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Abstract

This paper address the problems of robust stability for uncertain discrete-time switched systems. The uncertainty is as-
sumed to be of structured linear fractional from which includes the norm-bounded uncertainty as a special case. By
introducing a novel difference inequality, new delay-dependent stability criteria are formulated in terms of linear ma-
trix inequalities(LMIs) which are not contained in known literature. Numerical examples are given to demonstrate the
effectiveness of the theoretical results.
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1. Introduction

Switched systems are a class of hybrid dynamical systems consisting of a family of continuous- (or discrete-) time sub-
systems, and a rule that orchestrates the switching between them. It have gained a great deal of attention mainly be-
cause various real-world systems,such as chemical processing (S.Engell, 2000), communication networks, traffic control
(R.Horowitz, 2000; C. Livadas, 2000; P.Varaiya, 1993), the control of manufacturing systems (D.Pepyne,2000; M.Song,
2000), and automotive engine control and aircraft control (P.Antsaklis, 2000) can be modeled as switched systems. In the
last two decades, there has been increasing interest in stability analysis and controller design for switched systems, the
reader is referred to the survey paper (Hai lin, 2009), and the references therein. Beside many researches on the continu-
ous switched system (S.Pettersson, 1997)-(Kim. S, 2006), the discrete switched system has also been considered in many
paper (Du D., 2006)-(Yuangong Sun, 2007) and see the references therein. It has been recognized that time delays, which
are the inherent features of many physical process, are the big sources of instability and poor performances. For time de-
lay systems, stability criteria are usually classified into two types: delay-independent criteria and delay-dependent ones.
In general, delay-independent criteria are conservative since they can not handle the systems whose stability depends on
the size of time delay. Recently, (Yuangong Sun, 2006) and (Yuangong Sun, 2007) obtained the delay dependent stability
condition of uncertain discrete-time switched systems, However, the results of discrete delay is small to some extent. It
may be improved significantly with some useful approaches, this has motivated our research.

In this paper, we are interested in establishing delay-dependent stability criteria in terms of linear matrix inequalities
(LMIs) for the uncertain discrete-time switched delay systems under arbitrary switching sequences. The main idea of our
method is inspired by Zhang’s recent work (Xianming Zhang, 2006), where some novel integrate inequalities is intro-
duced for stability analysis and controller synthesis of continuous deterministic delay systems. We extend this approach
to uncertain discrete-time switched delay systems based on the constructed switched Lyapunov functionals (J.Daafouz,
2002). The advantage of the introduction of difference inequality lies in that it considerably reduces the conservatism
entailed in the previously developed transformation methods since it isn’t transform the systems which could introduce
additional dynamics in the sense defined in (Gu. K., 2001). Another important idea of the proposed method is that some
free weighting matrices are introduced properly to counteract the influence, bringing by the difference inequality, to the
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delays. Note that these advantages are not obtained at the cost of high computational complexity. Finally, numerical
examples are given to illustrate the superiority of present result to those in the literature.

This paper is organized as follows. In Section2, we give the problem formulation and introduce an important lemmas to
our later results. Section3 is dedicated to stability analysis of switched systems by mean of a switched quadratic Lyapunov
function and our lemma. Two numerical evaluations are given in Section4.

2. Problem preliminaries

Nomenclature

Rn n-dimensional real space

Rn×n set of all real n by n matrices

xT or AT transpose of vector x (or matrix A)

P > 0 (respectively, P < 0) matrix P is symmetric positive (respectively, negative) definite

P ≥ 0 (respectively, P ≤ 0) matrix P is symmetric positive (respectively, negative) semi-definite

* the elements below the main diagonal of a symmetric block matrix

Consider linear switched system in the domain of discrete time:

x(k + 1) = A(k, r(k))x(k) + B(k, r(k))x(k − d),
x(s) = φ(s), s = −d, . . . ,−1, 0. (1)

where x(k) ∈ Rn is the system state, r(k) : Z+ = {0, 1, 2, . . .} → N = {1, 2, . . . ,N} is the control signal. d denote the delay
of the system. φ : {−d,−d + 1, . . . , 0} → Rn represents the initial condition. For each i ∈ N , the system matrices are
assumed to be uncertain and satisfy:

[
A (k, i) B (k, i)

]
=

[
Ai Bi

]
+ Hi4

[
Ei1 Ei2

]
(2)

4 = [I − F(k)J]−1F(k) (3)
0 < I − JJT (4)

where Ai, Bi are constant matrices that describe the ith nominal mode, Hi, Ei1 and Ei2 are given constant matrices which
characterize the structure of the uncertainty, and the admissible uncertain matrix F(k) satisfies

FT (k)F(k) 6 I (5)

for k ∈ Z+.

The linear fractional parametric uncertainties have been investigated in the robust control setting as related in (Du D.,
2006) It is easy to see that when J = 0, the linear fractional uncertainty reduces to norm bound one. Notice also that
condition (4) guarantees that I − FJ is invertible.

We are here interested to establish delay-dependent robust stability criteria for systems (1) by introducing a novel dif-
ference inequality and using linear matrix inequality technique. Before giving the main theorem of this paper, we firstly
provide the following lemmas which plays an important role in our later development.

Lemma 2.1 (S.-S. Zhou, 2003) Suppose that 4 is given by (2)-(5), with matrices M = MT , S and N of appropriate
dimensions. Then the inequality

M + S4N + NT4T S T < 0,

holds for any F such that FFT 6 I, if and only if for some δ > 0,

δM S δNT

S T −I JT

δN J −I

 < 0.

Lemma 2.2 (Finsler’s lemma) For vector x ∈ Rn, matrix P ∈ Rn×n and H ∈ Rm×n, satisfying rank(H) = r < n, the
following statements are equivalent,
(i) ∀ x , 0 and Hx = 0, satisfying xT Px < 0 ;
(ii) ∃X ∈ Rn×m, satisfying P + XH + HT XT .

Lemma 2.3 For any constant symmetric matrix Q ∈ Rn×n, Q = QT > 0, and any appropriate dimensional matrices,

M1 ∈ Rn×n, M2 ∈ Rn×n, Z =

(
Z11 Z12
∗ Z22

)
∈ R2n×2n, Y =

[
M1 M2

]
∈ Rn×2n, if

(
Q Y
∗ Z

)
> 0, we have

−2
k−1∑

l=k−d
xT (l)Qx (l) ≤ ξT (k)

(
Λ11 Λ11
∗ Λ22

)
ξ (k)
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with ξT (k) =
[

xT (k) xT (k − d)
]
, where,

Λ11 = M1 + MT
1 + dZ11 + Q + dMT

1 Q−1M1,

Λ12 = −MT
1 + M2 + dZ12 + dMT

1 Q−1M2,

Λ22 = −M2 − MT
2 + dZ22 − Q + dMT

2 Q−1M2.

Proof. With the fact,

x(k) − x(k − d) −
k−1∑

l=k−d

(x(l + 1) − x(l)) = 0,

∀N1,N2 ∈ Rn×n, we have,

0 = 2[xT (k)NT
1 + xT (k − d)NT

2 ][x(k) − x(k − d) −
k−1∑

l=k−d

(x(l + 1) − x(l))]

= 2ξT (k)NT
[

I −I
]
ξ(k) − 2ξT (k)NT

k−1∑

l=k−d

x(l + 1) + 2ξT (k)NT
k−1∑

l=k−d

x(l) (6)

where N =
[

N1 N2

]
, ξT (k) =

[
xT (k) xT (k − d)

]
, by using the Moon’s inequality (Moon Y.S., 2001), we have,

−2ξT (k)NT
k−1∑

l=k−d

x(l + 1) 6
k−1∑

l=k−d

(
x (l + 1)
ξ (k)

)T (
Q Y − N

YT − NT Z

) (
x (l + 1)
ξ (k)

)

=

k−1∑

l=k−d

xT (l + 1)Qx(l + 1) + dξT (k)ZξT (k)

+2ξT (k)(YT − NT )
[

I −I
]
ξ(k)

+2ξT (k)(YT − NT )
k−1∑

l=k−d

x(l) (7)

Substitute (7) into (6), and with the fundamental inequality, we get

0 6 2ξT (k)YT
[

I −I
]
ξ(k) + dξT (k)Zξ(k) + 2ξT (k)YT

k−1∑

l=k−d

x(l)

+

k−1∑

l=k−d

xT (l + 1)Qx(l + 1)

6 2ξT (k)YT
[

I −I
]
ξ(k) + dξT (k)Zξ(k) + dξT (k)YT Q−1Yξ(k)

+

k−1∑

l=k−d

xT (l)Qx(l) +

k−1∑

l=k−d

xT (l + 1)Qx(l + 1)

= 2ξT (k)YT
[

I −I
]
ξ(k) + dξT (k)Zξ(k) + dξT (k)YT Q−1Yξ(k)

+ 2
k−1∑

l=k−d

xT (l)Qx(l) + ξT (k)
(

Q 0
0 −Q

)
ξ (k)

it can easy be seen from this that the conclusion is true.

3. Main results

In this section, we present asymptotically stability criteria dependent on delays for the uncertain discrete-time switched
systems described by (1) and (2) with strict LMI approaches.

For system (1), we define the following switched Lyapunov function :

V(k, x(k)) = xT (k)Pr(k)x(k) + 2
0∑

θ=−d+1

k−1∑

l=k−1+θ

xT (l)Qx(l) (8)

with P1, P2, . . . , PN ,Q being symmetric positive definite matrices.
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If such a Lyapunov function exists and its difference 4V(k, x(k)) = V(k + 1, x(k + 1))−V(k, x(k)) is negative definite along
the solution of (1), the the origin of the system(1) is globally asymptotically stable as shown by the following general
lemma.

Lemma 3.1 (M. Vidyasagar, 1993) The equilibrium 0 of

x(k + 1) = f (x(k)) (9)

is globally uniformly asymptotically stable if there is a function V : Z+ × Rn → R such that,
(i) V is a positive definite function, decrescent, and radially unbounded;
(ii) 4V(k, x(k)) = V(k + 1, x(k + 1)) − V(k, x(k)) is negative definite along the solution of (9).

For the asymptotically stability of systems described by (1), we have the following result.

Theorem 3.1 The systems (1) is asymptotically stability, if there exist symmetric matrices P1, P2, . . . , PN ,Q,Z11,Z22 ∈
Rn×n and any appropriate dimensional matrices Gi, Ti, Ui, M1, M2 ∈ Rn×n, such that the following LMIs holds,


Q M1 M2
∗ Z11 Z12
∗ ∗ Z22

 > 0, (10)

Γ =



Γ11 Γ12 Γ13 0
∗ Γ22 Γ23 dM1
∗ ∗ Γ33 dM2
∗ ∗ ∗ −dQ


< 0, i, j ∈ N , (11)

where
Γ11 = P j −GT

i −Gi, Γ12 = GiA(k, i) − UT
i , Γ13 = GiB(k, i) −WT

i ,

Γ22 = −Pi + M1 + MT
1 + UiA(k, i) + AT (k, i)UT

i + (2d + 1)Q + dZ11,

Γ23 = −MT
1 + M2 + UiB(k, i) + AT (k, i)WT

i + dZ12,

Γ33 = −M2 − MT
2 − Q + WiB(k, i) + BT (k, i)WT

i + dZ22.

Proof. Choose a switching Lyapunov functional candidate for systems (1) as following:

V(k, x(k)) = xT (k)Pr(k)x(k) + 2
0∑

θ=−d+1

k−1∑

l=k−1+θ

xT (l)Qx(l)

Let the mode at time k and k + 1 be i and j, respectively .That is,r(k) = i and r(k + 1) = j for any i, j ∈ N . Along the
solution of (1), and using Lemma 2.3, we have

4V(k, x(k)) = V(k + 1, x(k + 1)) − V(k, x(k))
= xT (k + 1)P jx(k + 1) − xT (k)Pix(k) + 2dxT (k)Qx(k)

−2
k−1∑

l=k−d

x(l)T Qx(l) + 2dxT (k)Qx(k) − 2
k−1∑

l=k−d

x(l)T Qx(l)

6 ζT Φ(i, j)ζ

where ζT =
(

xT (k + 1) xT (k) xT (k − d)
)
, 0, and

Φ(i, j) =


P j 0 0
∗ Φ1 Φ2
∗ ∗ Φ3

 , (12)

with
Φ1 = −Pi + M1 + MT

1 + (2d + 1)Q + dZ11 + dMT
1 Q−1M1,

Φ2 = −MT
1 + M2 + dZ12 + dMT

1 Q−1M2, Φ3 = −Q − M2 − MT
2 + dZ22 + dMT

2 Q−1M2,

applying Schur’s complement (Boyd S., 1993), (11) is equivalent to the following,

Φ(i, j) +


Gi

Ui

Wi


(
−I Ai Bi

)
+


−I
AT

i
BT

i


(

GT
i UT

i WT
i

)
< 0
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Therefore, we have 4V(k, x(k)) 6 ζT Φ(i, j)ζ < 0 for all k > 0 from the Finsler’s lemma. This completes the proof of
Theorem1 according to Lemma 3.1.

Remark 3.1 As is well known, it could bring conservativeness inevitably if one use inequality analysis technique to
analyze the stability of delay systems. In this paper, it may reduce the conservativeness of our results by introducing some
free weighting matrices appropriately with Finsler’s lemma.

Remark 3.2 It should be noted that Theorem 3.1 is obtained by using the Lyapunov functional V(k, x(k)) given by (8). It is

clear that when Pr(k) = P for any i ∈ {1, 2, · · · ,N}, V(k, x(k)) becomes V(k, x(k)) = xT (k)Px(k)+2
0∑

θ=−d+1

k−1∑
l=k−1+θ

xT (l)Qx(l),

which is called a single quadratic function and has been widely used in research work on this topic. Compared with their
results, we can see that our results are more general and less conservative by Example 1.

Considered the uncertainty described by (2)-(5), similar to the proof of Theorem 3.1, we can obtain the following Corol-
lary.

Corollary 3.1 The systems (1) with uncertainty as above mentioned is robust asymptotically stability, if there exist
constants δi > 0, symmetric matrices P1, P2, . . . , PN ,Q,Z11, Z22 ∈ Rn×n and any appropriate dimensional matrices
Gi,Ti,Ui,M1,M2 ∈ Rn×n, such that the following LMIs holds,


Q M1 M2
∗ Z11 Z12
∗ ∗ Z22

 > 0 (13)

Ψ =



δiΨ11 δiΨ12 δiΨ13 0 GiHi 0
∗ δiΨ22 δiΨ23 δidM1 UiHi δiET

i1
∗ ∗ δiΨ33 δidM2 WiHi δiET

i2
∗ ∗ ∗ −δidQ 0 0
∗ ∗ ∗ ∗ −I JT

∗ ∗ ∗ ∗ ∗ −I



< 0 (14)

where
Ψ11 = P j −GT

i −Gi, Ψ12 = GiAi − UT
i , Ψ13 = GiBi −WT

i ,

Ψ22 = −Pi + M1 + MT
1 + UiAi + AT

i UT
i + (2d + 1)Q + dZ11,

Ψ23 = −MT
1 + M2 + UiBi + AT

i WT
i + dZ12,

Ψ33 = −M2 − MT
2 − Q + WiBi + BT

i WT
i + dZ22.

Proof. Using the uncertain condition (2), we have

Γ =



Γ11 Γ12 Γ13 0
∗ Γ̃22 Γ̃23 dM1

∗ ∗ Γ̃33 dM2
∗ ∗ ∗ −dQ


+



GiHi

UiHi

WiHi

0


4

(
0 Ei1 Ei2 0

)

+



0
ET

i1
ET

i2
0


4T

(
HT

i GT
i HT

i UT
i HT

i WT
i 0

)
< 0

(15)

where Γ̃22, Γ̃23 and Γ̃33 are taken from Γ22,Γ23 and Γ33 in theorem 3.1 by replacing A(k, i) and B(k, i) with Ai and Bi

respectively. Using lemma 1, a sufficient condition guaranteeing Γ < 0 is that there exists positive constants δi such that
(13) and (14) are hold, which completes this proof.

4. Numerical examples

In order to show the effectiveness of the approaches presented in Section 3, in this section, two numerical examples are
provided.

Example 1. Consider the uncertain systems described by (1) and (2) N = 1, 2 and

A1 =

(
0.8 0.2
0 0.91

)
, B1 =

(
0.3 a
b 0.58

)
, E11 = E12 = 0.01I,H1 = cI

A2 =

( −0.1 0
−0.1 −0.1

)
, B2 =

(
0.12 0
0.11 0.11

)
, E21 = E22 = 0.01I,H2 = cI.
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It becomes nominal systems if we set c = 0. In this case, when a = 0, b = 0, using Theorem1, both the results in
(Yuangong Sun, 2006) and our results are same, viz.d 6 1. Whereas, when a = 0.2, b = 0.1, the delay d can be obtained
as much as 21 by theorem1, while d in (Yuangong Sun, 2006) remain as d 6 1. This comparison shows that our result is
much less conservative than that in (Yuangong Sun, 2006).

For comparison, let J = 0, applying corollary 3.1 to this example shows that the system is robust stable for d = 1 as
a = b = 0, c = 0.1, which is much less than (Yuangong Sun, 2007) whose results is d 6 5. However, as a , 0, b , 0 our
results is much less conservative than that in (Yuangong Sun, 2007). Take a = 0.2, b = 0.1, c = 0.1 for example, we can
obtain the system is robust stable for d 6 11 while its results in (Yuangong Sun, 2007) is d 6 5 which has not changed
again. And we can get

G1 =

(
11.2108 5.9572
5.9967 39.8991

)
, G2 =

(
157.8184 −3.8026
−5.8056 0.6278

)
, U1 =

( −9.8902 −10.5418
−7.6314 −37.0833

)
,

U2 =

(
15.1804 −0.3973
−0.3151 0.0343

)
, W1 =

( −3.9469 −5.7376
−5.7395 −24.3965

)
, W2 =

( −18.7054 0.3828
0.5412 −0.0722

)
,

P1 =

(
1.0008 −0.1025
−0.1025 0.0172

)
, P2 =

(
0.0414 −0.0264
−0.0264 0.0169

)
, Q =

(
0.0027 −0.0012
−0.0012 0.0007

)
.

This comparison shows that our result is also less conservative than that in (Yuangong Sun, 2007) when B1 is not a
diagonal matrix. This is also shows that our results and that in (Yuangong Sun, 2007) are not contain each other.

Example 2. Consider the systems described by (1) and assumed to have two modes,i.e., N = 1, 2 with

A(k, 1) =

(
0.62 0.27
0.13 0.91

)
, B(k, 1) =

(
0.31 0.23
0.12 0.58

)
, A(k, 2) =

( −0.25 0.36
−0.18 −0.71

)
, B(k, 2) =

(
0.12 0.21
0.15 0.11

)
.

Thus, we apply Theorem 3.1 to this example shows that the system is asymptotical stable for d 6 5. It shows that our
results are effective. On the other hand, by solving the inequalities(10) and (11),we get

G1 = 1.0×103
(

2.2917 −0.1749
−1.1044 0.5517

)
, G2 = 1.0×103

(
4.2759 2.7289
2.1015 4.2261

)
, U1 =

(
270.6635 −831.4655
−396.6739 49.6896

)
,

U2 = 1.0× 103
( −0.1093 2.0249

1.6872 2.4878

)
, P1 = 1.0× 103

(
3.9212 −0.8476
−0.8476 1.0968

)
, Q =

(
236.7487 10.0861
10.0861 13.6549

)
,

P2 = 1.0×103
(

2.5082 −1.2497
−1.2497 0.6600

)
, W1 =

( −34.6963 −26.6685
−315.5136 −151.8544

)
, W2 =

( −420.9922 −356.7214
−871.1593 −971.3711

)
,

This example also shows that our results obtained in this paper are effectiveness.

5. Conclusion

The robust stability for uncertain discrete-time switched systems with has been investigated. Based on the switched Lya-
punov functional approach, combined with the introduced difference inequality and free matrix method, delay dependent
stability criteria have been established in form of LMIs. Numerical examples have shown significant improvements over
some existing results.
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