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Abstract

Due to deficiency of information, the probability distribution and membership functions of a fuzzy random variable

cannot be obtained explicitly. It is a challenging work to find an appropriate probability distribution and membership

function when certain partial information about a fuzzy random variable is given, such as expected value or moments.

This paper solves such problems for the maximum entropy of discrete fuzzy random variables with certain constraints. A

genetic algorithm is designed to solve the general maximum entropy model for discrete fuzzy random variables, which is

illustrated by numerical experiment.
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1. Introduction

Probability theory is a powerful tool to deal with randomness. In order to describe randomness in a mathematical way,

a random variable is defined as a measurable function from a probability space to the set of real numbers. Fuzzy set

theory was proposed by Zadeh(1965,p.338-353) to deal with fuzziness. The term ’fuzzy variables’ was first introduced

by Kaufmann(1975) as a fuzzy set of real numbers to describe fuzzy phenomena. Although probability theory and fuzzy

set theory are two different systems, it is possible to apply the probabilistic method to the theoretical analysis of fuzzy set

theory.

With the development of probability theory, many researchers turned to consider the generalization of random variables,

and many new concepts were presented, such as Banach-valued random variable, random set, fuzzy random variable,

and so on. The concept of fuzzy random variable was introduced by Kwakernaak(1978,p.1-29&1979,p.253-278) as a

mathematical description for fuzzy stochastic phenomena. Roughly speaking, a fuzzy random variable is a measurable

function from a probability space to the set of fuzzy variables. Up to now, fuzzy random theory has been developed by

several researchers such as Kruse and Meyer(1987), Puri and Ralescu(1986,p.409-422), Li et al.(2001,p.7-21), Nguyen et

al.(2004,p.99-109), Liu and Liu(2003,p.143-160), Liu(2001,p.713-720,2001,p.721-726&2002), and so on.

Entropy is used to provide a quantitative measurement of the degree of uncertainty, which has widely been applied

in transportation B.Samanta(2005,p.419-428)&S.Islam(2006,p.387-404), risk analysis L.Feng(2009,p.2934-2938), signal

processing M.M(2008,p.639-669) and economics X.Wu(2003,p.347-354). Since the Shannon entropy of random vari-

ables was proposed by Shannon(1949), Jaynes(1957,p.620-630) provided the maximum entropy principle of random

variables when some constraints were given. Fuzzy entropy was first initialized by Zadeh(1968,p.421-427) to quantify the

fuzziness, who defined the entropy of a fuzzy event as a weighted Shannon entropy. Up to now, fuzzy entropy has been

studied by many researchers such as De Luca and Termini(1972,p.301-312), Kaufmann(1985), Yager(1979,p.221-229),

Kosko(1986,p.165-174), Pal and Pal(1989,p.284-295),Bhandari and Pal(1993,p.209-228), Pal and Bezdek(1994,p.107-

118), Li and Liu(2008,p.123-129). Li X, and Liu B(2009,p.105-115) provided the concept of hybrid entropy so as to

measure the uncertainty of hybrid variables. However, given some constraints, for example, expected value and variance,

there usually exits multiple compatible probability distributions and membership functions. Which probability distribu-
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tion and membership functions shall we take? Because randomness and fuzziness simultaneously appear in a system,

we cannot get the maximum entropy of hybrid variable through Euler-Lagrange equation. For fuzzy variables, Li and

Liu(2007,p.43-52) and Gao and You(2009,p.2353-2361), respectively gave an analytical method to find the maximum

entropy membership function of continuous and discrete fuzzy variables. On the basis of their work£we promote their

ideas to solve the problem for maximum Entropy functions of discrete fuzzy random variables. The organization of our

work is as follows: In section 2, some basic concepts and results on fuzzy random variables are reviewed. In section 3, we

introduce some constraints. In sections 4 and 5, an effective genetic algorithm is introduced to solve general maximum

entropy models for discrete fuzzy random variables and computational experiment is given in illustration of it. Finally,

the conclusion is given in the last section.

2. Preliminaries

Fuzzy set theory has been well developed and applied in a wide variety of real problems. Let ξ be a fuzzy variable with

membership function μ and B a set of real numbers. Then the possibility, necessity, and credibility measure of fuzzy event

ξ ∈B can be represented by

Pos{ξ ∈ B} = sup
x∈B
μ(x). (2.1)

Nec{ξ ∈ B} = 1 − sup
x∈Bc
μ(x). (2.2)

Cr{ξ ∈ B} = 1

2
(Pos{ξ ∈ B} + Nec{ξ ∈ B}). (2.3)

Let ξ be a fuzzy variable with the membership function μ(x) which satisfies the normalization condition, i.e., supx μ(x) = 1.
In the setting of credibility theory, the credibility measure for fuzzy event {ξ ∈ B} deduced from μ(x) is given by

Cr{ξ ∈ B} = 1

2
(sup

x∈B
μ(x) + 1 − sup

x∈Bc
μ(x)). (2.4)

Where B is any subset of the real numbers R, and Bc is the complement of set B. Conversely, for a fuzzy variable ξ, its

membership function can be derived from the credibility measure by

μ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R. (2.5)

Fuzzy random variables have been defined in several ways. In this paper, we shall adopt the following definition of fuzzy

random variables and chance measure of fuzzy random events.

Definition 2.1. (Liu and Liu (2003, p.143-160)) A fuzzy random variable is a function from a probability space (Ω,A, Pr)

to the set of fuzzy variables such that Pos{ξ(ω) ∈ B} is a measurable function of ω for any Borel set B of R.

Example 2.1. Let (Ω,A, Pr) be a probability space. If Ω = {ω1, ω2, ..., ωn} and u1, u2, ..., un are fuzzy variables, then the

function

ξ(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u1 , if ω = ω1

u2 , if ω = ω2

...
un , if ω = ωn

is clearly a fuzzy random variable.

Definition 2.2. (Li and Liu (2009, p.105-115)) Let (Θ,P,Cr) × (Ω,A, Pr) be a chance space. Then a chance measure of
an event Λ is defined as

Ch{Λ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ,

if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) < 0.5

1 − sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ,

if sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ≥ 0.5

(2.6)

In fact, chance measure may be defined in different ways. For example, we may employ the following chance measure,

Ch{Λ} = 1

2
(sup
θ∈Θ

(μ(θ) × Pr{Λ(θ)}) + 1 − sup
θ∈Θ

(μ(θ) × Pr{Λc(θ)})). (2.7)
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Where μ(θ) = (2Cr{θ}) ∧ 1.

Theorem 2.1. (Li X, Liu B(2009,p.105-115)) Let (Θ,P,Cr) × (Ω,A, Pr) be a chance space and Ch a chance measure.

Then for any event Λ, we have

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ∨ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≥ 0.5, (2.8)

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)}) ≤ 1, (2.9)

Proof It follows from the basic properties of probability and credibility that

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) ∨ sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)})

≥ sup
θ∈Θ

(Cr{θ} ∧ (Pr{Λ(θ)} ∨ Pr{Λc(θ)}))

≥ sup
θ∈Θ

Cr{θ} ∧ 0.5 = 0.5

and

sup
θ∈Θ

(Cr{θ} ∧ Pr{Λ(θ)}) + sup
θ∈Θ

(Cr{θ} ∧ Pr{Λc(θ)})

= sup
θ1,θ2∈Θ

(Cr{θ1} ∧ Pr{Λ(θ1)} +Cr{θ2} ∧ Pr{Λc(θ2)})

≤ sup
θ1�θ2

(Cr{θ1} +Cr{θ2}) ∨ sup
θ∈Θ

(Pr{Λ(θ)} + Pr{Λc(θ)})

≤ 1 ∨ 1 = 1.

The conclusion is proved.

Example 2.2. Let a1, a2, ..., am be fuzzy variables, and let p1, p2, ..., pm be nonnegative numbers with p1+ p2+ ...+ pm = 1.

Then

ξ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a1 , with probability p1

a2 , with probability p2

...
am , with probability pm

is clearly a fuzzy random variable. If a1, a2, ..., am have membership functions μ1, μ2, ..., μm,respectively, then for any set

B of real numbers, we have

Ch{ξ ∈ B} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x1,x2,...,xm

(( min
1≤i≤m

μi(xi)

2
) ∧ m∑

i=1
{pi|xi ∈ B})

if sup
x1,x2,...,xm

(( min
1≤i≤m

μi(xi)

2
) ∧ m∑

i=1
{pi|xi ∈ B}) < 0.5

1 − sup
x1,x2,...,xm

(( min
1≤i≤m

μi(xi)

2
) ∧ m∑

i=1
{pi|xi ∈ Bc})

if sup
x1,x2,...,xm

(( min
1≤i≤m

μi(xi)

2
) ∧ m∑

i=1
{pi|xi ∈ B}) ≥ 0.5

(2.10)

Definition 2.3. (Li and Liu (2007, p.43-52)) Let ξ be a fuzzy random variable. Then the expected value of ξ is defined by

E[ξ] =

∫ +∞

0

Ch{ξ ≥ r}dr −
∫ 0

−∞
Ch{ξ ≤ r}dr (2.11)

provided that at least one of the two integrals is finite.

In fact, the expected value E[ξ] of ξ may be defined by (Liu and Liu (2003, p.143-160))

E[ξ] =

∫ +∞

0

Pr{ω ∈ Ω|E[ξ(ω)] ≥ r}dr −
∫ 0

−∞
Pr{ω ∈ Ω|E[ξ(ω)] ≤ r}dr (2.12)

provided that at least one of the two integrals is finite, where E[ξ(ω)] is the expected value of random variable ξ(ω)
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According to Li and Liu(2008, p.123-129), we get a new definition of entropy of fuzzy random variable ξ, denoted by

H[ξ].

Definition 2.4. Suppose that ξ is a discrete fuzzy random variable taking values in {x1, x2, ...}.Then its entropy is defined

by

H[ξ] =

∞∑
i=1

S (Ch{ξ = xi}) (2.13)

where S (t) = −t ln t − (1 − t) ln(1 − t). If there exists some index k such that Ch{ξ = xk} = 1, and 0 otherwise, then its

entropy H[ξ] = 0. Suppose that ξ is a simple fuzzy random variable taking values in {x1, x2, ..., xn}. If Ch{ξ = xi} = 0.5
for all i = 1, 2, ..., n, then its entropy H[ξ] = n ln 2. Suppose that ξ is a discrete fuzzy random variable taking values in

{x1, x2, ...}. Then H[ξ] ≥ 0 and equality holds if and only if ξ is essentially a deterministic / crisp number.

3. Moment constraints

In this section, we consider discrete fuzzy random variables. Let ξ be a discrete fuzzy random variable taking values in

{x1, x2, ..., xn} (in this paper we always assume that x1 < x2 < ... < xn) with probability {p1, p2, ..., pn}, and membership

degrees {μ1, μ2, ..., μn} respectively, where p1 + p2 + ... + pn = 1. Then the expected value of ξ can be written as (without

loss of generality, suppose xk−1 < 0 ≤ xk)

E[ξ] =

xk∫
0

Ch{ξ ≥ r}dr +
n∑

i=k+1

xi∫
xi−1

Ch{ξ ≥ r}dr −
k−1∑
i=2

xi∫
xi−1

Ch{ξ ≤ r}dr −
0∫

xk−1

Ch{ξ ≤ r}dr

=

k−1∑
i=1

(Ch{ξ ≤ xi} −Ch{ξ < xi}) · xi +

n∑
i=k

(Ch{ξ ≥ xi}) −Ch{ξ > xi}) · xi

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

( sup
x1,...,xi

((min
1≤ j≤i

μ j

2
) ∧ i∑

j=1
p j) − sup

x1,...,xi−1

((min
1≤ j<i

μ j

2
) ∧ i−1∑

j=1
p j)) · xi

if sup
x1,...,xi

((min
1≤ j≤i

μ j

2
) ∧ i∑

j=1
p j) < 0.5,

n∑
i=1

(1 − sup
xi+1,...,xn

((min
i< j≤n

μ j

2
) ∧ n∑

j=i+1
p j) − sup

x1,...,xi−1

((min
1≤ j<i

μ j

2
) ∧ i−1∑

j=1
p j)) · xi

if sup
x1,...,xi

((min
1≤ j≤i

μ j

2
) ∧ i∑

j=1
p j) ≥ 0.5, sup

x1,...,xi−1

((min
1≤ j<i

μ j

2
) ∧ i−1∑

j=1
p j) < 0.5,

n∑
i=1

( sup
xi,...,xn

((min
i≤ j≤n

μ j

2
) ∧ n∑

j=i
p j) − sup

xi+1,...,xn

((min
i< j≤n

μ j

2
) ∧ n∑

j=i+1
p j)) · xi

if sup
x1,...,xi

((min
1≤ j≤i

μ j

2
) ∧ i∑

j=1
p j) ≥ 0.5, sup

x1,...,xi−1

((min
1≤ j<i

μ j

2
) ∧ i−1∑

j=1
p j) ≥ 0.5

=

n∑
i=1

ωi xi (3.1)

It is easy to verify that all ωi ≥ 0 and
n∑

i=1
ω ≤ 1. If sup

x1,...,xi

((min
1≤ j≤i

μ j

2
)∧ i∑

j=1
p j)∨ sup

xi+1,...,xn

((min
i< j≤n

μ j

2
)∧ i∑

j=1
p j) ≥ 0.5, i ∈ {1, 2, ..., n},

then
n∑

i=1
ω = 1. Furthermore, E[(ξ − e)2] is called the variance of ξ and E[ξn] the nth moment of ξ. If the fuzzy random

variable ξ reduces to a random variable, i.e., for any μi ≡ 1, then the expected value reduces to the following form

E[ξ] =

n∑
i=1

pi · xi (3.2)

Which is just the expected value of discrete random variable ξ. Thus, the expected value of discrete fuzzy random variable

is a natural extension of discrete random variable.

Let ξ be a nonnegative discrete random fuzzy variable taking values in {x1, x2, ..., xn} with probability {p1, p2, ..., pn} and

membership degrees {μ1, μ2, ..., μn}, respectively, where p1 + p2 + ... + pn = 1, and k a positive number. Then the k-th

moment
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E[ξk] = k
+∞∫
0

rk−1Ch{ξ ≥ r}dr

= k
n∑

i=1
Ch{ξ ≥ xi} · xk

i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
n∑

i=1
( sup

xi,...,xn

((min
i≤ j≤n

μ j

2
) ∧ n∑

j=i
)) · xk

i

if sup
xi,...,xn

((min
i≤ j≤n

μ j

2
) ∧ n∑

j=i
) < 0.5

k
n∑

i=1
(1 − sup

x1,...,xi−1

((min
1≤ j<i

μ j

2
) ∧ n∑

j=i
)) · xk

i

if sup
xi,...,xn

((min
i≤ j≤n

μ j

2
) ∧ n∑

j=i
) ≥ 0.5

(3.3)

If the fuzzy random variable ξ reduces to a random variable, i.e., for any i ∈ {1, 2, ..., n}, μi ≡ 1, then the k-th moment

reduces to the following form

E[ξk] = k
∫ +∞

0
rk−1Pr{ξ ≥ r}dr

= k
n∑

i=1
Pr{ξ ≥ xi} · xk

i

= k
n∑

i=1
pi · xk

i

(3.4)

Which is just the k-th moment of discrete random variable ξ. If k = 1, which is just the expected value of discrete fuzzy

random variable ξ.

4. Genetic algorithm for general maximum entropy model

Genetic algorithm is a stochastic search method for global optimization problems based on the mechanics of natural

selection and natural genetics. Genetic algorithm has demonstrated enormous success in providing good solutions to

many complex optimization problems. In this section, we will design an effective genetic algorithms integrated with

fuzzy random simulation for solving the maximum entropy model for discrete fuzzy random variables.

Let ξ be a discrete fuzzy random variable taking values in {x1, x2, ..., xn} with probability {p1, p2, ..., pn} and membership

degrees {μ1, μ2, ..., μn}, respectively. We have the natural relation 0 ≤ μi ≤ 1, 0 ≤ pi ≤ 1 and
∑

1≤i≤n
pi = 1. By using

maximum entropy principle, we have the following maximum entropy model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
n∑

i=1
S (Ch{ξ = xi})

subject to
n∑

i=1
ωi xi ≤ e,

0 ≤ μi ≤ 1, i = 1, 2, .., n
0 ≤ pi ≤ 1, i = 1, 2, ..., n

n∑
i=1

pi = 1

n∑
i=1
ωi = 1

(4.1)

Where ωi from (3.1)

S (t) = −t ln t − (1 − t) ln(1 − t)

Ch{ξ = xi} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi
2
∧ pi

if (
μi
2
∧ pi) < 0.5

1 − sup
xi,...,xi−1,xi+1,...,xn

(( min
1≤ j≤n, j�i

μ j

2
) ∧ n∑

j=1, j�i
p j)

if (
μi
2
∧ pi) ≥ 0.5

In general, the expected value constraint can be replaced by other moment constraints. For the search spaces of the

maximum entropy model (4.1) are particularly irregular, genetic algorithm has succeeded in providing good solutions to

complex moment conditions.

As an illustration, the following steps show how the genetic algorithm works.

Step 1: Initialize pop − size feasible chromosomes Ut = {μt
1
, μt

2
, ..., μt

n} and Pt = {pt
1
, pt

2
, ..., pt

n} where Ut = {μt
1
, μt

2
, ..., μt

n
from (0, 1)×(0, 1)×...×(0, 1), Pt = {pt

1
, pt

2
, ..., pt

n−1
} from (0, 1)×(0, 1−pt

1
)×...×(0, 1−pt

1
−...−pt

n−2
) and pt

n = 1−pt
1
−...−pt

n−1
,

for t = 1, 2, ..., pop − size.
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Step 2: Calculate the expected values for all chromosomes Ut and Pt, t = 1, 2, ..., pop − size, respectively. If the expected

values do not satisfy the constraints, we regenerate a chromosome to replace the original one until it is feasible.

Step 3: Calculate the entropy of each fuzzy random variable which is represented by each chromosome. The entropy

denoted by H(Ut ∧ Pt), is to assign a probability of reproduction to each chromosome Ut and Pt so that its likelihood of

being selected is proportional to its entropy relative to the other chromosomes in the population. That is, the chromosomes

with larger entropy will have more chance to produce offspring by using roulette wheel selection.

Step 4: Select the chromosomes for a new population by spinning the roulette wheel according to the value of the entropy

of all chromosomes.

Step 5: Renew the chromosomes by crossover operations with a predetermined parameters Pc, which is called the prob-

ability of crossover. In order to determine the parents for crossover operation, let us do the following process repeatedly

from t = 1 to pop − size: generating a random number r from the interval [0, 1],the chromosome Ut and Pt is selected as

a parent if r < Pc. We denote the selected parents by U
′
1,U

′
2,U

′
3, ... and P

′
1, P

′
2, P

′
3, ... and divide them into the following

pairs:

(U
′
1,U

′
2), (U

′
3,U

′
4), (U

′
5,U

′
6), ...

(P
′
1, P

′
2), (P

′
3, P

′
4), (P

′
5, P

′
6), ...

Let us illustrate the crossover operator on each pair by (U
′
1,U

′
2) and (P

′
1, P

′
2). At first, we generate a random number c

from the open interval (0, 1). Then the crossover operator on U
′
1 and U

′
2, P

′
1 and P

′
2 will produce two children X and Y ,

X
′

and Y
′

as follows:

X = c · U
′
1 + (1 − c) · U

′
2,Y = (1 − c) · U

′
1 + c · U

′
2

X
′
= c · P

′
1 + (1 − c) · P

′
2,Y

′
= (1 − c) · P

′
1 + c · P

′
2

Then we check if the children satisfy the constraints. If both children are feasible, then we replace the parents with them.

If not, we keep the feasible child if it exists, and keep the other parent still

Step 6: Update the chromosomes by mutation operations with a predetermined probability of mutation Pm. In a similar

manner to the process of selecting parents for crossover operation, we repeat the following steps from t = 1 to pop− size:

generating a random number r from the interval [0, 1], the chromosome Ut and Pt is selected as a parent if r < Pm. For

each selected parent, denoted by Ut = {μt
1
, μt

2
, ..., μt

n} and Pt = {pt
1
, pt

2
, ..., pt

n}, we mutate it in the following way. For

each selected parent, we randomly select one μt
i, p

t
i and μt

j, p
t
j of this chromosome and regenerate their values. Then make∑

1≤i≤n pt
i to be 1 and check the feasibility of them.

Step 7: Repeat Step 3 to Step 6 for N times, where N is a sufficiently large integer.

Step 8: Report the best chromosome Ut and Pt as the optimal solution.

5. Numerical example

In order to illustrate the effectiveness of the proposed genetic algorithm, let us consider Example 1 in Table 1 (ξ is a

discrete fuzzy random variable taking values in {1, 2, 3, 4, 5, 6}, and expected value E[ξ] satisfying E[ξ] ≤ 3.5) for the

comparison of the algorithm with respect to different parameters. We compare the solutions when different parametric

values of Pc, Pm, pop− size and N are taken in the genetic algorithm. The maximum entropy are shown in Fig, the results

are shown in Table 2, and the errors are shown in Table 3: (actual value-optimal value)/optimal value×100% .

It follows from Table 3 that the error does not exceed 2%, which shows that the proposed algorithm is effective to solve

the above model.

6. Conclusions

In this paper, we promote the idea of Gao and You(2009,p.2353-2361) to solve the problem for maximum Entropy func-

tions of discrete fuzzy random variables. Along with the improvement of uncertainty theory, we also can use the method

to solve many uncertain events such as random fuzzy and toward fuzzy. In the future work, we will continue focus on this

area.
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Table 1.

(Example) {x1, x2, x3, x4, x5, x6} E[ξ] Cr ∧ Pr Hmax

1 {1, 2, 3, 4, 5, 6} ≤ 3.5 {0.1666, 0.1667, 0.1666, 0.1667, 0.1667, 0.1667} 2.7034

Table 2. The computational results

pop − size Pc Pm N Cr ∧ Pr Hmax

1 80 0.7 0.4 1000 {0.0874, 0.1826, 0.1823, 0.1824, 0.1826, 0.1826} 2.6725

2 80 0.7 0.3 1000 {0.1606, 0.1667, 0.1727, 0.1667, 0.1666, 0.1667} 2.7031

3 120 0.7 0.3 1000 {0.1417, 0.1717, 0.1717, 0.1717, 0.1717, 0.1717} 2.7006

4 120 0.8 0.3 3000 {0.1641, 0.1696, 0.1695, 0.1696, 0.1593, 0.1679} 2.7030

Table 3. The computational results
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Error(%) μ = {μ1, μ2, μ3, μ4, μ5, μ6} p = {p1, p2, p3, p4, p5, p6}

1 1.14 {0.1749, 0.7156, 0.6150, 0.3893, 0.6665, 0.6716} {0.0874, 0.1826, 0.1823, 0.1824, 0.1826, 0.1826}

2 0.011 {0.4486, 0.4392, 0.9356, 0.9132, 0.5261, 0.7951} {0.1606, 0.1667, 0.1727, 0.1667, 0.1666, 0.1667}

3 0.104 {0.2834, 0.9582, 0.4050, 0.8388, 0.7697, 0.5579} {0.1417, 0.1717, 0.1717, 0.1717, 0.1717, 0.1717}

4 0.015 {0.3282, 0.5875, 0.6059, 0.8495, 0.3189, 0.6503} {0.1641, 0.1696, 0.1695, 0.1696, 0.1593, 0.1679}
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