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Abstract

In this paper we consider a homogeneous holomorphic line bundle over an elliptic adjoint orbit of a real semisimple
Lie group, and set a continuous representation of the Lie group on a certain complex vector subspace of the complex
vector space of holomorphic cross-sections of the line bundle. Then, we demonstrate that the representation is irreducible
unitary.
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1. Introduction

1.1 A Geometrical Realization of Irreducible Unitary Representations

First of all, let us recall the definition of irreducible unitary representation. Let G be a Lie group, let H = (H , ⟨ · , · ⟩)
be a complex Hilbert space, and let ϱ : G → GL(H), g 7→ ϱ(g), be a group homomorphism, where GL(H) denotes the
general linear group ofH and it does not matter whether ϱ is continuous here. Then, the definition of irreducible unitary
representation is as follows:

Definition 1.1.

(i) ϱ is called a (continuous) representation of G onH , if the mapping G ×H ∋ (g, ϕ) 7→ ϱ(g)ϕ ∈ H is continuous.

(ii) A representation ϱ of G onH is said to be irreducible, if an arbitrary closed ϱ(G)-invariant complex vector subspace
H1 ⊂ H coincides with either {0} orH .

(iii) A representation ϱ of G onH is said to be unitary, if ⟨ϱ(g)ϕ1, ϱ(g)ϕ2⟩ = ⟨ϕ1, ϕ2⟩ for all g ∈ G and ϕ1, ϕ2 ∈ H .

Here the topology forH is induced by the norm ∥ϕ∥ :=
√
⟨ϕ, ϕ⟩.

It is interesting to find out irreducible unitary representations from among geometric objects for study. In this paper, we
consider a homogeneous holomorphic line bundle ι♯(GC ×χ C) over an elliptic (adjoint) orbit G/L of real semisimple Lie
group G, and set a representation ϱ of G on a complex vector subspaceH of the complex vector spaceV of holomorphic
cross-sections of the bundle ι♯(GC ×χ C). Then, we demonstrate that without any completions,H is a separable complex
Hilbert space, and that ϱ is an irreducible unitary representation of G onH (see Theorem 1.2 below).

1.2 The Main Result (Theorem 1.2)

We are going to state the main result in this paper. Let GC be a connected complex semisimple Lie group, let G be a
connected closed subgroup of GC such that g is a real form of gC, and let T be a non-zero elliptic element of g (see
Definition 2.1 for the definition of elliptic element). Setting

L := CG(T ) = {g ∈ G | Ad g(T ) = T }, LC := CGC(T ),
gλ := {A ∈ gC | ad T (A) = iλA} for λ ∈ R,
u± :=

⊕
λ>0 g±λ, U+ := exp u+, Q− := {x ∈ GC | Ad x(lC ⊕ u−) ⊂ lC ⊕ u−},

we have an elliptic orbit G/L, a complex flag manifold1 GC/Q− and L = G ∩ Q−. Moreover, we see that the mapping
ι : G/L → GC/Q−, gL 7→ gQ−, is a G-equivariant embedding whose image is a domain in GC/Q−. For this reason, we

1A complex flag manifold is also called a Kähler C-space or a generalized flag manifold.
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can assume G/L to be a domain in GC/Q− and regard it as a homogeneous complex manifold of G, via ι.

G/L -ι
GC/Q−

ι♯(GC ×χ C)

?

GC ×χ C

?

In addition, let χ : Q− → C∗ = GL(1,C), q 7→ χ(q), be a holomorphic homomorphism. Denote by GC ×χ C the fiber
bundle over GC/Q−, with standard fiber C and structure group Q−, which is associated to the principal fiber bundle πC :
GC → GC/Q−, x 7→ xQ−, and denote by ι♯(GC ×χ C) the restriction of the bundle GC ×χ C to the domain G/L ⊂ GC/Q−.
Then, one may assume that

V :=
{
ψ : GQ− → C (1) ψ is holomorphic,

(2) ψ(xq) = χ(q)−1ψ(x) for all (x, q) ∈ GQ− × Q−

}
is the complex vector space of holomorphic cross-sections of the line bundle ι♯(GC ×χ C). Let us set a complex vector
subspaceH ⊂ V and a group homomorphism ϱ : G → GL(H), g 7→ ϱ(g), as follows:

⟨ψ1, ψ2⟩ :=
∫

G
ψ1(g)ψ2(g)dµ(g), ∥ψ∥ :=

√
⟨ψ, ψ⟩ for ψ1, ψ2, ψ ∈ V,

H := {ϕ ∈ V : ∥ϕ∥ < ∞},(
ϱ(g)ϕ

)
(x) := ϕ(g−1x) for (g, ϕ) ∈ G ×H and x ∈ GQ−,

where µ denotes the non-zero Haar measure on G. Now, we are in a position to state

Theorem 1.2. With the setting in Subsection 1.2; suppose that

(S) |χ(ℓ)| = 1 for all ℓ ∈ L (⊂ Q−).

Then, H = (H , ⟨ · , · ⟩) is a separable complex Hilbert space and ϱ is an irreducible unitary representation of G on H .
Furthermore, in case ofH , {0}, the following two items hold:

(I) There exists a unique φmax ∈ H such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e.

(II) There exists a non-zero ϕ ∈ H satisfying
∫

G
|⟨ϱ(g)ϕ, ϕ⟩|2dµ(g) = ∥ϕ∥6 (< ∞).

Here (U+ ∩GQ−)e denotes the connected component of U+ ∩GQ− containing the unit element e ∈ GC.

1.3 Topics Related to the Main Result

Here are some comments on Theorem 1.2.

(c.1) Theorem 1.2 and Godement’s result (Godement, 1947) ensure that the representation ϱ is square integrable or
discrete series in case ofH , {0} (ref. Shucker, 1983, also).

(c.2) The vector φmax ∈ H is a maximal vector of weight χ whenever G is compact and L is a maximal torus in G.

(c.3) If G has a compact Cartan subgroup, then the supposition (S) always holds (see Remark 2.15). In particular, it does
hold in the case where L is compact.

(c.4) If M is a homogeneous pseudo-Kähler manifold of G and G acts on M almost effectively, then M becomes an elliptic
orbit of G. Conversely, any elliptic orbit of G is a homogeneous pseudo-Kähler manifold of G. cf. Dorfmeister-
Guan, 1991.

(c.5) We assert that ϱ : G → GL(H) is irreducible unitary, on weak assumptions for G/L and χ : Q− → C∗. Nobody
has completely proved that on the same assumptions as ours, as far as the authors know. Needless to say, one has
already shown that on strong assumptions. For example, Borel-Weil (cf. Serre, 1995) deals with the case where G
is compact, Harish-Chandra (Harish-Chandra, 1956) does the case where L is a compact Cartan subgroup of G, etc.
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(c.6) It is known in some cases that there are sufficient conditions for H to be not equal to {0}. e.g. Harish-Chandra,
1956; Serre, 1995.

Let us give two examples.

Example 1.3. Let GC = S L(2,C),

G = S U(1, 1) =
{(
α β

β α

)
α, β ∈ C, |α|2 − |β|2 = 1

}
, T =

(
i 0
0 −i

)
.

This T is a non-zero elliptic element of g = su(1, 1) because the linear transformation ad T : gC → gC is represented by

ad T =

2i 0 0
0 −2i 0
0 0 0


relative to a complex basis

{(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 −1

)}
of gC. Moreover, a direct computation yields

L = S (U(1) × U(1)), U+ =
{(

1 α
0 1

)
α ∈ C

}
, Q− =

{(
β 0
γ 1/β

)
β ∈ C∗, γ ∈ C

}
.

Define a holomorphic homomorphism χ : Q− → C∗ by

χ

(
β 0
γ 1/β

)
:= 1/β2 for

(
β 0
γ 1/β

)
∈ Q−.

Then, Theorem 1.2 implies that ϱ is an irreducible unitary representation of G onH because the supposition (S) holds. In
this caseH , {0}. Indeed; let us consider a holomorphic function φmax : GQ− → C defined by

φmax

(
u v
z w

)
:= 1/w2 for

(
u v
z w

)
∈ GQ−,

where we remark that w , 0 for all
(
u v
z w

)
∈ GQ−. For this φmax one can confirm that φmax(xq) = χ(q)−1φmax(x) for all

(x, q) ∈ GQ− × Q−. So, φmax ∈ V. Taking an Iwasawa decomposition of G = S U(1, 1) into account, we deduce

∥φmax∥2 =
∫

G
|φmax(g)|2dµ(g)

=
1

4π

∫ ∞

−∞
da

∫ ∞

−∞
dn

∫ 4π

0
dk

∣∣∣∣∣∣∣∣∣φmax


cosh

(a
2

)
sinh

(a
2

)
sinh

(a
2

)
cosh

(a
2

)

1 +

in
2
− in

2
in
2

1 − in
2


(
e

ik
2 0

0 e−
ik
2

)
∣∣∣∣∣∣∣∣∣
2

= 4π < ∞.

Therefore φmax ∈ H , andH , {0}. Incidentally, φmax(u) = 1 for all u ∈ U+ ∩GQ−,∫
G
|⟨ϱ(g)φmax, φmax⟩|2dµ(g) = 64π3 < ∞,

and the representation space H of ϱ corresponds to the complex Hilbert space of square integrable holomorphic 1-forms
ω on the open unit disk in C.

Example 1.4. Let GC = S L(2,C), G = S U(2) and

T =
(
i 0
0 −i

)
.

This T is a non-zero elliptic element of g = su(2) and

L = S (U(1) × U(1)), U+ =
{(

1 α
0 1

)
α ∈ C

}
, Q− =

{(
β 0
γ 1/β

)
β ∈ C∗, γ ∈ C

}
.
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Define holomorphic homomorphisms χ+ : Q− → C∗ and χ− : Q− → C∗ by

χ+

(
β 0
γ 1/β

)
:= β2, χ−

(
β 0
γ 1/β

)
:= 1/β2 for

(
β 0
γ 1/β

)
∈ Q−,

respectively. In each case Theorem 1.2 assures that ϱ is an irreducible unitary representation of G on H , since the
supposition (S) holds. Note that GQ− = GC andV = H .

• In the case of χ+, one hasH , {0}. Indeed; if we define a holomorphic function φmax : GC → C by

φmax

(
u v
z w

)
:= w2 for

(
u v
z w

)
∈GC,

then it turns out that φmax(xq) = χ+(q)−1φmax(x) for all (x, q) ∈ GC × Q− and φmax(u) = 1 for all u ∈ U+, so that
0 , φmax ∈ V = H .

• In the case of χ−, one has H = {0}. Let us explain the reason why. For a given holomorphic function ψ : GC → C,
suppose it to satisfy ψ(xq) = χ−(q)−1ψ(x) for all (x, q) ∈ GC × Q−. Then for M := sup{|ψ(g)| : g ∈ G}, we assert that
M < ∞ because G = S U(2) is compact. Moreover, by the supposition we conclude∣∣∣∣∣∣ψ

(
1 α
0 1

)∣∣∣∣∣∣ =
∣∣∣∣∣∣ψ

 1/
√

1 + |α|2 α/
√

1 + |α|2
−α/

√
1 + |α|2 1/

√
1 + |α|2

1/
√

1 + |α|2 0
α/

√
1 + |α|2

√
1 + |α|2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣χ−
1/

√
1 + |α|2 0

α/
√

1 + |α|2
√

1 + |α|2

−1

ψ

 1/
√

1 + |α|2 α/
√

1 + |α|2
−α/

√
1 + |α|2 1/

√
1 + |α|2


∣∣∣∣∣∣∣ ≤ M

1 + |α|2 ≤ M

for all α ∈ C. Since C and U+ are biholomorphic, Liouville’s theorem on entire functions implies that ψ is the constant
function with the value ψ(e) on U+. This constant must be zero because |ψ(e)| ≤ M/(1 + |α|2) for all α ∈ C. Consequently
it follows from the supposition that ψ(a) = 0 for all a ∈ U+Q−. Hence, the theorem of identity tells us that ψ = 0 on the
whole GC, because U+Q− is an open subset in GC. For this reason one has {0} = V = H . Incidentally, in the case of χ+
(resp. χ−) the representation spaceH of ϱ corresponds to the complex vector space of holomorphic vector fields X (resp.
holomorphic 1-forms ω) on the complex projective space CP1.

1.4 Outline of this Paper

This paper consists of three sections.

§2 Preliminaries

We recall the definition of elliptic element and establish Theorem 2.3 which will play a role in the next section.
Besides, we review elementary facts about Haar measures, complex flag manifolds, homogeneous holomorphic
line bundles and so on.

§3 Proof of the main result

We construct an element ψ̂λ ∈ V from ψ ∈ V and (3.3), and then clarify some properties of ψ̂λ, especially its

integral
∫ 2π

0
ψ̂λdλ. Making use of the properties we conclude almost all of the propositions and lemmas in this

section, and finally complete the proof of Theorem 1.2.

2. Preliminaries

2.1 Notation

Throughout this paper, for a Lie group G, we denote its Lie algebra by the corresponding Fraktur small letter g, and utilize
the following notation:

(n1) i :=
√
−1,

(n2) Ad, ad : the adjoint representation of G, g,

(n3) CG(T ) := {g ∈ G | Ad g(T ) = T } for an element T ∈ g,

(n4) NG(m) := {g ∈ G | Ad g(m) ⊂ m} for a vector subspace m ⊂ g,

(n5) m ⊕ n : the direct sum of vector spaces m and n,

(n6) f |S : the restriction of a mapping f to a set S .
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2.2 The Definition of Elliptic Element and Theorem 2.3

Throughout Subsection 2.2, we denote by lC the complexification of a real Lie algebra l. Let g be a real semisimple Lie
algebra. We recall the definition of elliptic element.

Definition 2.1 (cf. Kobayashi, 1998, p.5). An element T ∈ g is said to be elliptic, if ad T is a semisimple linear transfor-
mation of g and all the eigenvalues of ad T in gC are purely imaginary.

For an elliptic element T ∈ g, we set

gλ(T ) := {A ∈ gC | ad T (A) = iλA} for λ ∈ R; u±(T ) :=
⊕

λ>0 g±λ(T ). (2.2)

Our goal in this subsection is to demonstrate

Theorem 2.3. Let g be a real semisimple Lie algebra and let G be a connected Lie group with Lie algebra g. Then for
any elliptic element T ∈ g, there exists an elliptic element T ′ ∈ g such that

(i) all the eigenvalues of ad iT ′ in gC are integer,

(ii) CG(T ) = CG(T ′),

(iii) u+(T ) = u+(T ′), u−(T ) = u−(T ′).

Remark 2.4. Theorem 2.3 allows us to suppose that all the eigenvalues of ad iT in gC are integer for the elliptic element
T concerning Theorem 1.2, because there are no changes in the topological group structures on L, U+ and Q− even if
we substitute T ′ for T . Remark here that the gλ(T ) and u±(T ) in (2.2) correspond to the gλ and u± in Subsection 1.2,
respectively.

We want to first prove Lemma 2.5, next deduce Proposition 2.6 from the lemma, and finally obtain the goal from the
proposition.

Lemma 2.5. Let g be a real simple Lie algebra with 2 ≤ dimR g. Then for any elliptic element T ∈ g, there exists an
elliptic element T ′ ∈ g such that

(i) all the eigenvalues of ad iT ′ in gC are integer,

(ii′) cgC(T ) = cgC(T ′),

(iii) u+(T ) = u+(T ′), u−(T ) = u−(T ′).

Proof. It is obvious in case of T = 0. Thus, we suppose T , 0 hereafter. Since T ∈ g is elliptic, there exists a maximal
compact subalgebra k ⊂ g containing T . Furthermore, there exists a maximal torus t ⊂ k such that T ∈ t. Let us investigate
the following cases (a) and (b) individually:

(a) k is not semisimple, (b) k is semisimple.

Henceforth tC and kC denote the complex subalgebras of gC generated by t and k, respectively. Note that tC is a Cartan
subalgebra of gC in case (a) because g is simple.

Case (a): Denote by △ the set of non-zero roots of gC relative to tC, and put tR := {H ∈ tC |α(H) ∈ R for all α ∈ △}. In
this case we obtain

gC = tC ⊕
⊕

α∈△ gα, T ∈ t = itR,

where gα := {A ∈ gC | ad H(A) = α(H)A for all H ∈ tC} for α ∈ △. Let △+ denote the set of positive roots in △ for the
lexicographic linear ordering with respect to a real basis

−iT =: H1,H2, . . . ,Hl

of tR. In view of this ordering we conclude that

β(H1) ≥ 0 for all β ∈ △+. (a.1)
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Let {αa}la=1 (⊂ △+) be a fundamental root system of △, and {Za}la=1 its dual basis. Then tR = spanR{Za}la=1, so that (a.1)
allows us to express the element H1 ∈ tR as follows: H1 =

∑l
a=1 haZa, ha ≥ 0. Changing the indexes of α1, α2, . . . , αl (if

necessary), one may assume that h1, . . . , hs > 0 and hs+1 = · · · = hl = 0, namely

H1 =
∑s

b=1 hbZb, hb > 0. (a.2)

For a Y ∈ tR we set
△0(Y) := {β ∈ △ | β(Y) = 0}, △±(Y) := {γ ∈ △ | ± γ(Y) > 0}.

Now, (a.2) and αa(Zb) = δa,b ensure that for α =
∑l

a=1 maαa ∈ △, it belongs to △0(H1) if and only if α =
∑l

c=s+1 mcαc.
That implies αs+1, . . . , αl ∈ △0(H1); and therefore for X =

∑l
a=1 xaZa ∈ tR,

β(X) = 0 for all β ∈ △0(H1) if and only if X =
∑s

b=1 xbZb. (a.3)

For an α =
∑l

a=1 maαa ∈ △ we define a continuous function α̇ : Rs → R by

α̇(x1, . . . , xs) :=
∑s

b=1 xbmb for (x1, . . . , xs) ∈ Rs,

and see that γ̇(h1, . . . , hs) =
∑s

b=1 hbnb
(a.2)
= γ(H1) > 0 for each γ =

∑l
a=1 naαa ∈ △+(H1). Consequently, for each

γ ∈ △+(H1) there exists an ϵγ > 0 such that

γ̇(x1, . . . , xs) > 0 for all (x1, . . . , xs) ∈ Bϵγ (h1, . . . , hs)

because γ̇ is continuous. Here Bϵγ (h1, . . . , hs) denotes the open ball in Rs with center (h1, . . . , hs) and radius ϵγ. Let us set
ϵ+ := min{ϵγ | γ ∈ △+(H1)}. Since △+(H1) is a finite set, one has ϵ+ > 0. Moreover, it turns out that

γ̇(y1, . . . , ys) > 0 for all
(
γ, (y1, . . . , ys)

) ∈ △+(H1) × Bϵ+ (h1, . . . , hs). (a.4)

Similarly, there exists an ϵ− > 0 such that

δ̇(z1, . . . , zs) < 0 for all
(
δ, (z1, . . . , zs)

) ∈ △−(H1) × Bϵ− (h1, . . . , hs). (a.5)

Here Bϵ+ (h1, . . . , hs)∩ Bϵ−(h1, . . . , hs) is a non-empty open subset in Rs. By the denseness of rational numbers, there exist
m̄b ∈ Z and n̄b ∈ N satisfying ( m̄1

n̄1
, . . . ,

m̄s

n̄s

)
∈ Bϵ+(h1, . . . , hs) ∩ Bϵ−(h1, . . . , hs). (a.6)

From them we construct an element H̄ ∈ tR = spanR{Za}la=1 as follows:

H̄ := n̄1 · · · n̄s

s∑
b=1

m̄b

n̄b
Zb = (m̄1n̄2 · · · n̄s)Z1 + · · · + (n̄1 · · · n̄s−1m̄s)Zs. (a.7)

With the setting above, the following four items hold for H̄:

(i′) All the eigenvalues of ad H̄ in gC are integer, since H̄ ∈ tR ⊂ tC, gC = tC ⊕
⊕

α∈△ gα and α(H̄) = (m̄1n̄2 · · · n̄s)m1 +

· · · + (n̄1 · · · n̄s−1m̄s)ms ∈ Z for each α =
∑l

a=1 maαa ∈ △.

(ii′) β(H̄) = 0 for all β ∈ △0(H1), because of (a.3) and (a.7).

(iii′) γ(H̄) > 0 for all γ ∈ △+(H1). Indeed; if γ =
∑l

a=1 naαa, then

γ(H̄)
(a.7)
= n̄1 · · · n̄s

s∑
b=1

m̄b

n̄b
nb = n̄1 · · · n̄sγ̇

( m̄1

n̄1
, . . . ,

m̄s

n̄s

)
> 0

by virtue of n̄1 · · · n̄s > 0, (a.4) and (a.6).

(iv′) δ(H̄) < 0 for all δ ∈ △−(H1).

These (ii′), (iii′) and (iv′) yield △0(H1) ⊂ △0(H̄), △±(H1) ⊂ △±(H̄). Therefore we deduce

△0(H1) = △0(H̄), △+(H1) = △+(H̄), △−(H1) = △−(H̄) (a.8)

from △0(H1)⊔△+(H1)⊔△−(H1) = △ = △0(H̄)⊔△+(H̄)⊔△−(H̄) (disjoint union). Setting T̄ := iH̄, one has T̄ ∈ itR = t ⊂ g.
This assures that T̄ is an elliptic element of g. In addition, (i′), T = iH1, T̄ = iH̄ and (a.8) imply that
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(i) all the eigenvalues of ad iT̄ in gC are integer;

(ii) cgC(T ) = tC ⊕
⊕

β∈△0(H1) gβ = tC ⊕
⊕

β∈△0(H̄) gβ = cgC(T̄ );

(iii) u+(T ) =
⊕

γ∈△+(H1) gγ =
⊕

γ∈△+(H̄) gγ = u+(T̄ );

(iv) u−(T ) = u−(T̄ ).

Accordingly Lemma 2.5 holds in case (a). Thus, the rest of proof is to confirm that in case (b).

Case (b): kC is a complex semisimple Lie algebra and tC is a Cartan subalgebra of kC. We denote by Ξ the set of non-zero
roots of kC relative to tC and obtain

kC = tC ⊕
⊕
ξ∈Ξ

kξ,

where kξ := {K ∈ kC | ad H(K) = ξ(H)K for all H ∈ tC} for ξ ∈ Ξ. Let us set tR := {H ∈ tC | ξ(H) ∈ R for all ξ ∈ Ξ}, fix a
fundamental root system {ξa}na=1 ⊂ Ξ, and denote the dual basis of {ξa}na=1 by {Wa}na=1. Then it follows that

iT ∈ tR = spanR{Wa}na=1, itR = t ⊂ k ⊂ g.

Express a Cartan decomposition of g as g = k ⊕ p, and define a representation ρ of kC on pC by ρ : kC → End(pC),
K 7→ ad K|pC , where pC denotes the complex vector subspace of gC generated by p. Denoting by Ω the set of weights of
ρ relative to tC, we have

pC =
⊕
ω∈Ω

pω,

where pω := {P ∈ pC | ad H(P) = ω(H)P for all H ∈ tC} for ω ∈ Ω. With the setting above, the following statement holds:

for any α ∈ Ξ ⊔Ω, there exist unique rational numbers qa such that α =
∑n

a=1 qaξa. (b.1)

For an X ∈ tR we set

△0(X) := {β ∈ Ξ ⊔Ω | β(X) = 0}, △±(X) := {γ ∈ Ξ ⊔Ω | ± γ(X) > 0}.

From now on, we put H := −iT , suppose that △0(H) consists of m-elements β1, . . . , βm, and express them as
β1 = q11ξ1 + · · · + q1nξn,
...

βm = qm1ξ1 + · · · + qmnξn,

qba ∈ Q (1 ≤ b ≤ m, 1 ≤ a ≤ n)

in accordance with (b.1). Denote by r the rank of the matrix (qba)1≤b≤m,1≤a≤n above. Let us study the following system of
m linear homogeneous equations: 

q11 · · · q1n
...

. . .
...

qm1 · · · qmn



x1
...

xn

 =

0
...
0

. (b.2)

Applying the elementary row or column operations to the coefficient matrix (qba)1≤b≤m,1≤a≤n, we can obtain
1 O

. . .

O 1

q̃1,r+1 · · · q̃1n
...

. . .
...

q̃r,r+1 · · · q̃rn

Om−r,r Om−r,n−r

, q̃ jk ∈ Q (1 ≤ j ≤ r, r + 1 ≤ k ≤ n).

Changing the indexes of x1, x2, . . . , xn, one may assume that x j = −
∑n

k=r+1 q̃ jktk (1 ≤ j ≤ r), xk = tk (r + 1 ≤ k ≤ n) is the
solution of (b.2), where tr+1, . . . , tn are indeterminate. Hence, by ξa(Wc) = δa,c and changing the indexes of ξ1, ξ2, . . . , ξn,
we assert the following statement: for X =

∑n
a=1 xaWa ∈ tR,

β(X) = 0 for all β ∈ △0(H) = {βb}mb=1 if and only if there exists a (tr+1, . . . , tn) ∈ Rn−r

such that x j = −
∑n

k=r+1 q̃ jktk (1 ≤ j ≤ r) and xk = tk (r + 1 ≤ k ≤ n). (b.3)
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For this reason one elucidates that
h j = −

∑n
k=r+1 q̃ jkhk (1 ≤ j ≤ r) (b.4)

when the element H ∈ tR is expressed as H =
∑n

a=1 haWa. Now, we take an α =
∑n

a=1 qaξa ∈ Ξ⊔Ω and define a continuous
function α̈ : Rn−r → R by

α̈(yr+1, . . . , yn) :=
∑n

k=r+1(qk −
∑r

j=1 q̃ jkq j)yk for (yr+1, . . . , yn) ∈ Rn−r.

For any γ =
∑n

a=1 paξa ∈ △+(H), it follows from H =
∑n

a=1 haWa and ξa(Wc) = δa,c that

0 < γ(H) =
n∑

a=1

paha
(b.4)
=

n∑
k=r+1

(
pk −

r∑
j=1

q̃ jk p j

)
hk = γ̈(hr+1, . . . , hn).

Accordingly there exists an ϵ+ > 0 such that

γ̈(yr+1, . . . , yn) > 0 for all
(
γ, (yr+1, . . . , yn)

) ∈ △+(H) × Bϵ+(hr+1, . . . , hn). (b.5)

Similarly, there exists an ϵ− > 0 such that

δ̈(zr+1, . . . , zn) < 0 for all
(
δ, (zr+1, . . . , zn)

) ∈ △−(H) × Bϵ− (hr+1, . . . , hn). (b.6)

Here Bϵ+ (hr+1, . . . , hn) ∩ Bϵ−(hr+1, . . . , hn) is a non-empty open subset in Rn−r. So, the denseness of rational numbers
provides us with q̃r+1, . . . , q̃n ∈ Q which satisfy

(q̃r+1, . . . , q̃n) ∈ Bϵ+(hr+1, . . . , hn) ∩ Bϵ− (hr+1, . . . , hn). (b.7)

By use of the rational numbers q̃ jk and q̃k, we define an element H̃ ∈ tR = spanR{Wa}na=1 by

H̃ :=
(
−

n∑
k=r+1

q̃1kq̃k

)
W1 + · · · +

(
−

n∑
k=r+1

q̃rkq̃k

)
Wr + q̃r+1Wr+1 + · · · + q̃nWn. (b.8)

Then, it turns out that

(i′) all the eigenvalues of ad H̃ in gC are rational numbers, because of H̃ ∈ tC, gC = tC ⊕
⊕

ξ∈Ξ kξ ⊕
⊕

ω∈Ω pω and

α(H̃)
(b.8)
= (−∑n

k=r+1 q̃1kq̃k)q1 + · · ·+ (−∑n
k=r+1 q̃rkq̃k)qr + q̃r+1qr+1 + · · ·+ q̃nqn ∈ Q for every α =

∑n
a=1 qaξa ∈ Ξ⊔Ω,

cf. (b.1);

(ii′) β(H̃) = 0 for all β ∈ △0(H), in terms of (b.3) and (b.8);

(iii′) γ(H̃) > 0 for all γ ∈ △+(H) because if γ =
∑n

a=1 paξa, then

γ(H̃)
(b.8)
= −

r∑
j=1

n∑
k=r+1

q̃ jkq̃k p j +

n∑
k=r+1

q̃k pk = γ̈(q̃r+1, . . . , q̃n) > 0

comes from (b.5) and (b.7);

(iv′) δ(H̃) < 0 for all δ ∈ △−(H).

These (ii′), (iii′) and (iv′) imply that

△0(H) = △0(H̃), △+(H) = △+(H̃), △−(H) = △−(H̃). (b.9)

In view of (i′) we suppose that the set of the eigenvalues of ad H̃ consists of m̃1/ñ1, . . . , m̃u/ñu, where m̃v ∈ Z and ñv ∈ N.
In this case we set

T̃ := i(ñ1 · · · ñu)H̃

and have T̃ ∈ itR = t ⊂ g. Hence, T̃ is an elliptic element of g. Moreover, it follows from ñ1 · · · ñu > 0 that △0(H̃) =
△0(ñ1 · · · ñuH̃) and △±(H̃) = △±(ñ1 · · · ñuH̃), so that
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(i) all the eigenvalues of ad iT̃ in gC are integer, because the set of the eigenvalues of ad iT̃ consists of −(m̃1ñ2 · · · ñu),
. . . , −(ñ1 · · · ñu−1m̃u);

(ii) cgC(T ) = tC ⊕
⊕

β∈△0(H)∩Ξ kβ ⊕
⊕

β∈△0(H)∩Ω pβ = tC ⊕
⊕

β∈△0(H̃)∩Ξ kβ ⊕
⊕

β∈△0(H̃)∩Ω pβ = cgC (T̃ ), since T = iH and

△0(H)
(b.9)
= △0(H̃) = △0(ñ1 · · · ñuH̃);

(iii) u+(T ) =
⊕

γ∈△+(H)∩Ξ kγ ⊕
⊕

γ∈△+(H)∩Ω pγ =
⊕

γ∈△+(H̃)∩Ξ kγ ⊕
⊕

γ∈△+(H̃)∩Ω pγ = u+(T̃ );

(iv) u−(T ) = u−(T̃ ).

Consequently, Lemma 2.5 holds in case (b), also. �

Lemma 2.5 leads to

Proposition 2.6. Let g be a real semisimple Lie algebra. Then for any elliptic element T ∈ g, there exists an elliptic
element T ′ ∈ g such that

(i) all the eigenvalues of ad iT ′ in gC are integer,

(ii′) cgC(T ) = cgC(T ′),

(iii) u+(T ) = u+(T ′), u−(T ) = u−(T ′).

Proof. Since g is real semisimple, one can decompose it as

g = g1 ⊕ g2 ⊕ · · · ⊕ gn,

where all ga are real simple ideals of g (1 ≤ a ≤ n). Express the element T as T = T1 + T2 + · · ·+ Tn (Ta ∈ ga). Then Ta is
an elliptic element of ga for every 1 ≤ a ≤ n. Denoting by ga,C the complex subalgebra of gC generated by ga, we confirm
that (1) gC = g1,C ⊕ g2,C ⊕ · · · ⊕ gn,C, (2) each ga,C is a complex simple or semisimple ideal of gC and (3) ga is a real form
of ga,C. Accordingly for each Ta (1 ≤ a ≤ n), Lemma 2.5 provides us with an elliptic element T ′a ∈ ga such that

(i) all the eigenvalues of ad iT ′a in ga,C are integer,

(ii′) cga,C (Ta) = cga,C(T ′a),

(iii) ua,+(Ta) = ua,+(T ′a), ua,−(Ta) = ua,−(T ′a),

where ga,λ(T̄ ) := {A ∈ ga,C | ad T̄ (A) = iλA} for λ ∈ R and ua,±(T̄ ) :=
⊕

λ>0 ga,±λ(T̄ ). Setting T ′ := T ′1 + T ′2 + · · · + T ′n, we
get the conclusion. �

Now, let us demonstrate Theorem 2.3.

Proof of Theorem 2.3. By Proposition 2.6 there exists an elliptic element T ′ ∈ g such that

(i) all the eigenvalues of ad iT ′ in gC are integer,

(ii′) cgC(T ) = cgC(T ′),

(iii) u+(T ) = u+(T ′), u−(T ) = u−(T ′).

Hence the rest of proof is to conclude (ii) CG(T ) = CG(T ′). On the one hand; it is immediate from (ii′) that cg(T ) =
(g ∩ cgC(T )) = (g ∩ cgC (T ′)) = cg(T ′). On the other hand; both CG(T ) and CG(T ′) are connected, since G is connected
semisimple and since both T and T ′ are elliptic elements of g (e.g. Lemma 2 in Boumuki, 2013, p.9). Therefore (ii)
follows. �

70



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 4; 2018

2.3 A Known Result about the Haar Measure

Let us recall a known result about the Haar measure.

Let G be a connected real semisimple Lie group, and let B denote the σ-algebra generated by the set of open subsets
in G (namely, B is the Borel field on G). Since G is connected, it satisfies the second countability axiom. Hence, there
uniquely exists an extended real-valued function µ on B (up to positive constant) having the following seven properties,
which we call this µ the non-zero Haar measure on G:

(p1) 0 ≤ µ(A) ≤ ∞ for all A ∈ B,

(p2) µ(B) > 0 for each non-empty, open subset B in G,

(p3) µ(C) < ∞ for each compact subset C in G,

(p4) If An ∈ B (n = 1, 2, . . . ) and A j ∩ Ak = ∅ ( j , k), then
∑∞

n=1 µ(An) = µ(
∑∞

n=1 An),

(p5) µ(gA) = µ(A) for all (g, A) ∈ G ×B,

(p6) µ(Ag) = µ(A) for all (g, A) ∈ G ×B,

(p7) µ(A) = inf{µ(U) : U is open in G, A ⊂ U} for every A ∈ B.

cf. Haar, 1933; von Neumann, 1936.

Remark 2.7. Since G is a locally compact Hausdorff space and satisfies the second countability axiom, it follows from
(p3) that µ is a regular Borel measure on (G,B). cf. Proposition 7.2.3 in Cohn, 2013, p.190.

2.4 Elementary Facts about Complex Flag Manifolds, Homogeneous Holomorphic Line Bundles and So On

In this subsection we mainly review elementary facts about complex flag manifolds, homogeneous holomorphic line
bundles and so on. Throughout this subsection, GC is a connected complex semisimple Lie group, G is a connected closed
subgroup of GC such that g is a real form of gC, and T is a non-zero elliptic element of g. Here we remark that the center
Z(G) of G is finite due to Z(G) ⊂ Z(GC).

2.4.1 Root Systems and Iwasawa Decompositions

Since g is semisimple and T is elliptic, there exists a Cartan involution θ of g which satisfies θ(T ) = T . From k := {X ∈
g | θ(X) = X} and p := {X ∈ g | θ(X) = −X}, we construct a Cartan decomposition

g = k ⊕ p, T ∈ k.

Take a maximal torus t in k containing T . Then, h := {X ∈ g | [X,Y] = 0 for all Y ∈ t} satisfies θ(h) ⊂ h, and

h = (k ∩ h) ⊕ (p ∩ h), t = k ∩ h, T ∈ t.

So, h is a Cartan subalgebra of g with T ∈ h. Let △ denote the set of non-zero roots of gC relative to hC, and let △+ denote
the set of positive roots in △, where hC denotes the complex vector subspace of gC generated by h and we define positivity
by means of the lexicographic linear ordering with respect to a real basis

−iT = A1, A2, . . . , Ap (2.8)

of hR := it ⊕ (p ∩ h). Denote by gα the root subspace of gC for α ∈ △, and set

n± :=
⊕
β∈△+

g±β, gu := k ⊕ ip.

In this setting, one has gC = hC ⊕
⊕

α∈△ gα = n+ ⊕ hC ⊕ n− and

Lemma 2.9. Let HR, N± and Gu be the connected Lie subgroups of GC corresponding to the subalgebras hR, n± and gu

of gC, respectively. Then

(1) HR is a simply connected, closed abelian subgroup of GC, and exp : hR → HR is a real analytic diffeomorphism.
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(2) Ns is a simply connected, complex closed nilpotent subgroup of GC, and exp : ns → Ns is a biholomorphism, for
each s = ±.

(3) Gu is a maximal compact subgroup of GC.

(4) The product mapping Gu × HR × Ns ∋ (k, a, n) 7→ kan ∈ GC is a real analytic diffeomorphism for each s = ±.

Proof. Note that (i) gu is a maximal compact subalgebra of gC, (ii) gC = gu ⊕ igu is a Cartan decomposition of gC, (iii) hR
is a maximal abelian subspace of igu and (iv) gC = gu ⊕ hR ⊕ ns is an Iwasawa decomposition of gC (s = ±), where we
here regard gC and ns as real Lie algebras, respectively.

(1) By Theorem 6.46 in Knapp, 2004, p.374, and its proof, HR is a simply connected, closed abelian subgroup of GC.
Theorem 1.127 in Knapp, p.107, implies that exp : hR → HR is a real analytic diffeomorphism, since HR is simply
connected and nilpotent.

(2) One can conclude (2) by arguments similar to those above, where we remark that ns is a complex nilpotent subalgebra
of gC.

(3) cf. Theorem 6.31-(g) in Knapp, p.362.

(4) cf. Theorem 6.46 in Knapp, p.374, again. �

2.4.2 Complex Flag Manifolds and Flag Domains

In addition to the notation in Paragraph 2.4.1 we set

L := CG(T ), LC := CGC(T ),

gλ := {A ∈ gC | ad T (A) = iλA} for λ ∈ R,
u± :=

⊕
λ>0 g±λ, U± := exp u±, Q− := NGC(lC ⊕ u−).

(2.10)

Note that u± ⊂ n± comes from (2.8). Taking Lemma 2.9 into account, one can show

Proposition 2.11.

(1) Us is a simply connected, complex closed nilpotent subgroup of GC, and exp : us → Us is a biholomorphism, for
each s = ±.

(2) Q− is a connected, complex closed parabolic subgroup of GC, q− = lC ⊕ u−, and Q− = LC n U− (semi-direct).

(3) L is a connected, closed subgroup of G, and the homogeneous space G/L is simply connected.

(4) The product mapping U+ × Q− ∋ (u, q) 7→ uq ∈ GC is a holomorphic embedding whose image is a domain in GC.

Proof. (1) follows by us ⊂ ns and Lemma 2.9-(2).

(2) Remark that (i) hC ⊕ n− is a Borel subalgebra of gC, (ii) hC ⊕ n− ⊂ lC ⊕ u− and (iii) lC ⊕ u− is a complex parabolic
subalgebra of gC whose Levi factor (resp. unipotent radical) is lC (resp. u−). We refer to Warner, 1972, p.53 for the rest of
proof.

(3) e.g. Lemma 2 in Boumuki, 2013, p.9, and the proof of Proposition 2-(ii) in Boumuki, p.11.

(4) By Proposition 1.2.4.10 in Warner, p.77, and its proof, one sees that U+Q− is open in GC, and that the intersection
U+ ∩ Q− consists of the unit element e ∈ GC only. It follows from (1) and (2) that U+Q− is connected. �

Proposition 2.11 leads to

Corollary 2.12.

(a) ι : G/L → GC/Q−, gL 7→ gQ−, is a G-equivariant, real analytic embedding whose image is a simply connected
domain in GC/Q−.

(b) GQ− is a domain in GC.
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Proof. (a) By virtue of Proposition 2.11-(3) and dimR G/L = dimR u+ = dimR GC/Q−, it suffices to confirm

L = G ∩ Q−. (2.13)

We are going to confirm G ∩ Q− ⊂ L only, because L ⊂ G ∩ Q− is clear. Take an arbitrary x ∈ G ∩ Q−. Then, by x ∈ Q−
and Proposition 2.11-(1), (2) there exists a unique (l,Z) ∈ LC × u− such that

x = l exp Z.

We want to show exp Z = e. Let σ̄ denote the conjugation of gC with respect to g. On the one hand, x ∈ G, T ∈ l = g∩ lC,
LC = CGC(T ) and Q− = NGC (lC ⊕ u−) yield

g ∋ Ad x−1(T ) = (Ad exp(−Z)l−1)T = (Ad exp(−Z))T ∈ lC ⊕ u−.

On the other hand, Ad x−1(T ) ∈ g implies that σ̄(Ad x−1(T )) = Ad x−1(T ), so that (Ad exp(−Z))T = σ̄
(
(Ad exp(−Z))T

) ∈
σ̄(lC ⊕ u−) ⊂ lC ⊕ u+. Consequently we assert that

(Ad exp(−Z))T ∈ (lC ⊕ u−) ∩ (lC ⊕ u+) = lC.

Therefore lC ∋ −T + (Ad exp(−Z))T =
∑∞

n=1(1/n!)(− ad Z)nT ∈ u−, and hence

(Ad exp(−Z))T = T.

This implies exp Z ∈ LC ∩ U− = {e}. From exp Z = e we conclude x = l exp Z = l ∈ G ∩ LC = L, and G ∩ Q− ⊂ L. So,
(2.13) holds.

(b) We denote by πC the projection from GC onto GC/Q−. It is immediate from (a) that GQ− = π−1
C (ι(G/L)) is an open

subset in GC. Moreover, GQ− is connected because the product mapping G × Q− ∋ (g, q) 7→ gq ∈ GQ− is surjective
continuous and both G and Q− are connected. �

Remark 2.14.

(1) In general, there exist several kinds of invariant complex structures on the elliptic orbit G/L. In this paper we deal
with the complex structure on G/L induced by ι : G/L→ GC/Q−, gL 7→ gQ−.

(2) If G is compact, then ι : G/L ↪→ GC/Q− is surjective and we may identify G/L with GC/Q−.

2.4.3 Homogeneous Holomorphic Line Bundles over Complex Flag Manifolds

We continue to use the notation in Paragraphs 2.4.1 and 2.4.2.

Let χ : Q− → C∗ = GL(1,C), q 7→ χ(q), be a holomorphic homomorphism. For (x, u), (y, v) ∈ GC × C we say that they
are equivalent, if there exists a q ∈ Q− satisfying

y = xq, v = χ−1(q)u.

Denote by GC ×χ C the set of the equivalence classes on GC × C, and define a mapping PrC : GC ×χ C → GC/Q− as
follows:

PrC : [(x, u)] 7→ πC(x) for [(x, u)] ∈ GC ×χ C.
Then, GC ×χ C becomes a fiber bundle associated to the principal fiber bundle πC : GC → GC/Q− with standard fiber C
and structure group Q−, which we call it the homogeneous holomorphic line bundle over GC/Q− associated with χ. Here
we refer to Kobayashi-Nomizu, 1963, p.54–55 for the holomorphic structure on GC ×χ C above.

Remark 2.15. It holds that (S) |χ(ℓ)| = 1 for all ℓ ∈ L, if G has a compact Cartan subgroup. Indeed; let lss and lz denote
the semisimple part and the center of the reductive Lie algebra l, respectively. Then any element X ∈ l can be uniquely
expressed as X = Xss + Xz (Xss ∈ lss, Xz ∈ lz); and we deduce

χ∗(X) = χ∗(Xz)

from χ∗(lss) = χ∗([l, l]) ⊂ [χ∗(l), χ∗(l)] ⊂ {0}, where χ∗ denotes the differential homomorphism of χ : Q− → C∗. Besides,
it follows from T ∈ h that h ⊂ cg(T ) = l, so that lz ⊂ h. Therefore lz ⊂ h = t whenever G has a compact Cartan
subgroup. Consequently, if G has a compact Cartan subgroup, then χ∗(X) must be a purely imaginary for any X ∈ l
because χ∗(l) = χ∗(lz) ⊂ χ∗(t), and then |χ(ℓ)| = 1 for all ℓ ∈ L because L is connected.
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Now, let Γ(GC ×χ C) denote the complex vector space of holomorphic cross-sections of the bundle GC ×χ C. To any
cross-section s of GC ×χ C one can associate a function fs : GC → C which satisfies

s(πC(x)) = [(x, fs(x))] for all x ∈ GC.

Under this correspondence, holomorphic cross-sections go to holomorphic functions, and one may assume that

Γ(GC ×χ C) =
{

f : GC → C (1) f is holomorphic,
(2) f (xq) = χ(q)−1 f (x) for all (x, q) ∈ GC × Q−

}
. (2.16)

2.4.4 A Representation ϱ of G onV and a Topology forV
The notation below is the same as in Paragraphs 2.4.1, 2.4.2 and 2.4.3.

Let us assume that G/L is a domain in GC/Q− via ι : G/L→ GC/Q−, gL 7→ gQ−, and denote by ι♯(GC×χC) the restriction
of the bundle GC ×χ C to the domain G/L ⊂ GC/Q−. In this case, (2.16) tells us that

V :=
{
ψ : GQ− → C (1) ψ is holomorphic,

(2) ψ(xq) = χ(q)−1ψ(x) for all (x, q) ∈ GQ− × Q−

}
(2.17)

is the complex vector space of holomorphic cross-sections of the bundle ι♯(GC ×χ C). We want to set a representation of
G onV and define a topology forV. In order to do so, we first treat a complex vector space C defined by

C := {ξ : GQ− → C | ξ is continuous}.

On the one hand, we define an algebraic representation ϱ of G on C by(
ϱ(g)ξ

)
(x) := ξ(g−1x) for (g, ξ) ∈ G × C and x ∈ GQ−. (2.18)

On the other hand, we define a metric on C in the following way. For a non-empty compact subset E ⊂ GQ− and ξ1, ξ2 ∈ C
we put

dE(ξ1, ξ2) := sup{|ξ1(a) − ξ2(a)| : a ∈ E}. (2.19)

Since GC is connected, it satisfies the second countability axiom. So, GQ− is a locally compact Hausdorff space and
satisfies the same axiom because GQ− is open in GC. Therefore there exist non-empty open subsets Wn ⊂ GQ− such that

(d1) GQ− =
∪∞

n=1 Wn (countable union),

(d2) the closure Wn in GQ− is compact for each n ∈ N.

Then we define En := Wn for n ∈ N, and moreover define

d(ξ1, ξ2) :=
∞∑

n=1

1
2n

dEn (ξ1, ξ2)
1 + dEn (ξ1, ξ2)

(2.20)

for ξ1, ξ2 ∈ C. This d is called the Fréchet metric.

Proposition 2.21. With respect to the Fréchet metric d in (2.20), the following six items hold:

(i) d is a metric on C.

(ii) The metric topology for (C, d) coincides with the topology of uniform convergence on compacts sets.

(iii) The metric space (C, d) is complete.

(iv) The metric topology for (C, d) coincides with the locally convex topology determined by a countable number of
seminorms {pn}n∈N, where pn(ξ) := dEn (ξ, 0) for n ∈ N, ξ ∈ C.

(v) Both mappings C × C ∋ (ξ1, ξ2) 7→ ξ1 + ξ2 ∈ C and C × C ∋ (α, ξ) 7→ αξ ∈ C are continuous, with respect to the
locally convex topology in (iv).

(vi) G × C ∋ (g, ξ) 7→ ϱ(g)ξ ∈ C is a continuous mapping, with respect to the topology of uniform convergence on
compacts sets in (ii).
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Proof. (i) Take any ξ1, ξ2 ∈ C. It follows from (2.19) and (2.20) that 0 ≤ dE(ξ1, ξ2), d(ξ1, ξ2). Besides,

d(ξ1, ξ2) =
∞∑

n=1

1
2n

dEn (ξ1, ξ2)
1 + dEn (ξ1, ξ2)

≤
∞∑

n=1

1
2n = 1 < ∞.

Hence d is a non-negative function on C × C. Needless to say, d(ξ1, ξ2) = d(ξ2, ξ1); and d(ξ1, ξ2) = 0 in case of ξ1 = ξ2.
Now, for ξ′1, ξ

′
2 ∈ C we suppose that d(ξ′1, ξ

′
2) = 0. Then for each k ∈ N, one has

0 ≤ 1
2k

dEk (ξ
′
1, ξ
′
2)

1 + dEk (ξ
′
1, ξ
′
2)
≤
∞∑

n=1

1
2n

dEn (ξ′1, ξ
′
2)

1 + dEn (ξ′1, ξ
′
2)

(2.20)
= d(ξ′1, ξ

′
2) = 0.

This implies that dEk (ξ
′
1, ξ
′
2) = 0, so that ξ′1 = ξ

′
2 on Ek for all k ∈ N. Therefore ξ′1 = ξ

′
2 on the whole GQ− in terms of (d1)

and En = Wn. Hence one can assert (i), if we conclude that

d(ξ1, ξ3) ≤ d(ξ1, ξ2) + d(ξ2, ξ3) for all ξ1, ξ2, ξ3 ∈ C.

For any ξ1, ξ2, ξ3 ∈ C, it is immediate from (2.19) that dEn (ξ1, ξ3) ≤ dEn (ξ1, ξ2) + dEn (ξ2, ξ3) for all n ∈ N. From this and
0 ≤ dEn (ξi, ξ j) we obtain

dEn (ξ1, ξ3)
1 + dEn (ξ1, ξ3)

≤ dEn (ξ1, ξ2) + dEn (ξ2, ξ3)
1 + dEn (ξ1, ξ2) + dEn (ξ2, ξ3)

=
dEn (ξ1, ξ2)

1 + dEn (ξ1, ξ2) + dEn (ξ2, ξ3)
+

dEn (ξ2, ξ3)
1 + dEn (ξ1, ξ2) + dEn (ξ2, ξ3)

≤ dEn (ξ1, ξ2)
1 + dEn (ξ1, ξ2)

+
dEn (ξ2, ξ3)

1 + dEn (ξ2, ξ3)

for all n ∈ N. Accordingly

d(ξ1, ξ3)
(2.20)
=

∞∑
n=1

1
2n

dEn (ξ1, ξ3)
1 + dEn (ξ1, ξ3)

≤
∞∑

n=1

1
2n

dEn (ξ1, ξ2)
1 + dEn (ξ1, ξ2)

+

∞∑
n=1

1
2n

dEn (ξ2, ξ3)
1 + dEn (ξ2, ξ3)

(2.20)
= d(ξ1, ξ2) + d(ξ2, ξ3).

(ii) First, let us demonstrate that the metric topology Dd for (C, d) is coarser than the topology Dcu of uniform convergence
on compacts sets, namely Dd ⊂ Dcu. For any ξ0 ∈ C and ϵ > 0, we set Od := {ξ ∈ C | d(ξ, ξ0) < ϵ}. Let ξ be an arbitrary
element of Od, and r := d(ξ, ξ0). Since ϵ − r > 0 there exists an m ∈ N satisfying

1/2m < (ϵ − r)/2.

By use of m, ϵ and r we put
E :=

∪m
j=1 E j, δ := (ϵ − r)/(2m).

Then, E becomes a non-empty compact subset in GQ− and δ > 0. Moreover, (2.19) yields

dE1 (ξ1, ξ2) + · · · + dEm (ξ1, ξ2) ≤ mdE(ξ1, ξ2)

for all ξ1, ξ2 ∈ C. Hence for any η ∈ C with dE(η, ξ) < δ, we have

d(η, ξ)
(2.20)
=

∞∑
n=1

1
2n

dEn (η, ξ)
1 + dEn (η, ξ)

=

m∑
j=1

1
2 j

dE j (η, ξ)
1 + dE j (η, ξ)

+

∞∑
k=m+1

1
2k

dEk (η, ξ)
1 + dEk (η, ξ)

≤
m∑

j=1

dE j (η, ξ) +
∞∑

k=m+1

1
2k =

m∑
j=1

dE j (η, ξ) +
1

2m ≤ mdE(η, ξ) +
1

2m

< mδ +
1

2m < ϵ − r.

This and d(η, ξ0) ≤ d(η, ξ) + d(ξ, ξ0) = d(η, ξ) + r provide ξ ∈ {η ∈ C | dE(η, ξ) < δ} ⊂ Od, and thus Dd ⊂ Dcu.
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Next, let us prove that the converse inclusion Dcu ⊂ Dd also holds. For any ξ′0 ∈ C, ϵ′ > 0 and non-empty compact subset
E′ ⊂ GQ−, we set Ocu := {ξ′ ∈ C | dE′ (ξ′, ξ′0) < ϵ′}, fix any element ξ′ ∈ Ocu and put r′ := dE′(ξ′, ξ′0). Since (d1), En = Wn

and E′ is compact, there exist n(1), . . . , n(k) ∈ N such that n(1) < · · · < n(k) and E′ ⊂ ∪k
i=1 En(i). Then it follows from

(2.19) that
dE′ (ξ1, ξ2) ≤ dEn(1) (ξ1, ξ2) + · · · + dEn(k) (ξ1, ξ2)

for all ξ1, ξ2 ∈ C. Setting

δ′ :=
1

2n(k)

((ϵ′ − r′)/k)
1 + ((ϵ′ − r′)/k)

,

we deduce δ′ > 0. In addition; if η′ ∈ C satisfies d(η′, ξ′) < δ′, then

1
2n(i)

dEn(i) (η
′, ξ′)

1 + dEn(i) (η′, ξ′)
(2.20)
≤ d(η′, ξ′) < δ′ =

1
2n(k)

((ϵ′ − r′)/k)
1 + ((ϵ′ − r′)/k)

≤ 1
2n(i)

((ϵ′ − r′)/k)
1 + ((ϵ′ − r′)/k)

and dEn(i) (η
′, ξ′) < (ϵ′ − r′)/k for all 1 ≤ i ≤ k. Consequently, if η′ ∈ C satisfies d(η′, ξ′) < δ′, then dE′ (η′, ξ′) ≤∑k

i=1 dEn(i) (η
′, ξ′) < ϵ′ − r′. This and dE′ (η′, ξ′0) ≤ dE′ (η′, ξ′) + dE′ (ξ′, ξ′0) = dE′(η′, ξ′) + r′ give us ξ′ ∈ {η′ ∈ C | d(η′, ξ′) <

δ′} ⊂ Ocu, and so Dcu ⊂ Dd.

(iii) follows by (ii).

(iv) Similar to the proof of (ii).

(v) is immediate from (iv). Needless to say, C is a Fréchet space due to (i) through (v).

(vi) The rest of proof is to demonstrate the item (vi). C is a barreled space. So, one can conclude this item, if we prove
the following items (1) and (2):

(1) For a given ξ0 ∈ C, the mapping G ∋ g 7→ ϱ(g)ξ0 ∈ C is continuous at the point e.

(2) For a given g0 ∈ G, the mapping C ∋ ξ 7→ ϱ(g0)ξ ∈ C is continuous.

cf. Proposition 13.2 in Alain, 1983, p.128. Let us verify (1) and (2) from now on.

(1) Fix any non-empty compact subset E ⊂ GQ− and ϵ > 0. We will show that there exists an open neighborhood V of
e ∈ G satisfying dE(ϱ(h)ξ0, ξ0) < ϵ for all h ∈ V . By use of ξ0, let us define a continuous function f : G ×GQ− → C by
f(g, x) := ξ0(g−1x) for (g, x) ∈ G ×GQ−. Then for each y ∈ E, there exist open subsets Vy ⊂ G and U′y ⊂ GQ− satisfying
e ∈ Vy, y ∈ U′y and

(b1) |ξ0(h−1z′) − ξ0(e−1y)| = |f(h, z′) − f(e, y)| < ϵ/4
for all (h, z′) ∈ Vy × U′y, since f is continuous at (e, y). Moreover, there exists an open neighborhood Uy of y ∈ GQ− such
that

(b2) Uy ⊂ U′y, (b3) |ξ0(y) − ξ0(z)| < ϵ/4 for all z ∈ Uy

because U′y is an open neighborhood of y ∈ GQ− and ξ0 : GQ− → C is continuous at y. Now, E is compact and
E ⊂ ∪

y∈E Uy. Hence, there exist finite elements y1, . . . yk ∈ E such that E ⊂ ∪k
j=1 Uy j . Setting V :=

∩k
j=1 Vy j , we see that

V becomes an open neighborhood of e ∈ G. Furthermore, for an arbitrary (h, a) ∈ V × E, there exists 1 ≤ i ≤ k such that
a ∈ Uyi ; and besides h ∈ ∩k

j=1 Vy j ⊂ Vyi . Hence (b1), (b2) and (b3) provide

|ξ0(h−1a) − ξ0(a)| ≤ |ξ0(h−1a) − ξ0(e−1yi)| + |ξ0(yi) − ξ0(a)| < ϵ

4
+
ϵ

4
.

This, together with (2.18) and (2.19), assures that dE(ϱ(h)ξ0, ξ0) ≤ ϵ/2 < ϵ for all h ∈ V . Accordingly (1) follows.

(2) Let us demonstrate that ϱ(g0) : C → C, ξ 7→ ϱ(g0)ξ, is uniformly continuous. For any non-empty compact subset
E ⊂ GQ− and ϵ > 0, we set E′ := g−1

0 E and δ := ϵ. Then, E′ is a non-empty compact subset in GQ− and δ > 0. Moreover,
(2.18) and (2.19) imply that for any ξ1, ξ2 ∈ C with dE′(ξ1, ξ2) < δ,

dE(ϱ(g0)ξ1, ϱ(g0)ξ2) = sup{|ξ1(g−1
0 a) − ξ2(g−1

0 a)| : a ∈ E}
= sup{|ξ1(b) − ξ2(b)| : b ∈ g−1

0 E} = dE′ (ξ1, ξ2) < δ = ϵ.

Consequently ϱ(g0) : C → C is uniformly continuous. �

In view of the lemma below, one can naturally set a representation of G onV and define a topology forV.
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Lemma 2.22. V is a closed ϱ(G)-invariant complex vector subspace of C. Here, the topology for C is induced by the
Fréchet metric d in (2.20).

Proof. From (2.17) and (2.18) it is obvious thatV is a ϱ(G)-invariant complex vector subspace of C. Let us confirm that
V is closed in C. Let {ψn}∞n=1 be an arbitrary Cauchy sequence in (V, d). Then Proposition 2.21-(iii) and {ψn}∞n=1 ⊂ V ⊂ C
enable us to obtain a unique ξ ∈ C such that lim

n→∞
d(ψn, ξ) = 0. If this ξ belongs toV, thenV is closed in C. Therefore we

devote ourselves to showing ξ ∈ V hereafter. Our first aim is to verify that

ξ is holomorphic on GQ−.

For any x ∈ GQ− we take a holomorphic coordinate neighborhood (D, ϕ) of x such that (a1) zi(ϕ(x)) = 0 for all 1 ≤ i ≤
N = dimC GQ− and (a2) ϕ is a homeomorphism of D onto an open subset in CN defined by |z1| < R, . . . , |zN | < R for
some R > 0. Since ξ is continuous, it follows from Morera’s theorem, {ψn}∞n=1 ⊂ V, lim

n→∞
d(ψn, ξ) = 0 and Proposition

2.21-(ii) that ξ = ξ(z1, . . . , zN) is holomorphic with respect to each variable zi. Accordingly ξ is holomorphic on D, since
ξ is continuous. Hence we have accomplished the first aim. Our next aim is to conclude that

ξ(xq) = χ(q)−1ξ(x) for all (x, q) ∈ GQ− × Q−.

Let us use proof by contradiction. Suppose that there exists a (y, r) ∈ GQ− × Q− satisfying χ(r)ξ(yr) , ξ(y). Since GQ−
is locally compact, there exist compact subsets E, E′ ⊂ GQ− such that

yr ∈ E, y ∈ E′,

respectively. By the supposition, δ := |χ(r)ξ(yr) − ξ(y)| must be positive. Therefore, in terms of lim
n→∞

d(ψn, ξ) = 0 and
Proposition 2.21-(ii), there exists an M ∈ N such that for every m ≥ M

dE(ξ, ψm) < δ/(2|χ(r)|), dE′ (ξ, ψm) < δ/2,

where we remark that |χ(r)| > 0 follows from χ(r) ∈ C∗. Then it turns out that

δ = |χ(r)ξ(yr) − ξ(y)| ≤ |χ(r)ξ(yr) − ψM(y)| + |ψM(y) − ξ(y)|
= |χ(r)ξ(yr) − χ(r)ψM(yr)| + |ψM(y) − ξ(y)| (∵ ψM ∈ V, (2.17)-(2))
≤ |χ(r)|dE(ξ, ψM) + dE′(ψM , ξ) < δ.

This is a contradiction. Accordingly ξ(xq) = χ(q)−1ξ(x) for all (x, q) ∈ GQ− × Q−. Thus we conclude ξ ∈ V. �

From Proposition 2.21 and Lemma 2.22 we deduce

Corollary 2.23. With respect to the Fréchet metric d onV in (2.20), the following four items hold:

(1) (V, d) is a complete metric space.

(2) The metric topology for (V, d) coincides with the topology of uniform convergence on compacts sets; and besides
it also coincides with the locally convex topology determined by a countable number of seminorms {pn}n∈N, where
pn(ψ) := dEn (ψ, 0) for n ∈ N, ψ ∈ V.

(3) Both mappingsV ×V ∋ (ψ1, ψ2) 7→ ψ1 + ψ2 ∈ V and C ×V ∋ (α, ψ) 7→ αψ ∈ V are continuous.

(4) G ×V ∋ (g, ψ) 7→ ϱ(g)ψ ∈ V is a continuous mapping.

We end Section 2 with proving

Lemma 2.24. ∆x : (V, d)→ C, ψ 7→ ψ(x), is a continuous linear function for every x ∈ GQ−.

Proof. (linear) is obvious.

(continuous) Take an arbitrary ϵ > 0 and ψ0 ∈ V. By x ∈ GQ− and (d1) there exists an m ∈ N such that x ∈ Em. By use
of this m we set δ :=

ϵ

2m(1 + ϵ)
. Then, δ > 0 holds. For any ψ ∈ V with d(ψ, ψ0) < δ, we obtain

1
2m

dEm (ψ, ψ0)
1 + dEm (ψ, ψ0)

≤ d(ψ, ψ0) < δ =
ϵ

2m(1 + ϵ)
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from (2.20). This gives dEm (ψ, ψ0) < ϵ, and

|∆x(ψ) − ∆x(ψ0)| = |ψ(x) − ψ0(x)| ≤ dEm (ψ, ψ0) < ϵ

follows by x ∈ Em and (2.19). Hence, ∆x is continuous at the point ψ0 ∈ V. �

3. Proof of the Main Result

The main purpose of this section is to complete the proof of Theorem 1.2. Throughout Section 3 we utilize the same
notation as in Subsection 2.4.

3.1 Key Propositions in Proving Theorem 1.2

To prove Theorem 1.2 we need Propositions 3.1 and 3.9 below.

Proposition 3.1. Suppose that (S) |χ(ℓ)| = 1 for all ℓ ∈ L. In this case F1 : GQ− → R∗, gq 7→ |χ(q)|, is a continuous
function.

Proof. (well-defined) If g1, g2 ∈ G, q1, q2 ∈ Q− and g1q1 = g2q2, then (2.13) enables us to get an ℓ ∈ L such that
g2 = g1ℓ

−1, q2 = ℓq1. Therefore the supposition (S) assures that |χ(q2)| = |χ(ℓq1)| = |χ(ℓ)χ(q1)| = |χ(q1)|.
(continuous) We consider the following four kinds of continuous mappings:

F2 : Q− → R∗, q 7→ |χ(q)|;
π3 : Q− → L\Q−, q 7→ Lq (the right coset space);
F4 : L\Q− → G\GC, Lq 7→ Gq;
π5 : GC → G\GC, x 7→ Gx.

R∗
F2←− Q− GC

↓ π3 ↓ π5

L\Q−
F4−→ G\GC

It is obvious that

dimR L\Q− = dimR q− − dimR l = dimR lC + dimR u− − dimR l

= dimR u− + dimR l = dimR g = dimR G\GC,

and hence it follows from (2.13) that

F4 : L\Q− → G\GC is an open mapping. (3.2)

Now, let us demonstrate that F1 : GQ− → R∗ is continuous. Take any open subset I in R∗. On the one hand; since F2 is
continuous and π3 is an open mapping, π3(F−1

2 (I)) is an open subset in L\Q−. Thus, since (3.2) and π5 is continuous, we
conclude that π−1

5 (F4(π3(F−1
2 (I)))) is an open subset in GC. That, together with π−1

5 (F4(π3(F−1
2 (I)))) ⊂ GQ−, implies the

following:
π−1

5 (F4(π3(F−1
2 (I)))) is an open subset in GQ−.

On the other hand; a direct computation yields F−1
1 (I) = π−1

5 (F4(π3(F−1
2 (I)))). Accordingly F−1

1 (I) is open in GQ−, and
hence F1 is continuous. �

Let us set
ψ̂λ(x) := ψ

(
(exp λT )x exp(−λT )

)
for (ψ, λ) ∈ V × [0, 2π] and x ∈ GQ−, (3.3)

and clarify some properties of ψ̂λ from now on.

Lemma 3.4.

(i) ψ̂λ ∈ V for all (ψ, λ) ∈ V × [0, 2π].

(ii) For each ψ ∈ V, the mapping [0, 2π] ∋ λ 7→ ψ̂λ ∈ V is continuous with respect to the Fréchet metric d on V in
(2.20).

(iii)
∫ 2π

0
ψ̂λdλ ∈ V for each ψ ∈ V. Furthermore,

( ∫ 2π

0
ψ̂λdλ

)
(x) =

∫ 2π

0
ψ̂λ(x)dλ for all (ψ, x) ∈ V ×GQ−.
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Proof. (i) Since χ(exp λT ) ∈ C∗ ⊂ C and ψ ∈ V, the scalar multiple χ(exp λT )ψ belongs to the complex vector spaceV.

Moreover, ϱ(exp(−λT ))
(
χ(exp λT )ψ

) ∈ V becauseV is ϱ(G)-invariant. Thus ψ̂λ
(3.3)
= ϱ(exp(−λT ))

(
χ(exp λT )ψ

) ∈ V.

(ii) The mapping [0, 2π] ∋ λ 7→ ψ̂λ ∈ V is continuous, since it is composed of the following three continuous mappings
(cf. Corollary 2.23-(3), (4)):

[0, 2π] → G × C ×V → G ×V
λ 7→ (

exp(−λT ), χ(exp λT ), ψ
) 7→ (

exp(−λT ), χ(exp λT )ψ
)

→ V
7→ ϱ(exp(−λT ))

(
χ(exp λT )ψ

)
= ψ̂λ.

(iii)
∫ 2π

0
ψ̂λdλ ∈ V follows by (ii) and (V, d) being a complete, topological vector space. Besides, we conclude by Lemma

2.24 that
( ∫ 2π

0
ψ̂λdλ

)
(x) =

∫ 2π

0
ψ̂λ(x)dλ. �

We want to first prove the following three lemmas, and afterwards deduce Proposition 3.9 from them:

Lemma 3.5.

(i) (U+ ∩GQ−)Q− = U+Q− ∩GQ−.

(ii) (U+ ∩GQ−)e is a domain in U+, where (U+ ∩GQ−)e denotes the connected component of U+ ∩GQ− containing e.

(iii) (U+ ∩GQ−)eQ− is an open subset in GQ− containing e.

(iv) If ψ1, ψ2 ∈ V and ψ1 = ψ2 on (U+ ∩GQ−)e, then ψ1 = ψ2 on the whole GQ−.

Proof. (i) Let us only confirm U+Q− ∩GQ− ⊂ (U+ ∩GQ−)Q−, since (U+ ∩GQ−)Q− ⊂ U+Q− ∩GQ− is trivial. For any
x ∈ U+Q− ∩GQ−, there exists a unique (u, q) ∈ U+ ×Q− such that x = uq because of x ∈ U+Q− and Proposition 2.11-(4).
Hence one has U+ ∋ u = xq−1 ∈ GQ−Q− ⊂ GQ−, and so u ∈ U+ ∩ GQ−. Therefore x = uq ∈ (U+ ∩ GQ−)Q−, and
U+Q− ∩GQ− ⊂ (U+ ∩GQ−)Q−.

(ii) Corollary 2.12-(b) implies that U+ ∩ GQ− is open in U+, so that U+ ∩ GQ− is locally connected. For this reason
(U+ ∩GQ−)e is open in U+ ∩GQ−. Accordingly (U+ ∩GQ−)e is an open subset in U+. Needless to say, (U+ ∩GQ−)e is
connected.

(iii) Since (ii) and the product mapping U+ × Q− → U+Q− is an open mapping, (U+ ∩ GQ−)eQ− is open in U+Q−.
This and Proposition 2.11-(4) assure that (U+ ∩ GQ−)eQ− is open in GC. Thus, we conclude (iii) by (U+ ∩ GQ−)eQ− ⊂
(U+ ∩GQ−)Q−

(i)
= U+Q− ∩GQ− ⊂ GQ−.

(iv) For ψ1, ψ2 ∈ V we suppose that ψ1 = ψ2 on (U+ ∩ GQ−)e. Then it follows from ψ1, ψ2 ∈ V and (2.17)-(2) that
ψ1 = ψ2 on (U+ ∩GQ−)eQ−. Therefore ψ1 = ψ2 on the whole GQ−, because (iii), Corollary 2.12-(b) and the theorem of
identity for the holomorphic functions ψ1, ψ2. �

Lemma 3.6. For any holomorphic function h : GQ− → C, the restriction h|(U+∩GQ−)e is holomorphic on (U+ ∩GQ−)e.

Proof. The inclusion ı : U+ → GC is holomorphic; and (U+∩GQ−)e and GQ− are open subsets in U+ and GC, respectively.
In addition, ı((U+ ∩GQ−)e) ⊂ GQ−. These imply that ı : (U+ ∩GQ−)e → GQ− is holomorphic, so that h ◦ ı = h|(U+∩GQ−)e

is holomorphic. �

Lemma 3.7. For each ψ ∈ V,
∫ 2π

0
ψ̂λdλ is the constant function with the value 2πψ(e) on (U+ ∩GQ−)e.

Proof. Theorem 2.3 allows us to choose a finite subset {n, . . . ,m} ⊂ N such that

u+
(2.10)
=

⊕
λ>0

gλ = gn ⊕ · · · ⊕ gm.
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Let us fix complex bases {Zn
a }kn

a=1, . . . , {Zm
a }km

a=1 of gn, . . . , gm, respectively, and denote by z1
n, . . . , z

kn
n , . . . , z1

m, . . . , z
km
m the

canonical coordinates of the second kind associated with the basis {Zn
a }kn

a=1∪ · · ·∪ {Zm
a }km

a=1 of u+. Here, there exists an open
subset O ⊂ U+ such that e ∈ O and

O ∋ (exp z1
nZn

1) · · · (exp zkn
n Zn

kn
) · · · (exp z1

mZm
1 ) · · · (exp zkm

m Zm
km

) 7→ (z1
n, . . . , z

kn
n , . . . , z

1
m, . . . , z

km
m ) ∈ Ckn+···+km .

By Lemma 3.6 ψ|(U+∩GQ−)e is holomorphic. Therefore Lemma 3.5-(ii) provides us with an R > 0 such that the following
conditions (c1) and (c2) hold for

P := {u ∈ O : |za
b(u)| < R, 1 ≤ a ≤ kb = dimC gb, b = n, . . . ,m} :

(c1) P is an open subset in (U+ ∩GQ−)e containing e,

(c2) On P we can express ψ|(U+∩GQ−)e as

ψ(z1
n, . . . , z

kn
n , . . . , z

1
m, . . . , z

km
m ) =

∑
l1n,...,l

kn
n ,...,l1m,...,l

km
m ≥0

βl1n···lkn
n ···l1m···lkm

m
(z1

n)l1n · · · (zkn
n )lkn

n · · · (z1
m)l1m · · · (zkm

m )lkm
m

(the Taylor expansion of ψ|(U+∩GQ−)e at e = (0, . . . , 0, . . . , 0, . . . , 0)).

If we suppose that ∫ 2π

0
ψ̂λdλ = 2πψ(e) on P, (3.8)

then one can get the conclusion. Indeed; if (3.8) holds, then it follows from (c1), the theorem of identity and Lemma

3.5-(ii) that
∫ 2π

0
ψ̂λdλ = 2πψ(e) on (U+ ∩GQ−)e. Consequently, the rest of proof is to confirm (3.8). Let

u = (expα1
nZn

1 ) · · · (expαkn
n Zn

kn
) · · · (expα1

mZm
1 ) · · · (expαkm

m Zm
km

)

be any element of P. From Zb
a ∈ gb = {A ∈ gC | ad T (A) = ibA} we obtain

(exp λT )(expαa
bZb

a ) exp(−λT ) = exp(αa
beiλbZb

a)

for all 1 ≤ a ≤ kb, b = n, . . . ,m and λ ∈ [0, 2π]. Therefore( ∫ 2π

0
ψ̂λdλ

)
(u) =

∫ 2π

0
ψ̂λ(u)dλ (∵ Lemma 3.4-(iii))

=

∫ 2π

0
ψ̂λ(α1

n, . . . , α
kn
n , . . . , α

1
m, . . . , α

km
m )dλ

=

∫ 2π

0
ψ(α1

neiλn, . . . , αkn
n eiλn, . . . , α1

meiλm, . . . , αkm
m eiλm)dλ (∵ (3.3))

(c2)
=

∫ 2π

0

∑
l1n,...,l

kn
n ,...,l1m,...,l

km
m ≥0

βl1n···lkn
n ···l1m···lkm

m
eiλ

(
n(l1n+···+lkn

n )+···+m(l1m+···+lkm
m )

)
(α1

n)l1n · · · (αkn
n )lkn

n · · · (α1
m)l1m · · · (αkm

m )lkm
m dλ

= 2πβ0···0···0···0 = 2πψ(e).

�

Now, let us demonstrate

Proposition 3.9. Suppose that (A′) there exists a φmax ∈ V satisfying φmax(u) = 1 for all u ∈ (U+ ∩ GQ−)e. Then,

2πψ(e)φmax =

∫ 2π

0
ψ̂λdλ for all ψ ∈ V.

Proof. Lemma 3.7 implies that for all u ∈ (U+ ∩GQ−)e,

(
2πψ(e)φmax

)
(u) = 2πψ(e) =

( ∫ 2π

0
ψ̂λdλ

)
(u).

This, combined with Lemma 3.5-(iv) and 2πψ(e)φmax,

∫ 2π

0
ψ̂λdλ ∈ V, enables one to conclude that 2πψ(e)φmax =

∫ 2π

0
ψ̂λdλ

on the whole GQ−. �
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We end this subsection with showing two lemmas.

Lemma 3.10. The following items (A′) and (B′) are equivalent:

(A′) There exists a φmax ∈ V satisfying φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e.

(B′) V , {0}.

Proof. (A′)⇒(B′). Obvious.

(B′)⇒(A′). Suppose thatV , {0}. ByV , {0}, there exists a ψa ∈ V such that ψa , 0. Since 0 , ψa ∈ V and (2.17)-(2),
we can select a g ∈ G satisfying ψa(g) , 0. Now, let ψb := ϱ(g−1)ψa. Then, it is immediate from ϱ(g−1)ψa ∈ V and (2.18)
that

ψb ∈ V, ψb(e) , 0.

Accordingly, Lemma 3.4-(iii) yields
∫ 2π

0
(ψ̂b)λdλ ∈ V. Setting

φmax :=
1

2πψb(e)

∫ 2π

0
(ψ̂b)λdλ,

we deduce by Lemma 3.7 that φmax ∈ V and φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e. �

Lemma 3.11. Let φmax be an element ofV such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e. Then, φmax(ℓxℓ−1) = φmax(x)
for all (ℓ, x) ∈ L ×GQ−.

Proof. Fix any (ℓ, x) ∈ L ×GQ−, and remark that

ϱ(ℓ−1)(χ(ℓ)φmax) ∈ V.

Since ℓ(U+ ∩GQ−)ℓ−1 ⊂ U+ ∩GQ−, we see that for any u ∈ (U+ ∩GQ−)e, ℓuℓ−1 ∈ (U+ ∩GQ−)e and hence(
ϱ(ℓ−1)(χ(ℓ)φmax)

)
(u) = φmax(ℓuℓ−1) = 1 = φmax(u).

Consequently Lemma 3.5-(iv) allows us to assert that ϱ(ℓ−1)(χ(ℓ)φmax) = φmax on the whole GQ−, and so φmax(ℓxℓ−1) =(
ϱ(ℓ−1)(χ(ℓ)φmax)

)
(x) = φmax(x). �

3.2 The Entrance ofH
First, we set

⟨ψ1, ψ2⟩ :=
∫

G
ψ1(g)ψ2(g)dµ(g), ∥ψ∥ :=

√
⟨ψ, ψ⟩ for ψ1, ψ2, ψ ∈ V, (3.12)

H := {ϕ ∈ V : ∥ϕ∥ < ∞}, (3.13)

where µ denotes the non-zero Haar measure on G (recall Subsection 2.3 for the arguments below). With this setting, we
assert

Proposition 3.14.

(1) (H , ⟨ · , · ⟩) is a complex pre-Hilbert space.

(2) ⟨ϱ(g)ϕ1, ϱ(g)ϕ2⟩ = ⟨ϕ1, ϕ2⟩ for all g ∈ G and ϕ1, ϕ2 ∈ H .

(3) Both mappings H ×H ∋ (ϕ1, ϕ2) 7→ ϕ1 + ϕ2 ∈ H and C × H ∋ (α, ϕ) 7→ αϕ ∈ H are continuous, with respect to
the norm ∥ · ∥ in (3.12).

(4) G ×H ∋ (g, ϕ) 7→ ϱ(g)ϕ ∈ H is a continuous mapping, with respect to the norm ∥ · ∥ in (3.12).
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Proof. (1) One can deduce (1) by arguments similar to those in showing that L 2(G) is a complex vector space and ⟨ f1, f2⟩
is a Hermitian inner product of f1 and f2 ∈ L 2(G), except for the property “⟨ f , f ⟩ = 0 implies f = 0.” Here

L 2(G) := { f : G → C | f is B-measurable and ∥ f ∥ < ∞}

and we apply the same notation as in (3.12) to the elements of L 2(G). Let us check that ∥ϕ∥ = 0 (ϕ ∈ H) implies ϕ = 0.
For ϕ ∈ H we suppose that ∥ϕ∥ = 0. Then, ϕ = 0 (a.e.) on G, and therefore ϕ = 0 on G because ϕ : G → C is continuous
and (p2) in Subsection 2.3. From ϕ = 0 on G, ϕ ∈ V and (2.17)-(2) we see that ϕ = 0 on the whole GQ−.

(2) From ϕi ∈ H ⊂ V, we obtain ϱ(g)ϕi ∈ V. (2) follows by (p5) in Subsection 2.3, (2.18) and (3.12). Incidentally, (2)
ensures that ϱ(g)ϕ ∈ H for all (g, ϕ) ∈ G ×H .

(3) comes from (1).

(4) We will deduce (4) from the following item (∗):

(∗) For a given ϕ0 ∈ H , the mapping G ∋ g 7→ ϱ(g)ϕ0 ∈ H is continuous at the point e.

First, let us confirm the item above.

(∗) Take any ϵ > 0. We will conclude that there exists an open neighborhood V of e ∈ G satisfying ∥ϱ(h)ϕ0 − ϕ0∥ < ϵ
for all h ∈ V . Since µ is a regular Borel measure on (G,B) (cf. Remark 2.7), Proposition 7.4.3 in Cohn, p.207 implies
that C0(G) := { f0 : G → C | f0 is a continuous function whose support is compact} is dense in L 2(G). Hence by ϕ0|G ∈
L 2(G) there exists a continuous function f0 : G → C such that

(a1) supp f0 is a non-empty compact subset in G, (a2) ∥ϕ0 − f0∥ < ϵ/3.

Since G is a locally compact Hausdorff space, there exists an open neighborhood V1 of e ∈ G whose closure V1 in G
is compact. Here, (a1) implies that V1 supp f0 is a compact subset in G. This and (p1), (p3) in Subsection 2.3 assure
0 ≤ µ(V1 supp f0) < ∞. Thus δ := 1 + µ(V1 supp f0) satisfies

0 < δ < ∞.

Now, it follows from (a1) that f0 is uniformly continuous on G, so that for ϵ/(3
√
δ) > 0 there exists an open neighborhood

V of e ∈ G such that (a3) V = V−1, (a4) V ⊂ V1 and (a5) | f0(x)− f0(y)| < ϵ/(3
√
δ) for every x, y ∈ G with xy−1 ∈ V . Then,

any (h, g) ∈ V ×G satisfies (h−1g)g−1 = h−1 ∈ V , and hence

(a6) | f0(h−1g) − f0(g)| < ϵ/(3
√
δ).

If g < V1 supp f0, then g < supp f0, and f0(g) = 0. If g < V1 supp f0 and h ∈ V , then h−1g < supp f0, and f0(h−1g) = 0.
Consequently h ∈ V implies

∥ϱ(h) f0 − f0∥2
(3.12)
=

∫
G
| f0(h−1g) − f0(g)|2dµ(g)

=

∫
V1 supp f0

| f0(h−1g) − f0(g)|2dµ(g) +
∫

G−V1 supp f0
| f0(h−1g) − f0(g)|2dµ(g)

=

∫
V1 supp f0

| f0(h−1g) − f0(g)|2dµ(g)

(a6)
≤

∫
V1 supp f0

ϵ2

9δ
dµ(g) =

ϵ2

9δ
· µ(V1 supp f0) =

ϵ2

9
µ(V1 supp f0)

1 + µ(V1 supp f0)
<
ϵ2

9
.

Hence we assert that for any h ∈ V ,

∥ϱ(h)ϕ0 − ϕ0∥ ≤ ∥ϱ(h)ϕ0 − ϱ(h) f0∥ + ∥ϱ(h) f0 − f0∥ + ∥ f0 − ϕ0∥
= ∥ϱ(h) f0 − f0∥ + 2∥ f0 − ϕ0∥ (cf. (2))
< ϵ (∵ (a2)).

This completes the proof of (∗).
Now, we are in a position to prove (4). Fix any ϵ > 0 and (g0, ϕ0) ∈ G × H . Since (∗) and ϕ′0 := ϱ(g0)ϕ0 belongs to H ,
there exists an open neighborhood V of e ∈ G satisfying

∥ϱ(h)ϕ′0 − ϕ′0∥ < ϵ/2
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for all h ∈ V . We get an open neighborhood U of g0 ∈ G by setting U := Vg0. Then, for any g ∈ U and ϕ ∈ H with
∥ϕ − ϕ0∥ < ϵ/2, one obtains an h′ ∈ V such that g = h′g0, and therefore

∥ϱ(g)ϕ − ϱ(g0)ϕ0∥ ≤ ∥ϱ(g)ϕ − ϱ(g)ϕ0∥ + ∥ϱ(g)ϕ0 − ϱ(g0)ϕ0∥
(2)
= ∥ϕ − ϕ0∥ + ∥ϱ(h′)ϕ′0 − ϕ′0∥ < ϵ.

Consequently, the mapping G ×H ∋ (g, ϕ) 7→ ϱ(g)ϕ ∈ H is continuous. �

3.3 The Completeness ofH
The notation in Subsections 3.1 and 3.2 remains valid. Our aim in this subsection is to establish Proposition 3.18. First,
let us prepare three lemmas for the aim.

Lemma 3.15. Suppose that (A′) there exists a φmax ∈ V satisfying φmax(u) = 1 for all u ∈ (U+ ∩ GQ−)e. Then,
|ψ(e)|∥φmax∥ ≤ ∥ψ∥ for each ψ ∈ V.

Proof. By a direct computation we have

2π|ψ(e)|2∥φmax∥2

= 2π
∫

G
|ψ(e)φmax(g)|2dµ(g) (∵ (3.12))

=
1

2π

∫
G

∣∣∣∣ ∫ 2π

0
ψ̂λ(g)dλ

∣∣∣∣2dµ(g) (∵ ψ ∈ V, (A′), Proposition 3.9)

≤
∫

G

( ∫ 2π

0
|ψ̂λ(g)|2dλ

)
dµ(g) (∵ the Schwarz inequality)

=

∫
G

(
lim
n→∞

2π
n

n∑
k=1

∣∣∣ψ̂ 2πk
n

(g)
∣∣∣2)dµ(g)

≤ lim
n→∞

∫
G

2π
n

n∑
k=1

∣∣∣ψ̂ 2πk
n

(g)
∣∣∣2dµ(g) (∵ the Fatou lemma)

= lim
n→∞

2π
n

n∑
k=1

∫
G

∣∣∣ψ̂ 2πk
n

(g)
∣∣∣2dµ(g)

= lim
n→∞

2π
n

n∑
k=1

∫
G

∣∣∣ψ(g)
∣∣∣2dµ(g) (∵ (p5), (p6) in Subsection 2.3, (3.3))

= lim
n→∞

2π
∫

G

∣∣∣ψ(g)
∣∣∣2dµ(g) = 2π

∫
G

∣∣∣ψ(g)
∣∣∣2dµ(g)

(3.12)
= 2π∥ψ∥2.

Here, we note that
∫ 2π

0
|ψ̂λ(g)|2dλ = lim

n→∞

2π
n

n∑
k=1

∣∣∣ψ̂ 2πk
n

(g)
∣∣∣2. �

Lemma 3.16. The following items (A) and (B) are equivalent:

(A) There exists a φmax ∈ H such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e.

(B) H , {0}.

Proof. (A)⇒(B). Obvious.

(B)⇒(A). Suppose thatH , {0}, and fix any ϕa ∈ H −{0}. On the one hand, there exists a φmax ∈ V such that φmax(u) = 1
for all u ∈ (U+ ∩ GQ−)e by virtue of Lemma 3.10 and {0} , H ⊂ V. On the other hand, since 0 , ϕa ∈ H ⊂ V and
(2.17)-(2) there exists a g ∈ G such that ϕa(g) , 0. Thus, it follows from ϕb := ϱ(g−1)ϕa and (2.18) that ϕb ∈ H and
ϕb(e) , 0. Consequently Lemma 3.15 implies that |ϕb(e)|∥φmax∥ ≤ ∥ϕb∥ < ∞. This, together with ϕb(e) , 0, shows that
∥φmax∥ < ∞, so that φmax belongs toH . �
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Lemma 3.17. Suppose that

(S) |χ(ℓ)| = 1 for all ℓ ∈ L,

(A) there exists a φmax ∈ H such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e.

Then for any non-empty compact subset E ⊂ GQ−, there exists a cE > 0 such that

sup{|ϕ(a)| : a ∈ E} ≤ cE∥ϕ∥ for all ϕ ∈ H .

Proof. Since E is compact in GQ−, Proposition 3.1 and (S) provide us with an mE > 0 such that

mE ≤ |χ(q)| for all gq ∈ E ⊂ GQ−.

Noting φmax , 0 and ∥φmax∥ < ∞, we set

cE :=
1

mE∥φmax∥
.

Then, cE > 0 holds. For any a = gq ∈ E (⊂ GQ−) and ϕ ∈ H , we obtain

|ϕ(a)| = |ϕ(gq)| = |χ(q)−1||(ϱ(g−1)ϕ)(e)| (∵ ϕ ∈ H ⊂ V, (2.18), (2.17)-(2))

≤ |χ(q)−1| ∥ϱ(g−1)ϕ∥
∥φmax∥

(∵ (A), Lemma 3.15, ϱ(g−1)ϕ ∈ V)

= |χ(q)−1| ∥ϕ∥∥φmax∥
(∵ Proposition 3.14-(2))

≤ cE∥ϕ∥.

�

Now, we are in a position to prove

Proposition 3.18. Suppose that (S) |χ(ℓ)| = 1 for all ℓ ∈ L. Then (H , ⟨ · , · ⟩) is a complex Hilbert space.

Proof. Because of Proposition 3.14-(1), it suffices to confirm that (H , ∥ · ∥) is complete. That is trivial in case ofH = {0}.
For this reason we investigate the case where H , {0} henceforth. Since H , {0} and Lemma 3.16, there exists a
φmax ∈ H such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e. This and (S) permit us to use Lemma 3.17. Now, let {ϕn}∞n=1 be
an arbitrary Cauchy sequence in (H , ∥ · ∥), namely

lim
n,m→∞

∥ϕn − ϕm∥ = 0.

We want to first show that {ϕn}∞n=1 is also a Cauchy sequence in (V, d). Here d is the Fréchet metric in (2.20). For any
non-empty compact subset E ⊂ GQ− there exists a cE > 0 such that

dE(ϕn, ϕm)
(2.19)
= sup{|ϕn(a) − ϕm(a)| : a ∈ E} ≤ cE∥ϕn − ϕm∥ for all n,m ∈ N

by Lemma 3.17. This, lim
n,m→∞

∥ϕn − ϕm∥ = 0 and Corollary 2.23-(2) enable us to conclude that {ϕn}∞n=1 is a Cauchy sequence

in (V, d). Since {ϕn}∞n=1 is a Cauchy sequence in (V, d) and since (V, d) is complete, there exists a unique ψ ∈ V such
that lim

n→∞
d(ϕn, ψ) = 0. For this ψ ∈ V one can demonstrate

ψ ∈ H (namely, ∥ψ∥ < ∞), lim
n→∞
∥ϕn − ψ∥ = 0

by arguments similar to those in the proof of Proposition 6, Weil, 1971, p.59–60. Therefore (H , ∥ · ∥) is complete. �

For ϕ ∈ H ⊂ V, we have only computed the integral
∫ 2π

0
ϕ̂λdλ with respect to the Fréchet metric d on V so far. In the

last subsection, we will need to compute the integral
∫ 2π

0
ϕ̂λdλ with respect to the norm ∥ · ∥ on H . For this reason we

prepare
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Lemma 3.19.

(i) ϕ̂λ ∈ H for all (ϕ, λ) ∈ H × [0, 2π].

(ii) For each ϕ ∈ H , the mapping [0, 2π] ∋ λ 7→ ϕ̂λ ∈ H is continuous with respect to ∥ · ∥.
If |χ(ℓ)| = 1 for all ℓ ∈ L, then the following items (iii) and (iv) hold for every ϕ ∈ H :

(iii) The integral
∫ 2π

0
ϕ̂λdλ with respect to ∥ · ∥ belongs toH .

(iv) The integral
∫ 2π

0
ϕ̂λdλ with respect to d is equal to that with respect to ∥ · ∥.

Here d is the Fréchet metric onV in (2.20), and ∥ · ∥ is the norm onH in (3.12).

Proof. (i), (ii), (iii) cf. the proof of Lemma 3.4, Proposition 3.14-(3), (4), Proposition 3.18.

(iv) It is trivial in case of ϕ = 0. We suppose that ϕ , 0 hereafter. Let us dare to denote by
∫ 2π

0
ϕ̂λdλd (resp.

∫ 2π

0
ϕ̂λdλ∥·∥)

its integral with respect to the Fréchet metric d (resp. to the norm ∥ · ∥). By the definition of integral we have

d
( ∫ 2π

0
ϕ̂λdλd,

2π
n

n∑
k=1

ϕ̂ 2πk
n

)
→ 0,

∥∥∥∥ ∫ 2π

0
ϕ̂λdλ∥·∥ −

2π
n

n∑
k=1

ϕ̂ 2πk
n

∥∥∥∥→ 0 (n→ ∞),

where we remark that both (V, d) and (H , ∥ · ∥) are complete, topological vector spaces. Now, let E be any non-empty
compact subset in GQ−. By virtue of 0 , ϕ ∈ H and Lemmas 3.16 and 3.17, there exists a cE > 0 which satisfies

sup{|ϕ1(a)| : a ∈ E} ≤ cE∥ϕ1∥ for all ϕ1 ∈ H .

Consequently it follows that

dE

( ∫ 2π

0
ϕ̂λdλd,

∫ 2π

0
ϕ̂λdλ∥·∥

)
≤ dE

( ∫ 2π

0
ϕ̂λdλd,

2π
n

n∑
k=1

ϕ̂ 2πk
n

)
+ dE

(2π
n

n∑
k=1

ϕ̂ 2πk
n
,

∫ 2π

0
ϕ̂λdλ∥·∥

)
(2.19)
= dE

( ∫ 2π

0
ϕ̂λdλd,

2π
n

n∑
k=1

ϕ̂ 2πk
n

)
+ sup

{∣∣∣∣(2π
n

n∑
k=1

ϕ̂ 2πk
n
−

∫ 2π

0
ϕ̂λdλ∥·∥

)
(a)

∣∣∣∣ : a ∈ E
}

≤ dE

( ∫ 2π

0
ϕ̂λdλd,

2π
n

n∑
k=1

ϕ̂ 2πk
n

)
+ cE

∥∥∥∥2π
n

n∑
k=1

ϕ̂ 2πk
n
−

∫ 2π

0
ϕ̂λdλ∥·∥

∥∥∥∥→ 0 (n→ ∞).

Hence
∫ 2π

0
ϕ̂λdλd =

∫ 2π

0
ϕ̂λdλ∥·∥ on E. Consequently

∫ 2π

0
ϕ̂λdλd =

∫ 2π

0
ϕ̂λdλ∥·∥ on the whole GQ−, because of (d1), (d2)

in Paragraph 2.4.4. �

3.4 The Irreducibility of ϱ : G → GL(H)

We utilize the notation in Subsections 3.1, 3.2 and 3.3. We prove Proposition 3.20 first and accomplish the main purpose
afterwards.

Proposition 3.20. Suppose that (S) |χ(ℓ)| = 1 for all ℓ ∈ L. Then,

(1) H = (H , ⟨ · , · ⟩) is a separable complex Hilbert space,

(2) ϱ is an irreducible unitary representation of G onH .

Proof. Assume that H , {0} (otherwise our assertions are trivial). From Proposition 3.18 and (S) it follows that H is a
complex Hilbert space. Hence Proposition 3.14-(2), (4) imply that ϱ is a unitary representation of G onH . Consequently,
it suffices to prove that

85



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 4; 2018

(1′)H is separable, (2′) ϱ : G → GL(H) is irreducible.

However, (1′) is immediate from (2′), since G satisfies the second countability axiom. For this reason we prove (2′) only.
Now, letH1 be any closed ϱ(G)-invariant complex vector subspace ofH withH1 , {0}, and letH2 denote the orthogonal
complement of H1 in H with respect to ⟨ · , · ⟩. Then, H2 is also a closed ϱ(G)-invariant complex vector subspace of H
and

H = H1 ⊕H2.

If H2 = {0}, then we can conclude (2′). Let us prove H2 = {0} by reductive absurdity. Suppose that H2 , {0}. Then for
each j = 1, 2, there exists a non-zero ϕ j

a ∈ H j by virtue of H j , {0}. From 0 , ϕ j
a ∈ H j ⊂ V and (2.17)-(2) we obtain a

g j ∈ G such that ϕ j
a(g j) , 0. Setting ϕ j

b := ϱ(g−1
j )ϕ j

a one can assert that

ϕ
j
b ∈ H j, ϕ

j
b(e) , 0

becauseH j is ϱ(G)-invariant. For any 0 ≤ λ ≤ 2π, it turns out that χ(exp λT ) ∈ C, so that the scalar multiple χ(exp λT )ϕ j
b

belongs to the complex vector spaceH j. Therefore

(ϕ̂ j
b)λ

(3.3)
= ϱ(exp(−λT ))

(
χ(exp λT )ϕ j

b
) ∈ H j for all λ ∈ [0, 2π]

follows by H j being ϱ(G)-invariant. This assures
∫ 2π

0
(ϕ̂ j

b)λdλ ∈ H j since H j is complete. Hence for each j = 1, 2, we

have ϕ j
c :=

1

2πϕ j
b(e)

∫ 2π

0
(ϕ̂ j

b)λdλ ∈ H j; and Lemmas 3.7 and 3.19-(iv) imply that ϕ j
c(u) = 1 for all u ∈ (U+ ∩ GQ−)e.

Consequently Lemma 3.5-(iv) yields H1 ∋ ϕ1
c = ϕ

2
c ∈ H2, and so 0 , ϕ1

c ∈ H1 ∩ H2. This contradicts H1 ∩ H2 = {0}.
ThusH2 = {0} holds. �

Now, we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By virtue of Proposition 3.20 it suffices to demonstrate that in case ofH , {0}, the following two
items hold:

(I) There exists a unique φmax ∈ H such that φmax(u) = 1 for all u ∈ (U+ ∩GQ−)e.

(II) There exists a non-zero ϕ ∈ H satisfying
∫

G
|⟨ϱ(g)ϕ, ϕ⟩|2dµ(g) = ∥ϕ∥6 (< ∞).

Let us show (I) and (II) from now on.

(I) On the one hand, Lemma 3.16 and H , {0} assure the existence of φmax. On the other hand, Lemma 3.5-(iv) assures
the uniqueness of φmax. Therefore (I) holds.

(II) From (3.12) it suffices to conclude that

⟨ϱ(g)φmax, φmax⟩ = φmax(g−1)∥φmax∥2 for every g ∈ G. (3.21)

By a direct computation one has

⟨ϱ(g)φmax, φmax⟩

=

∫
G

(ϱ(g)φmax)(a) · φmax(a)dµ(a) (∵ (3.12))

=

∫
G

(ϱ(g)φmax)
(
(exp λT )a exp(−λT )

) · φmax
(
(exp λT )a exp(−λT )

)
dµ(a)

(∵ (p5), (p6) in Subsection 2.3) (3.22)

=

∫
G

(ϱ(g)φmax)
(
(exp λT )a exp(−λT )

) · φmax(a)dµ(a) (∵ (I), Lemma 3.11)

=

∫
G

̂(ϱ(g)φmax)λ(a) · φmax(a)dµ(a) (∵ (3.3))
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for all λ ∈ [0, 2π]. This provides us with

2πφmax(g−1)∥φmax∥2

=

∫
G

2πφmax(g−1)φmax(a) · φmax(a)dµ(a) (∵ (3.12))

=

∫
G

2π
(
ϱ(g)φmax

)
(e)φmax(a) · φmax(a)dµ(a)

=

∫
G

( ∫ 2π

0

̂(ϱ(g)φmax)λdλ
)
(a) · φmax(a)dµ(a)

(∵ ϱ(g)φmax ∈ H ⊂ V, (I), Proposition 3.9)

=

∫
G

(
lim
n→∞

2π
n

n∑
k=1

̂(ϱ(g)φmax) 2πk
n

)
(a) · φmax(a)dµ(a)

(
where lim

n→∞

∥∥∥∥ ∫ 2π

0

̂(ϱ(g)φmax)λdλ − 2π
n

n∑
k=1

̂(ϱ(g)φmax) 2πk
n

∥∥∥∥ = 0 due to Lemma 3.19-(iv)
)

= lim
n→∞

∫
G

(2π
n

n∑
k=1

̂(ϱ(g)φmax) 2πk
n

)
(a) · φmax(a)dµ(a)

(∵H ∋ ϕ 7→ ⟨ϕ, φmax⟩ ∈ C is a continuous function, (3.12))

= lim
n→∞

2π
n

n∑
k=1

∫
G

̂(ϱ(g)φmax) 2πk
n

(a) · φmax(a)dµ(a)

= lim
n→∞

2π
n

n∑
k=1

⟨ϱ(g)φmax, φmax⟩ (∵ (3.22))

= 2π⟨ϱ(g)φmax, φmax⟩.

Hence (3.21) follows. �
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