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Abstract

The use of partial L-moments (PL-moments) for estimating hydrological extremes censored data is compared to that of

simple L-moments. Expressions of parameter estimation are derived to fit the generalized Pareto (GP) distribution based

on PL-moments approach. A Monte Carlo analysis examined the sampling properties of PL-moments and the results

showed that with censoring flood samples up to 0.2 are similar to those of simple L-moments. Finally, both PL-moments

and L-moments are used to fit the GP distribution to 32 annual maximum flow series of River Golok in Kelantan, and it is

found that PL-moments produce a better fit to the larger flow values than simple L-moments.
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1. Introduction

In the field of hydrology, the analysis of annual maximum series of environmental event such as flood is aiming to predict

the magnitude of flood of relatively large return period such as 100 years. Wang (1990) pointed out that as small floods

are of little relevance to the larger ones, inclusion of data on small floods in estimating high return period floods can

sometimes be only nuisance value. Cunnane (1987) stated that these smaller values have only a nuisance value in the

context of upper quantile estimation and also in model form testing and verification. He also suggested that it might be

advantageous to intentionally censor (or eliminate) low-value observations and in such cases, a censored sample should

be used.

Censored sample involves the process of censoring low-value observation in a complete sample that lies below a certain

measurement threshold level. In water quality analysis, censored values refer to the values that are less than detection or

measurement limits. These censored values may have actually been zero or they may have been between zero and the

measurement threshold, yet are noted as being zero (Kroll & Stedinger, 1996). Censored data involves type I and type

II censoring. Type I censoring refers to the situation where all data below a fixed threshold value are censored while the

number of values censored is a random variable. For type II censoring it is inversed, that is, a fixed number of data points

are always censored and the censoring threshold is a random variable (Schneider, 1986). The present study focuses on

type II censoring.

Since probability weighted moments (PWMs) were first introduced by Greenwood et al. (1990), it has been widely applied

in many fields. PWMs have the theoretical advantages over conventional moments of being able to characterize a wider

range of distributions and being robust to the presence of outliers in the sample. Experience also shows that PWMs are less

subjected to bias in estimation (Hosking and Wallis, 1997). PWMs have been extended to partial PWMs (PPWMs) and
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used in distribution parameter estimation and quantile function derivation (Deng & Pandey, 2009). As linear combination

of PWMs, partial L-moments were proposed by Wang (1990) to deal with censored samples.

In analyzing censored data of hydrological extremes, Wang (1990, 1996) used PL-moments in estimation of GEV distri-

bution. Censored sample yield high quantile estimates which are almost as efficient as those obtained from uncensored

sample. Moisello (2007) used PPWMs and compared to that PWMs in estimating of quantile functions. The results

showed that PPWMs could constitute a valid tool. Bhattarai (2004) followed the same approach as Wang (1990) in inves-

tigating the sampling properties of GEV distribution. It is found that, in some situation, PL-moments can produce a better

fit to the larger flow values than simple L-moments.

The purposes of this study are to derive the expressions of PL-moments from uncensored floods sample and to fit the

parameters of the GP distribution using PL-moments approach. This study expands the work of Bhattarai (2004) to GP

distribution and performs simulated data to evaluate the sampling properties of simple L-moments and PL-moments.

2. Parameters estimation of GP distribution using PL-moments

The PWMs of a random variable x with a cumulative distribution function F(x) was formally defined by Greenwood et

al. (1979) as

Mp,r,s =

∫ 1

0

(x(F))pFr(1 − F)sdF (1)

where p, r and s are real numbers. When p = 1 and s = 0, the moments become

βr = M1,r,0 =

∫ 1

0

x(F)FrdF (2)

For an ordered sample x(1) ≤ x(2) ≤ ... ≤ x(n), the following statistic is defined by Wang (1990) as an unbiased estimator

of βr

br =
1

n

n∑
i=1

(i − 1)(i − 2)...(i − r)

(n − 1)(n − 2)...(n − r)
x(i) (3)

PWMs so defined can only be used for a complete sample. L-moments are linear functions of PWMs. The concept of

PWMs, however, can be easily extended so as to be applied to a censored sample. The partial PWMs can be defined as

M
′
p,r,s =

∫ 1

F0

(x(F))pFr(1 − F)sdF (4)

where F0 = F(x0), x0 being the censoring threshold. Partial L-moments are variants of L-moments and also analogous to

the PPWMs. When p = 1 and s = 0, the PPWMs become

β
′
r = M

′
1,r,0 =

∫ 1

F0

x(F)FrdF (5)

Given a complete sample x(1) ≤ x(2) ≤ ... ≤ x(n),the unbiased estimator of β
′
r is given by Wang (1990) as

b
′
r =

1

n

n∑
i=1

(i − 1)(i − 2)...(i − r)

(n − 1)(n − 2)...(n − r)
x∗(i) (6)

where

x∗(i) =
{

x∗(i) = x(i) if x(i) > x0

x∗(i) = 0 otherwise
(7)

The relationship between L-moments and PWMs is given by Hosking (1990) as

λ1 = β0 (8)

λ2 = 2β1 − β0 (9)
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λ3 = 6β2 − 6β1 + β0 (10)

λ4 = 20β3 − 30β2 + 12β1 − β0 (11)

where β0, β1, β2 and β3 are the PWMs and λ1, λ2, λ3 and λ4 are the first four L-moments. Similar linear relations can be

established between PPWMs and the PL-moments. The level of censoring, F0, which is selected a priori, determines the

number of the sample data points to be censored as

F0 = n0/n (12)

where n is the length of the uncensored sample and n0 is the number of occurrences of values which do not exceed x0 in

the sample (censored data points).

3. Derivation of parameters estimation of GP distribution using PL-moments

The generalized Pareto distribution is a special case of the Wakeby distribution. The reparameterized form for the Wakeby

distribution is

x = ζ +
α

β
[1 − (1 − F)β] − γ

δ
[1 − (1 − F)−δ] (13)

If γ = 0 and β = k in equation (13), the Pareto distribution results as

x = ζ +
α

β
[1 − (1 − F)k] (14)

The distribution function F = F(x) is explicitly written

F(x) = 1 −
[
1 − k

a
(x − ζ)

]1/k

(15)

where ζ, α and k are the location, scale and shape parameters of the GP distribution respectively. The variable x takes

values in the range ζ ≤ x < ∞ for k < 0 and ζ ≤ x < ζ+α/k for k > 0. The special case of k being 0 yields the exponential

distribution, whereas the special case of k = 1 yields the uniform distribution on [ζ, ζ + α]. Pareto distributions are

obtained when k < 0.

The PPWMs of the GP distribution are given by Moisello (2007) as

β
′
0 =

(
ζ +

α

k

)
(1 − F0) − α

k
(1 − F0)k+1

k + 1
(16)

β
′
1 =

(
ζ +

α

k

) ⎛⎜⎜⎜⎜⎝1 − F2
0

2

⎞⎟⎟⎟⎟⎠ − α

k
(1 − F0)k+1

k + 1
+
α

k
(1 − F0)k+2

k + 2
(17)

β
′
2 =

(
ζ +

α

k

) ⎛⎜⎜⎜⎜⎝1 − F3
0

3

⎞⎟⎟⎟⎟⎠ − α

k
(1 − F0)k+1

k + 1
+
α

k
2(1 − F0)k+2

k + 2
− α

k
(1 − F0)k+3

k + 3
(18)

where F0 = F(x0), x0 being the censoring threshold. From equations (16) and (17), one can write

2β
′
1

1 − F2
0

− β0
′

1 − F0

= −α
k

⎡⎢⎢⎢⎢⎣ 2(1 − F0)k+1

(k + 1)(1 − F2
0
)
− 2(1 − F0)k+2

(k + 2)(1 − F2
0
)
− 1 − Fk

0

k + 1

⎤⎥⎥⎥⎥⎦ (19)

and

2β
′
1

1 − F2
0

− β0
′

1 − F0

3β
′
3

1 − F3
0

− β0
′

1 − F0

=

2(1 − F0)k+1

(k + 1)(1 − F2
0
)
− 2(1 − F0)k+2

(k + 2)(1 − F2
0
)
− 1 − Fk

0

k + 1

3(1 − F0)k+1

(k + 1)(1 − F3
0
)
− 6(1 − F0)k+2

(k + 2)(1 − F3
0
)
+

3(1 − F0)k+3

(k + 3)(1 − F3
0
)
− 1 − Fk

0

k + 1

(20)
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When F0 is known, one can replace β
′
r by b

′
r and estimate parameters ζ, α and k as the solutions of equations (16) to

(20). The exact solution of equation (20) requires iterative methods which are cumbersome. The following simple method

proposed by Wang (1990) can be used instead.

Let z equal the right-hand side of equation (20), that is

z =

2(1 − F0)k+1

(k + 1)(1 − F2
0
)
− 2(1 − F0)k+2

(k + 2)(1 − F2
0
)
− 1 − Fk

0

k + 1

3(1 − F0)k+1

(k + 1)(1 − F3
0
)
− 6(1 − F0)k+2

(k + 2)(1 − F3
0
)
+

3(1 − F0)k+3

(k + 3)(1 − F3
0
)
− 1 − Fk

0

k + 1

(21)

When z are plotted vs. k for fixed F0, the curve is very smooth. The exact location of the curve changes with F0 value.

The curve can be accurately approximated by a quadratic function of form

k = a0 + a1z + a2z2 (22)

For fixed F0 three z values can be calculated by equation (21) corresponding to three chosen k values, e.g. k = -0.4, -0.1

and +0.4 as the limiting form of equation (21). Substituting these three values into equation (22) will produce a set of

linear equations. One can then find the solutions for a0, a1 and a2 corresponding to that F0.

When z is replaced by its sample estimate,

z =

2b
′
1

1 − F2
0

− b0
′

1 − F0

3b
′
3

1 − F3
0

− b0
′

1 − F0

(23)

and substituted in equation (22), one can find the estimate for k. The other two parameters can then be estimated succes-

sively using the relationship in equations (16), (17) and (19) as

α =

−k
⎛⎜⎜⎜⎜⎝ 2b

′
1

1 − F2
0

− b0
′

1 − F0

⎞⎟⎟⎟⎟⎠
2(1 − F0)k+1

(k + 1)(1 − F2
0
)
− 2(1 − F0)k+2

(k + 2)(1 − F2
0
)
− 1 − Fk

0

k + 1

(24)

ζ =
b0
′

1 − F0

+
α

k

[
(1 − F0)k

k + 1
− 1

]
(25)

4. Simulation study

Monte Carlo simulation techniques have been performed to investigate the sampling properties of L-moments and PL-

moments in estimating the parameters of GP distribution from censored flood samples. For this purpose, Monte Carlo

simulations were performed for sample sizes, n of 20, 30, 40 and 50 and parent distribution with ζ = 0.0, α = 1.0 and k
varying from -0.4 to +0.4. Different levels of censoring threshold are considered, namely, F0 = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

and 0.6. When F0 = 0.0, the PL-moments become the ordinary L-moments. The number of replications, M used in the

simulations for each case is 10 000.

Two of the more commonly error functions used in such cases are bias and efficiency evaluated for four quantiles of 50,

100, 200 and 500 years return period, i.e. x(F = 0.980), x(F = 0.990), x(F = 0.995) and x(F = 0.998). Efficiency has

been obtained from relationship of PL-moments and L-moments in terms of mean square error using following formula

φ =
mean square error of estimator using L-moments

mean square error of estimator using PL-moments
(26)
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5. Results and discussion

5.1 Monte Carlo simulation study

To evaluate the performances of PL-moments (with censored data at different levels of censoring threshold, F0) and simple

L-moments (with uncensored data), two sampling properties were employed, namely bias and efficiency on different

quantile estimators, x(F).

The results indicated that bias on quantile estimates obtained from PL-moments with the level of censoring threshold of

F0 ≤ 0.2, for sample sizes n = 20 − 50 is almost very similar to those simple L-moments. For the censoring threshold

of F0 > 0.2, the value of bias negatively increase with the increase in F0. Figure 1(a) and 1(b) show the results of bias

obtained on quantile estimator, x(F = 0.998) at different censoring threshold, F0.

The value of bias for simple L-moments (i.e. F0 = 0.0) and PL-moments with F0 ≤ 0.2 lies between -1 and +1, but

for F0 > 0.2, the negative value of bias increase substantially. Figure 1(c) and 1(d) indicate that the above results are

also true for other estimators x(F = 0.980), x(F = 0.990) and x(F = 0.995). These can be concluded that the method of

PL-moments with level of censoring up to 0.2 will be almost unbiased over that the method of simple L-moments.

Table 1 provides the results of bias on quantile estimators of GP shape parameters, k = −0.1 and k = +0.1 with various

values of censoring threshold F0 and different sample sizes (n = 20 − 50). For both GP shape parameters, k = −0.1
and k = +0.1, as highlighted, the bias on quantile estimators of x(F = 0.995) and x(F = 0.998) from the method of

PL-moments are smaller and closer to zero than the simple L-moments. This is true for the PL-moments with the level of

censoring threshold F0 ≤ 0.2. It signifies that at certain particular conditions such that when predicting in higher return

period, the method of PL-moments can sometimes produce a better performance than that of simple L-moments.

Bias and efficiency from the method of simple L-moments and PL-moments with quantile estimators, x(F = 0.995) at

different levels of censoring, F0 and different sample sizes, n were plotted against the value of GP shape parameters, k.

It is observed that, for the value of k > −0.1, the value of bias is almost unaffected by the increases value in GP shape

parameters, k. Clearly shown in Figure 2(a) and 2(b), bias increases slightly for k > −0.1. Results also show that the

bias from the method of PL-moments with censoring threshold F0 = 0.1 is closest to the simple L-moments followed by

PL-moments at F0 = 0.2, 0.3 and 0.4. Also, the values of absolute bias for k > −0.1 and F0 ≤ 0.2 are closest to zero and

even lower than that from simple L-moments.

The efficiency on quantile estimators, x(F) are plotted against the value of GP shape parameter, k, with different levels

of censoring threshold, F0 at different sample sizes, n. It is revealed that the PL-moments at F0 = 0.2 always lead to

higher efficiency for k > −0.1 but has lower efficiency for k ≤ −0.1 compared to F0 = 0.1 as shown in Figure 2(c) and

2(d). However, the efficiency of PL-moments at both F0 = 0.1 and F0 = 0.2 always perform better than L-moments for

k > −0.1 and result in lower efficiency for k ≤ −0.1.

5.2 Data analysis

To illustrate the application of GP distribution using PL-moments approach for analysis of censored flood samples, a set

of annual maximum flow series for station 6019411 Golok River which is located in Kelantan, Malaysia is presented in

this study. The data consists of 32 annual maximum series from year 1977 until 2008, are listed in Table 2. The flood data

was obtained from Department of Irrigation and Drainage, Ministry of Natural Resources and Environment, Malaysia.

The parameters estimates of the data set, using simple L-moments and PL-moments at level of censoring threshold,

F0 = 0.2 are given in Table 3. Observed and computed frequency curves for the data set is plotted in Figure 3. The

observe data values are plotted against the corresponding EV1 reduced variate.

From this fitted plot, it is generally observed that the frequency curve obtained by PL-moments with level of censoring

threshold, F0 = 0.2 lies much closer to the observed data than the simple L-moments.

6. Summary and conclusions

Partial L-moments (PL-moments) are extended from L-moments and analogous to the partial probability weighted mo-

ments to be used for censored samples. A Monte Carlo simulation study was performed to investigate sampling properties

of PL-moments involving various sample size n, different values of GP shape parameters k, different censoring threshold

F0 and for different quantile estimators x(F). Results reveal that the bias from the method of PL-moments with censoring

up to F0 ≤ 0.2 is almost similar to and even lower than those of simple L-moments (F0 = 0.0). Values of absolute bias

for GP shape parameter, k > −0.1 are closest to zero and produce even less bias than simple L-moments for certain F0.

Similarly, the efficiency of PL-moments for censoring level of F0 ≤ 0.2 always lead to better efficiency than L-moments

for the values of GP shape parameter, k > −0.1.

An application to annual maximum flow series data at River Golok in Kelantan, Malaysia involving 32 sample sizes

were performed for the method of simple L-moments and PL-moments. Results show that PL-moments is quite effective

in fitting GP distribution to these floods data, and in some cases, produce even better performance than the simple L-
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moments. Since we are eliminating some low value for PL-moments methods, this method will be superior in the presence

of outliers. Our evaluations support the finding in Bhattarai (2004) which indicate that in some cases, PL-moments

produce even better fits than the simple L-moments.
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Table 1. Bias on quantile estimators of GP shape parameters, k = −0.1 and k = +0.1 for different levels of censoring F0

and different sample sizes n

F0

k x(F) n 0.0 0.1 0.2 0.3 0.4 0.5

-0.1 0.980 20 -0.075 -0.124 -0.196 -0.287 -0.387 -0.479

30 -0.045 -0.078 -0.127 -0.189 -0.261 -0.330

40 -0.014 -0.040 -0.078 -0.126 -0.179 -0.231

50 -0.036 -0.056 -0.086 -0.124 -0.166 -0.205

0.990 20 0.037 -0.067 -0.231 -0.451 -0.715 -0.987

30 0.037 -0.031 -0.143 -0.303 -0.506 -0.738

40 0.056 0.003 -0.084 -0.209 -0.371 -0.569

50 0.008 -0.033 -0.103 -0.203 -0.337 -0.501

0.995 20 0.286 0.108 −0.178 -0.571 -1.047 -1.544

30 0.215 0.104 −0.092 -0.381 -0.758 -1.197

40 0.201 0.115 −0.038 -0.266 -0.574 -0.961

50 0.109 0.041 −0.079 -0.264 -0.521 -0.852

0.998 20 0.943 0.635 0.127 -0.577 -1.430 -2.309

30 0.680 0.496 0.153 -0.367 -1.048 -1.839

40 0.568 0.426 0.159 -0.250 -0.816 -1.525

50 0.375 0.266 0.057 -0.276 -0.750 -1.368

+0.1 0.980 20 0.006 -0.039 -0.111 -0.204 -0.311 -0.404

30 0.005 -0.024 -0.072 -0.139 -0.219 -0.301

40 0.014 -0.008 -0.045 -0.096 -0.159 -0.228

50 -0.002 -0.020 -0.049 -0.090 -0.141 -0.198

0.990 20 0.084 0.003 -0.132 -0.314 -0.522 -0.713

30 0.055 0.004 -0.087 -0.220 -0.387 -0.566

40 0.055 0.015 -0.056 -0.160 -0.296 -0.456

50 0.024 -0.007 -0.063 -0.148 -0.261 -0.399

0.995 20 0.213 0.090 −0.120 -0.403 -0.726 -1.015

30 0.138 0.062 −0.080 -0.290 -0.554 -0.833

40 0.119 0.060 −0.050 -0.215 -0.435 -0.692

50 0.069 0.022 −0.064 -0.199 -0.385 -0.612

0.998 20 0.478 0.292 −0.036 -0.477 -0.967 -1.393

30 0.306 0.195 −0.025 -0.353 -0.758 -1.176

40 0.247 0.160 −0.009 -0.267 -0.610 -1.001

50 0.162 0.093 −0.040 -0.251 -0.542 -0.894

Table 2. Annual maximum flow series in m3/s for station 6019411 Golok River in Kelantan, Malaysia years 1977 until

2008

Year Value Year Value Year Value

1977 226.58 1988 383.76 1999 273.14

1978 334.94 1989 89.610 2000 363.83

1979 353.74 1990 237.16 2001 473.56

1980 327.17 1991 499.54 2002 247.86

1981 625.22 1992 474.74 2003 379.43

1982 638.42 1993 470.86 2004 403.17

1983 582.67 1994 494.77 2005 411.48

1984 522.41 1995 354.13 2006 271.05

1985 362.99 1996 388.86 2007 431.01

1986 84.580 1997 815.90 2008 105.70

1987 728.31 1998 392.35

Table 3. Estimated values for the GP distribution of Golok River, Kelantan

Parameter L-Moments PL-Moments

F0 = 0.0 F0 = 0.2

k 0.799 0.290

α 476.800 225.589

ζ 133.355 246.619

50 year flood 703.956 774.326

100 year flood 715.102 819.874

200 year flood 721.508 857.127

500 year flood 726.004 896.170
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Figure 1. Bias on quantile estimators, x(F), plotted against censoring thresholds, F0, for different sample sizes and for

shape parameter k = −0.1 and k = +0.1
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Figure 2. Bias and efficiency on x(F = 0.995) estimator, plotted against value of GP shape parameters, k, for various

censoring thresholds, F0 and sample sizes, n = 30 and 50

Figure 3. Fitting the GP distribution to annual maximum flows at Golok River, Kelantan (catchment area 761 km2) for

sample size, n = 32
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