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Abstract

Tulgeity τ(G) is the maximum number of disjoint, point induced, non acyclic subgraphs contained in G. The formula for
the tulgeity of the line graph of complete graph and complete bigraph are derived. Also we present an upperbound for the
tulgeity of line graph of any graph and we classify the graph for which the upperbound becomes the formula.
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1. Introduction

Point partition number (Gray Chartrand, 1971) of a graph G is the minimum number of subsets into which the point-set
of G can be partitioned so that the subgraph induced by each subset has property P. Dual to this concept of point partition
number of graph is the maximum number of subsets into which the point-set of G can be partitioned such that the subgraph
induced by each subset does not have the property P. Define the property P such that a graph G has the property P if
G contains no subgraph which is homeomorphic from the complete graph K3. Now the point partition number and dual
point partition number for the property P is refered to as point arboricity and tulgeity of G respectively. Equivalently the
tulegity is the maximum number of vertex disjoint subgraphs contained in G so that each subgraph is not acyclic. This
number is called the tulgeity of G denoted by τ(G). Also, τ(G) can be defined as the maximum number of vertex disjoint
cycles in G. The formula for tulgeity of a complete bipartite graph is given in (Gray Chartrand., 1968). The problems of
Nordhaus-Gaddum type for the dual point partition number are investigated in (Anton, 1990).

All graphs considered in this paper are finite and contains no loops and no multiple edges. Denote by [x] the greatest
integer less than or equal to x, by |S | the cardinality of the set S , by E(G) the edge set of G and by Kn the complete graph
on n vertices. The other notations and terminology used in this paper can be found in (Frank Harary, 1969).

Line graph of a graph G is defined with the vertex set E(G), in which two vertices are adjacent iff the corresponding edges

are adjacent in G. Since τ(G) ≤
[

p

3

]
, it is obvious that τ(L(G)) ≤

[
q

3

]
. However for complete graph Kp, τ(Kp) =

[
p

3

]
.

2. Main Theorems

We now present a formula to find tulgeity of line graph of a complete graph.

Theorem 2.1. The tulgeity of line graph of complete graph Kn, τ(L(Kn)) =
[
n(n − 1)

6

]
.

Proof

Let V(Kn) = {v1, v2, ..., vn} and let ei j be the edge joining the vertices vi and v j. i.e., E(Kn) =
{
ei j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n

}
.

Clearly by the definition of line graph, V(L(Kn)) = E(Kn) =
{
ei j : 1 ≤ i ≤ n, i + 1 ≤ j ≤ n

}
and |V(L(Kn))| = n(n − 1)

2
.

The edges incident with the vertex vi in Kn(1 ≤ i ≤ n), form a clique (say K′
i ) of order (n − 1) in L(Kn). Hence L(Kn)

contains n cliques K′
1,K

′
2, ...,K

′
n of order (n − 1).
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V(K′
1) = {e1 j : 2 ≤ j ≤ n}

V(K′
2) = {e12} ∪ {e2 j : 3 ≤ j ≤ n}

V(K′
3) = {e13, e23} ∪ {e3 j : 4 ≤ j ≤ n}

V(K′
4) = {e14, e24, e34} ∪ {e4 j : 5 ≤ j ≤ n}
................

V(K′
n−1) = {e1(n−1), e2(n−1), ....., e(n−2)(n−1)} ∪ {e(n−1)n}

V(K′
n) = {e1n, e2n, ....., e(n−2)n, e(n−1)n}

In general V(K′
l ) = {eil : 1 ≤ i ≤ l − 1} ∪ {el j : l + 1 ≤ j ≤ n}

Case (i) : n ≡ 1(mod 3)

(n − 1) is a multiple of 3 and hence the order of each clique of L(Kn) is a mutiple of 3. In this case the disjoint cycles of
L(Kn) are counted as follows. Consider the following set of cycles of K′

1,K
′
2, ...,K

′
n.

Let C1 = {e12e13e14, e15e16e17, ..., e1(n−2)e1(n−1)e1n} and let V(C1) be the set of vertices belonging to the cycles of C1.

Clearly the cycles of C1 are disjoint and V(C1) = V(K′
1). Also |C1| = n − 1

3
.

Let C2 = {e25e26e27, e28e29e210, ..., e2(n−2)e2(n−1)e2n} and let V(C2) be the set of vertices belonging to the cycles of C2.

Clearly the cycles of C2 are disjoint and V(C2) = V(K′
2) − {e23, e24, e12}, where e12 ∈ V(K′

1). Also |C2| = n − 4
3

.

Let C3 = {e35e36e37, e38e39e310, ..., e3(n−2)e3(n−1)e3n} and let V(C3) be the set of vertices belonging to the cycles of C3. The

cycles of C3 are disjoint and V(C3) = V(K′
3) − {e34, e23, e14}, where e23 ∈ V(K′

2) and e14 ∈ V(K′
1). Also |C3| = n − 4

3
.

Now the vertices e23, e24 and e34 form a 3-cycle in L(Kn). Continuing this process we get |C4| = n − 4
3

, |C5| = n − 7
3

,

|C6| = n − 7
3

,......, |Cn−5| = 1, |Cn−4| = 1, |Cn−3| = 1, |Cn−2| = 0, |Cn−1| = 0, |Cn| = 0.

Let Cn+1 be the set of cycles formed by the vertices of V(K′
i ) − V(V ′

i ), (2 ≤ i ≤ n).

i.e., Cn+1 =

{
ei(i+1)ei(i+2)e(i+1)(i+2) : i = 3k − 1, 1 ≤ k ≤ n − 1

3

}
.

Also |Cn+1| = n − 1
3

. Clearly all the cycles of C1,C2, ...,Cn+1 are disjoint and hence the total number of cycles counted by

the above process is
n+1∑

i
|Ci| = n(n − 1)

6
. Hence τ(L(Kn)) ≥ n(n − 1)

6
.

Case (ii) : n ≡ 2(mod 3)

(n − 2) is a multiple of 3. In this case the disjoint cycles of L(Kn) are counted as follows. Consider the following set
of cycles of K′

1,K
′
2, ...,K

′
n. Let Ci be the set of cycles of the clique K′

i (1 ≤ i ≤ n) and let V(Ci) be the set of vertices
belonging to the cycles of Ci.

Let C1 = {e13e14e15, e16e17e18, ..., e1(n−2)e1(n−1)e1n}, where V(C1) = V(K′
1) − {e12}.

Let C2 = {e23e24e25, e26e27e28, ..., e2(n−2)e2(n−1)e2n}, where V(C2) = V(K′
2).

Let C3 = {e36e37e38, e39e310e311, ..., e3(n−2)e3(n−1)e3n}, where V(C3) = V(K′
3) − {e34, e35}.

Let C4 = {e46e47e48, e49e410e411, ..., e4(n−2)e4(n−1)e4n}, where V(C4) = V(K′
4) − {e45}.

Clearly the cycles of C1,C2,C3 and C4 are disjoint and the vertices e34, e35 and e45 form a 3-cycle. Continuing this process

we get |C1| = n − 2
3

, |C2| = n − 2
3

, |C3| = n − 5
3

, |C4| = n − 5
3

, |C5| = n − 5
3

,......, |Cn−5| = 1, |Cn−4| = 1, |Cn−3| = 1. Cn−2,
Cn−1 and Cn are empty. Let Cn+1 be the set of cycles formed by the vertices of V(K′

i ) − V(C′
i ), (3 ≤ i ≤ n).

i.e.,Cn+1 =

{
ei(i+1)ei(i+2)e(i+1)(i+2) : i = 3k, 1 ≤ k ≤ n − 2

3

}
.

Clearly Cn+1 contains disjoint cycles and |Cn+1| = n − 2
3

. Hence minimum number of cycles of L(Kn) is
n+1∑

i
|Ci| =

(n + 1)(n − 2)
6

. Since n ≡ 2(mod 3),
(n + 1)(n − 2)

6
=

[
n(n − 1)

6

]
. Therefore τ(L(Kn)) ≥

[
n(n − 1)

6

]
.
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Case (iii) : n ≡ 0(mod 3)

n is a multiple of 3. In this case the disjoint cycles of L(Kn) are counted as follows.Let Ci be the set of cycles of the clique
K′

i (1 ≤ i ≤ n) and let V(Ci) be the set of vertices belonging to the cycles of Ci.

Let C1 = {e14e15e16, e17e18e19, ..., e1(n−2)e1(n−1)e1n}, where V(C1) = V(K′
1) − {e12, e13}.

Let C2 = {e24e25e26, e27e28e29, ..., e2(n−2)e2(n−1)e2n}, where V(C2) = V(K′
2) − {e23}. Now e12, e13 and e23 form a 3-cycle.

Let C3 = {e34e35e36, e37e38e39, ..., e3(n−2)e3(n−1)e3n}, where V(C3) = V(K′
3).

Let C4 = {e47e48e49, ..., e4(n−2)e4(n−1)e4n}, where V(C4) = V(K′
4) − {e45, e46}.

Let C5 = {e57e58e59, ..., e5(n−2)e5(n−1)e5n}, where V(C5) = V(K′
5) − {e56}.

Now the vertices e45, e46 and e56 form a 3-cycle. Continuing this process we get |C1| = n − 3
3

, |C2| = n − 3
3

, |C3| = n − 3
3

,......, |Cn−5| = 1, |Cn−4| = 1, |Cn−3| = 1. |Cn−2| = |Cn−1| = |Cn| = 0. Let Cn+1 be the set of cycles formed by the vertices
V(K′

i ) − V(C′
i ), (1 ≤ i ≤ n).

i.e.,Cn+1 =

{
ei(i+1)ei(i+2)e(i+1)(i+2) : i = 3k − 2, 1 ≤ k ≤ n

3

}
and clearly |Cn+1| = n

3
. Minimum number of cycles of L(Kn) is

n+1∑
i
|Ci| = n(n − 1)

6
. Therefore τ(L(Kn)) ≥ n(n − 1)

6
=

[
n(n − 1)

6

]
. Hence in all the three cases τ(L(Kn)) ≥

[
n(n − 1)

6

]
.

Now by the very definitions, L(Kn) has
n(n − 1)

2
vertices and hence τ(L(Kn)) ≤ 1

3
n(n − 1)

2
=

[
n(n − 1)

6

]
.

Hence τ(L(Kn)) =
[
n(n − 1)

6

]
. �

Each vertex vi of a graph G with degree deg vi induce a clique of order deg vi in L(G). i.e., At each vertex vi of G, we

count
[
deg vi

3

]
vertex disjoint cycles in L(G). The above argument yields the following result which gives an upperbound

for the tulgeity of line graph of any graph.

Theorem 2.2.

τ(L(G)) ≤
∑

i

[
deg vi

3

]
. �

The following result characterize the graph for which the above said inequality becomes equal.

Theorem 2.3. If G is a tree and for each pair of vertices (vi, v j) with deg vi, deg v j > 2, if there exist a vertex v of degree

2 on P(vi, v j) then τ(L(G)) =
∑
i

[
deg vi

3

]
.

Proof. Let T be a graph satisfying the given condition. Each vertex vi of T of degree > 2 induce a clique of order deg vi in
L(G) and since for each pair of vertices (vi, v j) of T with degree > 2, there exists a vertex v of degree 2 on P(vi, v j), there

exists a bridge joining the corresponding cliques in L(G) and hence τ(L(G)) =
∑
i

[
deg vi

3

]
.

The tulgeity of complete n-partite graphs have been studied by Gary Chartrand et.al in (1968). Here we derive a formula
for the tulgeity of line graph of complete bigraph.

Theorem 2.4. The tulgeity of line graph of complete bigraph graph Km,n, τ(L(Km,n)) =
[
mn

3

]
.

Proof. Without loss of generality assume that m ≤ n. Let V(Km,n) = {v1, v2, ..., vm} ∪ {u1, u2, ..., un} and E(Km,n) = {ei j =

viv j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, |E(Km,n)| = mn. By the definition of line graphs, V(L(Km,n)) = {ei j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
in which ei j and ekl are adjacent if either i = k or j = l. Hence |V(L(Km,n)| = mn and hence τ(L(Km,n)) ≤

[
mn

3

]
.

Let Vi = {ei j : 1 ≤ j ≤ n}, (1 ≤ i ≤ m). Clearly 〈Vi〉 is a complete subgraph of L(Km,n) for each i. Similarly if
V ′

j = {ei j : 1 ≤ i ≤ m}, (1 ≤ j ≤ n) then
〈
V ′

j

〉
is a complete subgraph of L(Km,n).

Case (i):

If n ≡ 0(mod 3) then |Vi| ≡ 0(mod 3) and hence there exist
n

3
vertex disjoint cycles in 〈Vi〉 for each i, (i ≤ i ≤ m). If

m ≡ 0(mod 3) then |V ′
j | ≡ 0(mod 3) and hence there exist

m

3
vertex disjoint cycles in

〈
V ′

j

〉
for each j, (1 ≤ j ≤ n). In both

the cases minimum number of vertex disjoint cycles in L(Km,n) is
mn

3
=

[
mn

3

]
. Hence τ(L(Km,n)) ≥

[
mn

3

]
.
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Case (ii):

If n ≡ 1(mod 3) then Vi − {ein}, (1 ≤ i ≤ m) has n − 1 vertices for each i and there exist
n − 1

3
vertex disjoint cycles in

Vi − {ei j} for each i. Also, since 〈e1n, e2n, .., emn〉 is a complete subgraph there exist
[
m

3

]
vertex disjoint cycles. Hence

τ(L(Km,n)) ≥ m(n − 1)
3

+

[
m

3

]
=

[
mn

3

]
.

Case (iii):

If n ≡ 2(mod 3) and m ≡ 1(mod 3) then Vi− ({ein} ∪ {ei(n−1)}), (1 ≤ i ≤ m) has n−2 vertices for each i and there exist
n − 2

3
vertex disjoint cycles in Vi − ({ein} ∪ {ei(n−1)}) for each i. Also since m ≡ 1(mod 3),

〈
e1(n−1), e2(n−1), .., em(n−1)

〉
has

m − 1
3

vertex disjoint cycles and 〈e1n, e2n, ..., emn〉 has
m − 1

3
vertex disjoint cycles. Hence τ(L(Km,n)) ≥ m(n − 2)

3
+

m − 1
3
+

m − 1
3
=

mn − 2
3

=

[
mn

3

]
.

Case (iv):

If n ≡ 2(mod 3) and m ≡ 2(mod 3) then Vi − ({ein} ∪ {ei(n−1)} ∪ {ei(n−2)}), (1 ≤ i ≤ m) has (n − 3) vertices for each i and

there exist
n − 3

3
vertex disjoint cycles in Vi − ({ein} ∪ {ei(n−1)} ∪ {ei(n−2)}), (1 ≤ i ≤ m) for each i. Also m ≡ 2(mod 3),〈

e1(n−1), e2(n−1), .., e(m−2)(n−1)
〉

has
m − 2

3
vertex disjoint cycles and

〈
e1n, e2n, .., e(m−2)n

〉
has

m − 2
3

vertex disjoint cycles. At

last the vertices e(m−1)(n−1), em(n−1), e(m−1)n, emn, induces a 4-cycle. Hence τ(L(Km,n)) ≥ m(n − 2)
3

+2
m − 2

3
+1 =

mn − 1
3

=[
mn

3

]
. Hence in all the cases τ(L(Km,n)) ≥

[
mn

3

]
. Hence τ(L(Km,n)) =

[
mn

3

]
.
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