 1. If we now

define

Θi (x) ≡
{

Ri,i+1(x; ai) x ∈ [xi, xi+1]

0 x � [xi, xi+1]
,

then the approximation RS PN(x) on the entire interval [x1, xN] is simply

RS PN(x) ≡
N−1∑
i=1

Θi (x) .

Note that, since Ri−1,i and Ri,i+1 each interpolate (xi, fi) and
(
xi, f ′i

)
, we have that RS PN(x) is differentiable.

8. Note that since RS PN is a linear combination of standard RBFNNs, any convergence results that hold for a standard

RBFNN [Williamson, 1995; Liu & Si, 1994; Park & Sandberg, 1991] also hold for RS PN .

9. Comments: The choice of width parameters ai√
2
, ai and

√
3
2
ai for the component networks is somewhat arbitrary.

Whatever values are used, they must be such that the derivative residuals for the component networks are not

identical - otherwise we run the risk of having a row or column of zeros in the coefficient matrix T in Step 4 (see

next section). Also, the number of neurons in each component network could be as high as N. We do not need

to base the approximation on subinterval approximation; it is easy to extend this idea to a superposition of N + 1

networks, each of which interpolates f (x) on the entire set (xi, fi) , although the resulting coefficient matrix T is

large (N ×N). The virtue of a 2×2 coefficient matrix T is that it is potentially easier to ensure invertibility (see next

section). From a stability point of view, the inversion of T could present a problem if it is not well-conditioned. Our

approach in this work is subinterval (piecewise) approximation.

4. Stability

4.1 Invertibility of the matrix Φ

In consideration of the stability of SPN, we note that as ai → 0, Φ tends to the unit matrix, which is singular. However, as

mentioned earlier, for nonzero width parameters Φ is invertible. Nevertheless, we should be careful not to choose width

parameters too small, lest Φ becomes ill-conditioned.

In a ‘direct’ interpolation algorithm, the interpolation matrix would contain the first derivative of the Gaussians, in addition

to the Gaussians themselves. As far as we are aware, no guarantee can be given for the invertibility of such a matrix; this

is one of our prime motivations for developing SPN, in which we can rely on the guaranteed invertibility of Φ.

4.2 Invertibility of the matrix T

We have

T =

[
Δi

1
− Δi

3
Δi

2
− Δi

3

Δi+1
1
− Δi+1

3
Δi+1

2
− Δi+1

3

]

=

[
R′3 (xi) − R′1 (xi) R′3 (xi) − R′2 (xi)

R′3 (xi+1) − R′3 (xi+1) R′3 (xi+1) − R′2 (xi+1)

]
. (13)

As ai → ∞, T → 0, since the derivative of a Gaussian at its center is zero, and the derivative of a Gaussian at any other

point tends to zero as ai → ∞. This means that the entries of the superposition matrix T tend to zero and so T becomes

singular. Also, as ai → 0, the Gaussians become horizontal on [xi, xi+1] , in which case all derivatives in T are zero.

There is a special case that must be considered. If the objective function is symmetric or antisymmetric on the interval

[xi−1, xi+2] , and the nodes {xi−1, xi, xi+1, xi+2} are uniformly distributed, then the component networks R1,R2 and R3 will

also be symmetric or antisymmetric (because the Gaussian basis functions are symmetric). Examples of such functions

142 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

are sin(x) on [0, π] (symmetric) and sin(x) on [0, 2π] (antisymmetric). For the antisymmetric case we would have f ′i = f ′i+1

and R′p (xi) = R′p (xi+1) so that

T =
[
Δi

1
− Δi

3
Δi

2
− Δi

3

Δi
1
− Δi

3
Δi

2
− Δi

3

]
(14)

which is singular. For the symmetric case we would have f ′i = − f ′i+1 and R′p (xi) = −R′p (xi+1) so that

T =
[
Δi

1
− Δi

3
Δi

2
− Δi

3

−
(
Δi

1
− Δi

3

)
−

(
Δi

2
− Δi

3

)]
(15)

which is also singular. Naturally, the symmetry can be broken simply by choosing nodes that are not symmetrical about

the centre of the interval.

However, if it is not possible to redefine the nodes, we can still offer a solution in the form of the linear system[
1 1

Δi
1
− Δi

3
Δi

2
− Δi

3

] [
α
β

]
=

[
2
3−Δi

3

]
(16)

where the first equation comes from the condition

1 − α − β = α + β

2
. (17)

This condition is motivated by requiring that the coefficient of the network R3 is the average of the coefficients of R1 and

R2, although any other similar condition could be imposed. The coefficient matrix in this system has determinant

det

([
1 1

Δi
1
− Δi

3
Δi

2
− Δi

3

])
= Δi

2 − Δi
1 = R′1 (xi) − R′2 (xi) . (18)

We must show that this determinant is nonzero: assume

R1(x) =

4∑
j=1

wj exp
(
−a2

1

(
x − c j

)2
)

⇒ R′1(x) =

4∑
j=1

−a2
1

(
x − c j

)
wj exp

(
−a2

1

(
x − c j

)2
)

(19)

R2(x) =

4∑
j=1

z j exp
(
−a2

2

(
x − c j

)2
)

⇒ R′2(x) =

4∑
j=1

−a2
2

(
x − c j

)
z j exp

(
−a2

2

(
x − c j

)2
)
. (20)

Now,

R′1(xi) =

4∑
j=1

−a2
1

(
xi − c j

)
wj exp

(
−a2

1

(
xi − c j

)2
)

(21)

R′2(xi) =

4∑
j=1

−a2
2

(
xi − c j

)
z j exp

(
−a2

2

(
xi − c j

)2
)

(22)

and, since the Gaussian functions are linearly independent,

R′1(xi) − R′2(xi) = 0 ⇒ a2
1

(
xi − c j

)
wj = 0 and a2

2

(
xi − c j

)
z j = 0 (23)

for each j. Now, since wj and z j cannot be expected to be identically zero in all cases, we must have

a1 = 0 and a2 = 0 (24)

in order for (23) to be generally true. But the widths of the component networks are intentionally chosen to be nonzero.

Thus, we have a contradiction and we conclude

R′1 (xi) − R′2 (xi) � 0. (25)

Published by Canadian Center of Science and Education 143

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

We would resort to the system (16) only if we detected the presence of the type of (anti)symmetry problem described here.

4.3 Stability test

For brevity we will write R(x; ai) instead of Ri,i+1(x; ai) from now on. If either of the matrices T and Φ is ill-

conditioned, SPN will fail to properly interpolate (xi, fi) ,
(
xi, f ′i

)
, (xi+1, fi+1) and

(
xi+1, f ′i+1

)
. Measuring | fi − R (xi; ai)| ,∣∣∣ f ′i − R′ (xi; ai)

∣∣∣ , | fi+1 − R (xi+1; ai)| and
∣∣∣ f ′i+1 − R′ (xi+1; ai)

∣∣∣ gives an indication of the stability of SPN for any given width

parameter ai. A tolerance on these values could be specified so that if this tolerance is breached, the corresponding

ai-value is rejected.

Indeed, we define the end-point-conditions (EPCs) by

Γ (ai) ≡ |R (xi; ai) − fi|
1 + | fi| +

|R (xi+1; ai) − fi+1|
1 + | fi+1| (26)

Γ′ (ai) ≡
∣∣∣R′ (xi; ai) − f ′i

∣∣∣
1 +

∣∣∣ f ′i ∣∣∣ +

∣∣∣R′ (xi+1; ai) − f ′i+1

∣∣∣
1 +

∣∣∣ f ′i+1

∣∣∣ . (27)

The denominators in these expressions contain a 1 in case fi or f ′i+1 are close to zero. These EPCs measure the extent to

which SPN properly interpolates fi, fi+1, f ′i and f ′i+1, as is intended.

5. Error analysis

We have that R(x; ai) approximates f (x), such that f = R at {xi−1, xi, xi+1, xi+2} and f ′ = R′ at {xi, xi+1} . Hence, the

function Ω(x; ai) ≡ f (x) − R(x; ai) has two roots of multiplicity one at {xi−1, xi+2} and two roots of multiplicity two at

{xi, xi+1} . So, we may write

Ω(x; ai) = Υ(x; ai) (x − xi)
2 (x − xi+1)2 (x − xi−1) (x − xi+2) (28)

where Υ(x; ai) is a function to be determined.

Now, define the function F(z) by

F(z) ≡ f (z) − R(z; ai) − Υ(x; ai) (x − xi)
2 (x − xi+1)2 (x − xi−1) (x − xi+2) . (29)

So F(z) = 0 at {xi−1, xi, xi+1, xi+2} and at some x � {xi−1, xi, xi+1, xi+2} , a total of five distinct points in [xi−1, xi+2]. These

five points define four adjacent subintervals, and somewhere on each subinterval there is at least one point such that

F′(z) = 0 (by Rolle’s theorem). Thus, there are four points distinct from the nodes at which F′(z) = 0, and F′(z) = 0 also

at xi and xi+1. Hence, F′(z) = 0 at six distinct points. This means that F′′(z) = 0 at five distinct points and so on, until

we have that F(6)(z) = 0 at one point in [xi−1, xi+2] , say z = ζ(x; ai). We indicate that ζ can generally be expected to be

dependent on x and ai.

Therefore, we have

F(6)(ζ(x; ai)) = 0 = f (6)(ζ(x; ai)) − R(6)(ζ(x; ai)) − 720Υ(x; ai) (30)

since the sixth derivative of (x − xi)
2 (x − xi+1)2 (x − xi−1) (x − xi+2) equals 720. Hence

Υ(x; ai) =
Ω(6)(ζ(x; ai))

720
(31)

and so

Ω(x; ai) =
Ω(6)(ζ(x; ai))

720
(x − xi)

2 (x − xi+1)2 (x − xi−1) (x − xi+2) . (32)

This is true for all x in [xi−1, xi+2] .

It is easily shown that

|Ω(x; ai)| �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

max
[xi−1,xi+2]

∣∣∣Ω(6)(ζ (x) ; ai)
∣∣∣

180

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ h6
max (33)

which is a sixth-order bound, wherein hmax denotes the maximum separation of the nodes xi−1, xi, xi+1 and xi+2. Note that

we have assumed that f (x) is suitably differentiable in this derivation; certainly, R (x; ai) is infinitely differentiable w.r.t.

x since it is a linear combination of Gaussians.

Other upper bounds may be derived in a similar manner by assuming any of the following:

Ω(x; ai) = Υ(x; ai) (x − xi)
2

Ω(x; ai) = Υ(x; ai) (x − xi+1)2 (34)

Ω(x; ai) = Υ(x; ai) (x − xi)
2 (x − xi+1)2 .

144 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

The first two of these lead to second-order error expressions, and the last one leads to a fourth-order expression and,

consequently, second- and fourth-order bounds. Clearly, these bounds are less stringent than the sixth-order bound in

(33). It must be noted here that the standard four-neuron network on [xi−1, xi+2] cannot have error better than O
(
h4

max

)
, so

we see that RS PN is expected to be a more accurate approximation than the standard network.

6. Optimal ai

The traditional approximation problem is to replace a given f (x) with a linear combination of preselected basis functions.

In such case, f (x) is known explicitly and it is easy to measure the quality of R(x; ai). We simply determine the cost
function

C (ai) ≡ 1

M

M∑
m=1

| f (xm) − R (xm; ai)| (35)

on [xi, xi+1] at M nodes xm, where M is large. We then determine C(ai) for a number of ai-values in some interval

[ai min, ai max] and settle on that ai-value which gives a minimum C(ai). This is, admittedly, a brute force approach, but it is

effective in a numerical context. However, it must be noted that this approach is easy and fast, due to the linear character

of SPN.

If f (x) is not known explicitly, but rather only values of f (x) are available at discrete nodes xi, it is more difficult to

estimate C(ai) reliably. If the fi are close together it might be a good idea to choose [xi, xi+1] such that this subinterval

actually contains Q values of f (x) at nodes xq between xi and xi+1. These data points are not used in the construction of

R(x; ai), but rather are used to determine

C(ai) =
1

Q

Q∑
q=1

∣∣∣∣ f (
xq

)
− R

(
xq; ai

)∣∣∣∣ . (36)

This idea of omitting some data for the purpose of quality control - termed generalization - is often used in neural

networking. Other cost functions that could be used are

C(ai) = max | f (xm) − R (xm; ai)| (37)

C(ai) =

√√√
1

M

M∑
m=1

[
f (xm) − R (xm; ai)

]2. (38)

We will use both (35) and (37) in our examples in the next section.

7. Numerical examples

We have approximated f (x) = ex on
[

4
3
, 5

3

]
, f (x) = sin(x) on

[
π
6
, π

3

]
, and f (x) = x on [0, 1] . For f (x) = ex SPN was about

three orders of magnitude better than the standard network; for f (x) = sin(x) SPN was about two orders better; and for

f (x) = x SPN was about three orders better.

Figure 1 shows the cost C(a) defined in (37) for the f (x) = ex example, for both the standard RBFNN with four neurons

(denoted STN from now on), and SPN. Clearly, there is a range of a-values for which SPN is considerably more accurate

than the standard algorithm. The jagged effect for small a-values is due to the ill-conditioning of the interpolation matrix

Φ. The quantity ah indicates the heuristic width parameter given by 1√
2have

as described previously. We see that the optimal

width parameter is different to ah. Figure 1 is typical of the results obtained for the other numerical examples.

Figure 2 shows the EPCs for the f (x) = ex example. In this figure ‘Function EPC’ is Γ (ai) , and ‘Function derivative EPC’

is Γ′ (ai) . We see that the EPCs become large for both small and large values of a, and that there is an intermediate range

of a-values for which the EPCs are of the order of machine precision (∼ 10−16).

We have also approximated the function

H(x) =
1

(x − 0.3)2 + 0.01
+

1

(x − 0.9)2 + 0.04
− 6 (39)

which has both a strong and a weak maximum on the interval [0, 1]. Our approach is to choose 100 evenly spaced nodes

on [0, 1], so that [0, 1] is divided into 99 subintervals. We apply SPN and STN to find approximations on each subinterval,

each optimized with respect to the width parameter ai. Figure 3 shows the cost function (35) on each subinterval for STN

and SPN. Clearly, SPN is better than STN everywhere, and generally by several orders. Figure 4 shows the optimal width

parameters per subinterval for this example, for both STN and SPN, demonstrating that they can differ from subinterval

to subinterval.

Lastly, we approximate sin x on [0, π] at the equispaced nodes
{
0, π

3
, 2π

3
, π

}
, using the heuristic width parameter, so as to

illustrate the use of (16). Because of the symmetric character of sin x on this interval, and the uniform spacing of the

Published by Canadian Center of Science and Education 145

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

nodes, the matrix T is singular. However, we find that the coefficient matrix in (16) has determinant of −0.1114... and

condition number ∼ 18, and so is reliably inverted. Hence, we find that STN has a maximum error of 0.05, and SPN has

a maximum error of 8 × 10−4, on
[
π
3
, 2π

3

]
.

8. Conclusion

The use of RBF networks to approximate nonlinear functions, using a discrete set of values of both the function and its

first derivative has, to the best of our knowledge, not been attempted before. In this paper, we have addressed this issue

by developing a strict interpolation approximation algorithm based on Gaussian basis functions, that not only interpolates

the target function but also its first derivative. The approximation is piecewise, and is based on a superposition of three

standard RBF networks. Coefficients in the superposition are determined linearly, using a discrete set of values of both

the function and its first derivative as training data. By implementing the algorithm in such a manner, we are able to

exploit the guaranteed invertibility of the coefficient matrices associated with standard RBF networks. In the special case

of approximating a symmetrical/antisymmetrical function, a variation in the training algorithm has been given that avoids

potential singularities in the relevant coefficient matrix. The possibility of using cost functions to determine an optimal

width parameter has been suggested. Stability of the algorithm has been investigated, and a simple test for instability, w.r.t.

the width parameter, has been proposed. A theoretical derivation of the approximation error indicates that the algorithm

can be expected to be sixth-order in the node spacing h, while the standard network is only fourth-order. Numerical

examples demonstrate the superiority of the algorithm over the standard approach, as anticipated.

Acknowledgment

Part of this work was incorporated into a PhD thesis, awarded by the Rand Afrikaans University (now the University of

Johannesburg). The author gratefully acknowledges the role of the thesis supervisor, Prof. W.-H. Steeb.

References

Bishop, C.M. (2000). Neural Networks for Pattern Recognition, Oxford: Oxford University Press, p164.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, New Jersey: Prentice-Hall, p256.

Liu, B., and Si, J. (1994). The best approximation to C2 functions and its error bounds using regular-center gaussian

networks. IEEE Trans. on Neural Networks, 5, 5, 845-847.

Michelli, C.A. (1986). Interpolation of scattered data: distance matrices and conditionally positive definite functions.

Constr. Approx., 2, 11-22.

Mhaskar, H.N., and Pai, D.V. (2000). Fundamentals of Approximation Theory, Boca Raton: CRC Press, p185.

Park, J., and Sandberg, I.W. (1991). Universal approximation using radial-basis-function networks. Neural Computation,
3, 246-257.

Williamson, R.C. (1995). Existence and uniqueness results for neural network approximations. IEEE Trans. on Neural
Networks, 6, 1, 2-13.

Figure 1. Cost function vs width parameter for STN and SPN when approximating f (x) = ex.

146 ISSN 1916-9795 E-ISSN 1916-9809

www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

Figure 2. End-point-conditions (EPCs) vs width parameter for SPN when approximating f (x) = ex

Figure 3. Cost function per subinterval for STN and SPN when approximating the function H(x), as described in the text

Figure 4. Optimal width parameters per subinterval for STN and SPN, when approximating H(x)

Published by Canadian Center of Science and Education 147

