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Abstract

The oscillation of second order neutral equations with distributed deviating arguments is studied. By using a class of
parameter functions ®(z, s,/) and the generalized Riccati technique, some new oscillation criteria for the equations are
obtained. The obtained results are different from most known ones and can be applied to many cases which are not
covered by existing results. Two examples are also included to show the significance of our results.
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1. Introduction

We are concerned here with the oscillatory behavior of the second order neutral equations with distributed deviating
arguments of the form

h N b
x(t)"'zci(t)x('ri(t)) } +f F@t,&,x[g(t,H)Ddo(&) =0, 1>1. M

i=1

{r(l)‘I’(X(t))

We assume throughout this paper that the following conditions hold.

(Al) r(®) € C(,Ry), f,:o ds/r(s) = oo, = [y, ), Ry = (0, 0);

(A2) W(x) € C(R,R),0 < ¥(x) < L™! for x # 0, L is a constant;

(A3) ci(t) e C(,Rp),i=1,2,--- ,h,and Zf.’:l ci(t) < 1, Ry = [0, 00);

(A4d) 7:(t) e CU,R), 7;(t) < tfort €l and lim,,, 7;(t) = 00,i = 1,2,--- , I

(AS) g(t,¢é) € CU x [a,b],R),g(t,&) < t for € € [a,b], g(t, &) is nondecreasing with respect to ¢ and &, respectively,
g (t,a) > Ofort € I, and liminf;_,e sejap){8(t, €)} = 005

(A6) F(t,&,x) € C( X [a,b] X R,R),0(¢) € C([a, b], R) is nondecreasing, and the integral of Eq. (1) is a Stieltjes one.

We restrict our attention to solutions x(¢) of Eq. (1) which exist on some half-line [, c0) and nontrivial for all large . It is
tacitly assumed that such solutions exist. As is customary, a solution x(¢) of Eq. (1) is called oscillatory if it has arbitrarily
large zeros. Otherwise, it is said to be nonoscillatory. Eq. (1) is called oscillatory if all its solutions are oscillatory.

The oscillation problem for various particular cases of Eq. (1) such as

{r(OYxO)[x(@) + cO)xT@O)]'}Y + g(@) f(x(o (1)) = 0
and .
0L + conte=oY + [ at.x1g0.01do@ =0,
has been studied by many authors, e.g., see(Li and Liu, 1995, pp.45-53, Ruan, 1993, pp.485-496, Sahiner,2004, pp.697-
706, Wang and Li,2003, pp.407-418, Wang, 2004, pp.1935-1946, Xu and Weng, 2007, pp.460-477).

As we can see, an important tool in the study of oscillatory behavior of solutions for the equations above is the averaging
technique, which involves a function class X which is defined by Philos(1989, pp.482-492) and used extensively. Say a
function H = H(t, s) belongs to the function class X, If H € C(D,Ry) , where D = {(t,s) : t > s > ty}, which satisfies
H(t,t) = 0,H(t,s) > 0 for ¢ > s, and has partial derivative dH/ds and 0H/dt on D such that

%I = hi(t,s)yH(t,5)  and %I = —hy(t, ) VH(, 5), @
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where hy, hy, € L2 (D, R).

loc

Following the ideas of Sun(2004, pp.341-351), Sun and Meng(2007, pp.1310-1316), Yang(2007, pp.900-907) and Dubé
and Mingarelli(2005, pp.208-220), in this paper, we define another function class Y. We say that a function ® = ®(z, s, /)
belongs to the function class Y, denoted by ® € Y, if ® € C(E,R), where E = {(t,s,]) : t > 5 > [ > 1o}, which satisfies
®(t,1,1) = O(t,1,]) = 0 and has the partial derivative ®; = 9®/ds on E such that O; € leac(E’ R).

It is interesting to note that H,(¢, s)H,(s,[) € Y for any H, H, € X.

In Sections 2 and 3 of this paper, we will establish some new oscillation results for Eq. (1) by using the auxiliary function
® € Y. Our results are different from most known ones in the sense that they are given in the form that lim sup,_,[']
is greater than a constant, rather than in the form limsup,_,[-] = co as usual. Thus, our results can be applied to many
cases, which are not covered by existing ones. Finally in Section 4, two examples that show the importance of our results
are included.

2. Oscillation criteria of Kamenev type

Theorem 2.1 Suppose that there exist functions ¢(t,£) € C(I X [a, b],Ry), which is not eventually zero on any ray
[t4, 00) X [a, b] for t, > tg, and f(x) € C(R,R) such that

F(t,£, x)sgnx 2 ¢(t,£) f(x)sgnx 3

and
—f(=x) = f(x) 2 Ax >0, x>0, Aisaconstant. “4)

If there exist functions @ € Y and p(r) € C'(I, R,,) such that for each I > 1,

lim sup f t {ch(t, 5.001(s) - P8 D o o l)}ds -0, )

oo JI Lg'(s,a)

where
b h

0i(s) = Ap(s) f 4. f){l - e, f)]}dcr@, ©)

a i=1
0. 5.0 = by, s.0) + 2 o 5., )

20(s)

then Eq. (1) is oscillatory.

Proof Assume that x(¢) is an eventually positive solution of Eq. (1). From (A4) and (AS5), there exists a #; > #y such that
x(£) > 0, x(t;(£)) > 0 and x[g(t,&)] > O for ¢t > 11, € [a,b],i=1,2,--- ,h.

Letting
h
() = x(0) + Z ci(®)x(i(1)), )
i=1

from (A3) and (8), we have y(¢) > x(¢) > 0, and from (1), (3) and (4), we have (r(t)¥(x(7))y’(¢)) <0, fort > 1,.

Next, we show that y’(f) > O for ¢ > ¢. In fact, if there exists a f, > #; with y'(f;) < 0, then by (r(1)¥(x(2))y’ (1)) < 0, we
have

rOYEO)Y (1) < r) Y ()Y (0) £ <0, 120

Dividing both sides by r(#)¥(x(7)) > 0, from (A2), we obtain

b1l
P(x(®) (1) ~ r(0)

Y1) < ®

Integrating (9) from 1, to ¢ leads to
!

1
y(@©) <y(tp) +uL | ——ds, t=1t,
I r(s)

therefore, from (A1), we conclude that lim,_,, y(#) = —oo, this contradicts y(z) > 0,1 > ;.
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From (1), (3), (4) and (8), we get

0

b
(rOY(x@)y' (1)) + f F(1,&, x[g(t,H)Ddo (&)

v

b
(rOP (@)Y (1) + f q(t, &) f(x[g(t, ) Ddor(§)
h

b
(rY(x@)y' (1) + 4 f q(t, 6){y[g(t, 9] Z cilg(t, &)1x(rilg(r, 5)])}d0(§)-

i=1

v

Using y'(f) > 0, and y(¢) > x(¢), t > t;, we have y[g(t,&)] > y(ti[g(t, &)]) > x(ti[g(t,€)]) fori =1,2,--- , h. Thus,

h

b
(rY (@)Y (1)) + 4 f q(t, 6){1 - ) cilg(, §)]}y[g(f, Hldor(é) <0, t=1.

i=1

Further, observing that g(z, &) is nondecreasing with respect to &, we have y[g(t,a)] < y[g(t,&)] for t > ¢t; and & € [a, b].
Thus,

b h
(r@OPx@)Y (1) + ylgt, a)] f q(t, 5){1 - Z cilg(, «f)]}dcf(f) <0, t21.
a i=1
Pefine OP )y (1)
B r x(1))y
A0 = PO
Noting that g(t,a) < t and (r(t)¥(x(1))y’ (1))’ < 0 for ¢t > t;, we have r(t)¥(x(1))y'(t) < rlgt, )Y (x[g(t, @)])y'[g(t, a)] for
t > t;. Therefore,

2 11.

o0 COPCOW DY rOYa@Y 0y [, @lg ()
o0 O PO ey P Vlea)]

p_() _ g/(t’ a) 2
= o0 A e o aigan”
p' (1) Lgt.a)
—z(t) — - ———7 (1), 10
= o0 A ol {10
where Q| (7) is defined as in (6). Multiplying (10), with ¢ replaced by s, by ®*(z, s,)(t > I > t;) and integrating from I to
t, we obtain

40!

f Ot 5,001()ds < - f (1, 5,1 (s)ds + f (1, 5,122 (5)ds - f 01,5, )—E 0D _ 2545
, o) P(s)rIg(s. )
- f 20(t, 5. O, 5. Da(s)ds — f V1,5, )—8 D) a) 2(s)ds
p(s)rlg(s,

Lg'(s,a) /p(S)r[g(s a)
—_ 0 l t,s,1 d
p($)r(g(s, a)] (6 8 e(s) = Lg'(s, ) g

+f p(s)r[g(s, a)] ®Z(t, s, l)dS
1

Lg'(s,a)
" p(s)rig(s,a)] .,
‘[WG) (t, S,l)dS,
ie., , ,
f D21, 5, )0, (s)ds < f pIss Dl gn, o pas. (11)
I . Lg'(s,a)

where 0(t, s, 1) is defined as in (7). This implies that
t
lim sup f W21, 5,0 (5) - LS D o1y o,
t—o0 1 Lg’(S, (1)
which contradicts the assumption (5).

If x(¢) is an eventually negative solution of Eq. (1), let w(f) = —x(#) , then Eq. (1) will transfer the following equation

h N b
w(t) + ) ci(ow(Ti(0) } - f F' (2.6 wlgt.)Ddo@) = 0. 121, (12)

i=1

{r(t)‘P(—W(t))

wWWww.ccsenet.org/jmr 75



Journal of Mathematics Research ISSN: 1916-9795
Vol. 2, No. 2, May 2010 E-ISSN: 1916-9809

in which F*(¢, &, wlg(t, €)]) = —F(t, &, —wlg(t, £)]). It is easy to see that w(¢) is an eventually positive solution of Eq. (12).
From (3) and (4), we can obtain

FU(1,&wlg(t,§)]) = —F(1,&, -wlg(t.O)]) = q(t, = f(—wlg(t, D} = q(t, &) f(wlg(1, D).

Then, Eq. (12) satisfies the conditions of Theorem 2.1. Defining y(¢) = w(t)+Zf’:] ci(tw(Ti(1)), z(t) = p(t)%w,and

using the above-mentioned method, we can also get a contradiction. This completes the proof of Theorem 2.1.

Under the appropriate choices of the functions ®@(¢, s,/), we can derive many new oscillation criteria for Eq. (1) from
Theorem 2.1. For instance, let ®(z,s,]) = VH(t,s)H(s,l), where H € X. By Theorem 2.1, we have the following
oscillation result.

Theorem 2.2 Suppose that (3) and (4) hold. If there exist functions H € X and p(r) € C'(I, R,) such that for each I > 1,

prigs )l[p(s) | Ms.D _ ha(t.s) r} o0
4Lg'(s,a) | p(s)  +H(s,l) VHG,s) ’
where Qi (?) is defined as in (6), and A, (s, [), hy(¢, s) are defined as in (2), then Eq. (1) is oscillatory.

If we choose ®(¢,s,]) = \/qﬁ(s)(t — syn(s — Iy*, where ¢(f) € C'(I,R,) and m,n > 1 are constants, then we have the
following oscillation theorem by Theorem 2.1.

lim sup f,t H(t, $)H(s, l){Ql(S) -

1—00

Theorem 2.3 Suppose that (3) and (4) hold. If there exist functions p(¢), ¢(f) € C'(I, R.) and constants m,n > 1 such that

for each [ > 1y,
2
}ds >0,

!
lim sup fl ¢(s)(t—s)’"(s—l)”{Q1(s)—

1—00

p(s)rig(s, a)] [¢'(S) + p'(5) L (m+n)s +ml
4Lg'(s,a) | ¢(s)  p(s) (t=9)(s-1D

where Q) (?) is defined as in (6), then Eq. (1) is oscillatory.
Define

! 1
R(Z) = ﬁ mds, t>T1 21,

(1, 5,1) = ()[R — R()I"[R(s) — R()]",

where ¢(f) € C'(I,R,), and m,n > 1 are constants. According to the simple computation, we get the following oscillation
criterion by Theorem 2.1.

and let

Theorem 2.4 Suppose that (3) and (4) hold. If there exist functions p(¢), ¢(t) € C'(I, R.) and constants m, n > 1 such that
for each [ > 1,

’ / 2
POl [ #(5)_p), _ nR@) = (m + mR() + mR() } }ds>0,

hms“pfl ")(s)[R(”"R(”]m[R(S)_R(m"{Q‘(S)" iLg'(s.a) | 6(s) | p(s) | Tlgls. IR®) — RS)IRGs) - RD]

1—00

where Q) () is defined as in (6), then Eq. (1) is oscillatory.
Taking p(¢) = 1 and ¢(¢) = 1, by Theorem 2.4, we have the following interesting theorem.

Theorem 2.5 Suppose that (3) and (4) hold, lim,_,., R(¢) = oo and g’(¢,a) > k > O for ¢ € I, where k is a constant. If there
exist constants m, n > 1 such that for each [ > ¢,

Tm - DI(n - 1)

AT(m+n) 13

lim sup

m f [R() — R()I™[R(s) — RO,kLO(5)ds > mn(m + n — 2)

where
h

0x(s) = A fq(s f){ - eilg(s. 6] }da@, (14)

i=1
then Eq. (1) is oscillatory.

Proof Assume that Eq. (1) has a nonoscillatory solution x(#) > 0. By using the same arguments as in the proof of Theorem
2.1, we conclude that (11) with p(#) = 1 is satisfied, i.e.,

f (1, 5,1)0(s)ds < f 186Dl o, o 1.
I 1 Lg'(s,a)
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Letting ®(z, 5,1) = V[R(t) — R(s)]"[R(s) — R(I)]", we have that for r > [ > r1,

(m + n)R(s) + mR()]?
4Lg' (s, a)r(g(s, a)]

f [R(@) — RGS)[R(s) — RO Qs (s)ds < f [R(®) — RGs)"2[R(s) — Ry 220
Since g’(t,a) > k > 0 for ¢ € I, we have
f[ '[R() ~ ROI'IR(s) ~ ROVLO:(5)ds
< % fl 'TR() ~ ROT™IRE) ~ ROV (IR — R()] - mR(s) ~ ROIPR(s). (15)
By setting u = R(s) — R(]) and v = R(r) — R(l), we get
fl '[R() ~ ROI™IRE) ~ RO [R®) — R()] ~ mIR(s) ~ ROIPAR(s)
= fo oo W"2[R(t) = R(D) — ul™ H{n[R(?) = R(I) — u] — mu})? du
= fo ' W2 — )" 2 n(v — u) — mul® du
=n? fo ' W2 (v — u)"du — 2mn fo ' v — )"V du + m? fo ' W'(v — u)"2du. (16)

Letting x = ¥, and using the following Euler’s Beta function,

fxf”‘(l X ldx = rg)r(y)’ Re(B,y) > 0,

we obtain that

fv W2 = w)" (v — u) — mu)? du
0

T(n— DI(m + 1) LT | e DG+ DEGn = 1)

— n2vm+n—l -2 m+n—1
I'(m + n) I'(m +n) I'(m +n)
=yl w[nzm(m — 1) = 2mn(n - D)(m — 1) + m*n(n — 1)]
I'(m+n)
~ L Dm=Dl(=1) .
=mn(m+n 2)—F(m ) V . a7

Substituting back in for v = R(¢) — R(I), (16) and (17) give

f, [R(1) = R()"*[R(s) = RDY"*{nlR(®) = R(s)] = m[R(s) = R} dR(s)
_ _ r(m - 1)F(I’l - 1) _ m+n—1
=mn(m+n 2)—1" e [R(t) — R(D] . (18)
From (15) and (18), we can easily obtain
I'm-1DI'(n-1)

lim sup Rm+‘1(t) jl‘ [R(?) — R(HT™[R(s) — RID"kLQy(s)ds < mn(m + n — 2) AT(m + 1)

1—00
which contradicts the assumption (13) . This completes the proof of Theorem 2.5.
Based on Theorem 2.5 we obtain the following corollary.

Corollary 2.1 Suppose that (3) and (4) hold, lim,_,., R(f) = oo and g’(¢t,a) > k > 0 for t € I, where k is a constant. If there

exists a constant @ > % such that for each [ > 1 either

. a
(i) hmi?p R2a+l()f[R(t) R()I*[R(s) = RDPKLQ:(s)ds > Za-DoatD

or

.. . 1 ! 2 2a @
(ii) llltllsoilp R0 fz [R(®) — R($)]°[R(s) — R(D)kLQr(s)ds > Ga-D@atl) (19)
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where Q»(?) is defined as in (14), then Eq. (1) is oscillatory.
Proof (i) In (13), replaced m, n by 2« and 2, respectively, we obtain

1 2
lim sup -z fl [R(1) = R()P*[R(s) = ROPKLQ:(s)ds

I'Ce-DHrER-1)
AL Qa +2)
B 20°T(2a - 1) _ a
T QRa+1D2a)R2a-DIRa-1) Qa-DRa+1)

> Ra)22QRa+2-2)

@i1) In (13), replaced m, n by 2 and 2q, respectively, the remainder of the proof is similar to that of (i) and hence omitted.
3. Interval oscillation criteria

In this section, we will establish several new interval oscillation criteria for Eq.(1), that is, criteria given by the behavior
of Eq.(1) only on a sequence of subintervals of [#y, o) rather than on the whole half-line.

Theorem 3.1 Suppose that (3) and (4) hold. If for each | > t,, there exist functions ® € Y,p(f) € C'(I,R,) and two
constants d > ¢ > [ such that

fd V(. 5,000, (5) ~ P8 D o ) Ve s o, (20)
¢ Lg'(s,a)

where Q) (¢) and ®(d, s, ¢) are respectively defined as in (6) and (7), then Eq. (1) is oscillatory.

Proof As in the proof of Theorem 2.1, with 7 and [ replaced by d and c, respectively. We can easily see that every solution
of Eq. (1) has at least one zero in (c, d), i.e., every solution of Eq. (1) has arbitrarily large zero on [#y, c0). This completes
the proof of Theorem 3.1.

As consequences of Theorem 3.1 we get the following interval oscillation criteria for Eq. (1).

Corollary 3.1 Suppose that (3) and (4) hold. If for each [ > t,, there exist functions H € X, p(f) € C'(I,R,) and two
constants d > ¢ > [ such that

p)rigls, a)l|p’'(s) N hi(s,0)  h(d,s) Z}ds -0
4Lg'(s,a) | p(s)  +H(s,c) VH,s) ’
where Q)(?) is defined as in (6), and h (s, ¢), h2(d, s) are defined as in (2), then Eq. (1) is oscillatory.

Corollary 3.2 Suppose that (3) and (4) hold. If for each [ > f,, there exist functions p(t), ¢(t) € C'(I, R,), two constants
m,n > 1, and two constants d > ¢ > [ such that

d
f H(d, $)H(s, c){Q«s) -

’ / 2
p($)r(g(s,a)] [qﬁ (s) + p'(s) N nd — (m+n)s + mc] }ds >0,

d
fc PN =3 = C)"{Ql(s) T TALg(sa) | 96)  p() | @-9)5-0)
where Q)(?) is defined as in (6), then Eq. (1) is oscillatory.

Corollary 3.3 Suppose that (3) and (4) hold. If for each I > t,, there exist functions p(?), ¢(¢) € C'(I,R,), two constants
m,n > 1, and two constants d > ¢ > [ such that

’ ’ . 2
p()rlg(s, a)][(ﬁ ()  P(s) _ nR(d) = (m+ mR(s) + mR(c) ] }ds >0,

d
R(d)-R "R(s)—R n -
fc AR =R IR(s) - R(E)] {Ql(” ALg'(s,a) | 9(s) = p(s)  rig(s, d)IR(d) — R(s)IR(s) - R(c)]
where Q) () is defined as in (6), then Eq. (1) is oscillatory.

Remark 3.1 Theorems 2.1-2.5 and 3.1, Corollaries 2.1 and 3.1-3.3 are new because we introduce a new class of kernel
functions ®(¢, s, /) which is basically a product H(t, s)H(s, [) for a kernel H(¢, s) of Philos’ type.

Remark 3.2 Since the integral of Eq. (1) is a Stieltjes integral, the criteria in this paper are adapted to the following
equation:

h N k
{r(r)?(x(r))[x(r) + > eOx(Tn) } + D Hexg () =0, 121
i=1 J=1

4. Examples

In this section, we will present two examples to illustrate our results. To the best of our knowledge, no previous criteria
for oscillation can be applied to these examples.
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We first give an example to illustrate Corollary 2.1.

Example 4.1 Consider the equation

1
{m[ O o3 xwm]}

f’ Ot +E+ D +E+2)

X2(t+€) _
PTG Er D I[smE sy T =0 122, @D

where 0 < 61,6, < 12;1(1d§91; 1§z;r)e constants, a = —1, b = 0, r(t) = 1, ¥(x) = 1. c1()) = 7. () = 5. 8(t.€) =
_ +E+1)(1+€+ 2
1+& F(,E,%) = mmpuah-1sm@n ¥¢ -

Noting that

0t+E+ D) +E+2)
AUt et+é+ 1) —1]sinE+2)

0t+E+ D) +E+2)
Blt+&E+E+1)—1]

x2

xe)‘zsgnx, t>2, —1<£<0,

sgnx >

O(t+&E+1)(1+E+2) _ 2 ‘e . _ _ _
m,f(x) = xe*, then the conditions in Corollary 2.1 hold for L = k = 2 = 1, and

Rty = ['(s= Dds =5t -1D? = L@ =172, 121> 2,1lim R() = 00

choosing ¢(t,&) =

(P e+ E+DE+EFD) 1 1 0
Qz(t)_L Blt+Ot+E+1)—1] 1_r+g+1 i+ E+2 =5

Forany [ > 2,

lim sup 7 szlm f [R(?) = R(s)*[R(s) — R()**kLOA(5)d's

_ fI[R(s)—R(Z)]Z”S%ds _ f R()[R(s) = R()** L ds _ f R*(9)[R(s) = R L ds
=6 lim — 26 1lim + 6 lim

t—00 R2a-1 ([’) t—0o RZa/(t) t—0o R2a+1 ([)
— 01im [R(1) = RO _ 0lim [R(1) = RI)I* im [R(1) = RI)I*
o 2 — DR222(DB(t—1) oo aR220P (- 1) >0 Qa+ DR22(DB(1 - 1)
6 1

" 4aQa-D2a+ 1)
For any 6 > 1, there exists @ > 1, such that § > o2, i.e.,

1 a
aa - DRa+1) g Qa-1DQRa+1)

6
4

Thus, (19) holds for 6 > 1. By Corollary 2.1 we see that Eq.(21) is oscillatory for 6 > 1.
The second example illustrates Theorem 3.1.

Example 4.2 Consider the equation

1 N
{00 - e re - |

2 Let—1+1
nte: 1
v [ T

where 71,7, > Oand p > = 9 are constants, a = 1, b =2, r(t) = i,,, Y(x) =

Lér, F(t,€,x) = ’7’” - x(l +x3)arctan &.

1+ xi(%gt)} arctanédé =0, 1> 1, (22)

M =1-e", ()= e, g(t,6) =

l
Choosing ¢(t,¢) = Z—{e—] S(x) =x(1+ x?) and p(t) = €', then the conditions in Theorem 3.1 hold for L = A1 = 1.

2 Let-1+1 . . 1
0:(1) = e’f The == e Y ae =20 0, 5,0 = 0,0, 5,1) + =0, s, ).
1 4 e — 1 4 2
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For any [ > 1, there exists K € {0,1,2,---} such that 2Kn > [. Let ¢ = 2Kn, d = 2Kn + n, and ®(d, s,¢) =
Vsin(d — s) sin(s — ¢) = sin s for ¢ < s < d, then we have

1
f {®2<d, 5,000 (s) = PO D o ) o c)}ds
c Lg'(s,a)

2Kn+m T 1
= f [—n sin? s — 2(cos s + — sin s)z]ds
2 4 2

Kn

[(r 5 T 3
f(; [(8” 4) (8n+4)cos s —sin s]ds

forn > 1"—0 This means that (20) holds. Therefore, by Theorem 3.1, Eq.(22) is oscillatory for n > %
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