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Abstract

In this paper we use the Method of Generalized Quasilinearization to obtain Newton-type comparative schemes to solve

the Volterra Integral equation of the Second Kind: 0 = f (t, x) +
∫ t

t0
K(t, s, x(s))ds, which has an isolated zero, x(t) = r(t)

in Ω with Ω = {(x, t)|α0(t) ≤ x ≤ β0(t), t ∈ J}, J = [t0, t0 + T ], T > 0, where f (t, x) ∈ C0,2[J × Ω,R], K(t, s, x) ∈
C0,2[J × J ×Ω,R]. Several cases where f and K are convex or concave functions are presented.
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1. Introduction

The Method of Generalized Quasilinearization has been recently shown to be successfully employed to solve the equation

0 = f (x), (1)

where f ∈ C[R,R], by comparing it to the initial value problem (IVP)

x′ = f (x), x(t0) = x0, (2)

on t ∈ J, J = [t0, t0 + T ], T > 0, (Lakshmikantham and Vatsala, 2005; Martı̀nez-Garza, in press). The Method of Gener-

alized Quasilinearization is a powerful tool to solve nonlinear differential equations (Lakshmikantham and Vatsala, 1998)

which combines the concepts of upper and lower solutions with monotone iterative techniques (Ladde, Lakshmikantham,

and Vatsala, 1985). By using Generalized Quasilinearization, one can construct a framework comparable to Newton’s

method to solve for an isolated zero, x0 of (1). Newton’s method simplicity and rapid convergence renders it as a first

choice to solve (1), but its limitations have given rise to a broad body of work that is continuously evolving as seen in

Bellman and Kalaba (1965),Ezquerro and Hernández, (1999), Gutiérrez and Hernández (2001), Kelley (1995), Ortega and

Rheinboldt (1970), and Potra (1987), to name a few. The generation of Newton-like schemes for the solution to (1) from

the method of Generalized Quasilinearization is a logical choice, as Quasilinearization follows a similar methodology to

Newton’s method although for a somewhat different purpose (Bellman and Kalaba, 1965). The main iteration formula for

Newton’s Method is

xn+1 = xn − f (xn)

fx(xn)
, n ≥ 0, (3)

which requires that fx(x) be continuous and also nonzero in a neighborhood of a simple root of (1). This in turn requires

knowledge of the monotone character of f (x). The similarities between Newton’s method and standard Quasilinearization

are enhanced when expressing (3) in the form

0 = f (xn) + fx(xn)(xn+1 − xn), (4)

and comparing it with the iterative scheme afforded by Quasilinearization to approximate (2):

x′n+1 = f (xn) + fx(xn)(xn+1 − xn), xn+1(t0) = x0. (5)

The similarities between the method of Generalized Quasilinearization and Newton’s method become self-evident when

we look at the Newton-Fourier method as is shown next: let f be defined as in (1), and let Ω = [α0, β0] be a neighborhood

of the simple zero of (1). If 0 < f (α0), 0 < f (β0), fx(x) > 0, and fxx(x) > 0, meaning that f is monotone increasing

in [Ω,R], then there exist monotone sequences {αn} and {βn} that converge quadratically to the simple zero of (1) in Ω.

These sequences are generated by the iterative scheme

0 = f (βn) + fx(βn)(βn+1 − βn), (6)

0 = f (αn) + fx(βn)(αn+1 − αn), (7)
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(Lakshmikantham and Vatsala, 2005). Although two sequences are required, the Newton-Fourier method is not more ex-

pensive than the traditional Newton’s method since the derivative computations are the same for both iterates (Potra, 1987).

Comparatively, consider the IVP (2) with the following conditions: fx(t, x) ≥ 0, fxx(t, x) ≥ 0, α′0 ≤ f (t, β0), β′0 ≤ f (t, α0),

where α0(t) ≤ β0(t), t ∈ J, and α0(t), β0(t) are the upper and lower solutions of (2) (Ladde, Laksmikantham and Vatsala,

1985; Lakshmikantham and Vatsala 1998). The corresponding iterative scheme using Generalized Quasilinearization is:

α′n+1 = f (t, βn) + fx(t, βn)(αn+1 − αn), αn+1(0) = x0, (8)

β′n+1 = f (t, αn) + fx(t, βn)(βn+1 − βn), βn+1(0) = x0, (9)

where α0 ≤ x ≤ β0 on J. These schemes give rise to sequences of iterates that converge uniformly and quadratically to

x(t), the unique solution of (2) on J. For complete details refer to Lakshmikantham and Vatsala (1998). If one considers

the case where f is monotone decreasing, then the Newton-Fourier method is no longer applicable (Potra, 1987), while

the solution of a comparable IVP with f monotone decreasing can be approximated with Generalized Quasilinearization

(Lakhsmikantham and Vatsala, 2005).

If f (t, x) can be decomposed as the sum of concave and convex functions, f (t, x) = F(t, x) + G(t, x), where F(t, x)

and G(t, x) are convex and concave respectively (in terms of x) for Ω = {(x, t)|α0(t) ≤ x ≤ β0(t), t ∈ J}, J = [t0, t0 +
T ], T > 0, then one can exploit the convex properties of F and G with Generalized Quasilinearization to create an iterative

scheme that generates monotone sequences that converge quadratically to the solution of (1), see Lakshmikantham and

Vatsala, (2005) and Martı́nez-Garza (in press). The present work applies these notions to the problem (1) where f is

a Volterra equation of the second kind, and suitable conditions are placed on f and K according to Davis (1962), and

Lakshmikantham and Rao (1995).

2. Statement of the problem

Consider the equation

0 = f (t, x) +

∫ t

t0
K(t, s, x(s))ds, x(t0) = x0, (10)

where f ∈ C0,2[Ω,R], K ∈ C0,2[Ω∗,R]. Here, Ω = {(x, t)| α0(t) ≤ x ≤ β0(t), t ∈ J}, and Ω∗ = {(t, s, x)| α0(t) ≤ x ≤
β0(t), (t, s) ∈ J × J}, J = [t0, t0 + T ], T > 0.

Assume that (10) has an isolated zero x = r ∈ [α0, β0].

In each case presented below we employ a monotone iterative scheme that generates two monotone sequences {αn} and

{βn} that will converge from both left and right to r, the unique solution of (10). We further show that this convergence is

quadratic.

3. Results I

Theorem 1. Assume that equation (10), has an isolated zero x = r ∈ [α0(t), β0(t)], t ∈ J. Further, let both f and K be
convex on their respective domains, such that

fxx ≥ 0, Kxx ≥ 0. (11)

If the following conditions hold,

0 < f (t, α0) +

∫ t

t0
K(t, s, α0(s))ds, α0(t0) < x0, (12)

0 > f (t, β0) +

∫ t

t0
K(t, s, β0(s))ds, β0(t0) > x0, (13)

fx(t, x) < 0, Kx(t, s, x) < 0, (14)

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J,

then, there exist monotone sequences {αn(t)} and {βn(t)} such that

α0(t) < α1(t) < · · · < αn(t) < r < βn(t) < · · · < β1(t) < β0(t), t ∈ J, (15)

which converge quadratically to r, the isolated zero of (10). The sequences {αn(t)} and {βn(t)} are generated by the
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following iterative scheme:

0 = f (t, αn) + fx(t, αn)(αn+1 − αn)

+

∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, αn(s))(αn+1(s) − αn(s))]ds, αn(t0) = x0, (16)

0 = f (t, βn) + fx(t, αn)(βn+1 − βn)

+

∫ t

t0
[K(t, s, βn(s)) + Kx(t, s, αn(s))(βn+1(s) − βn(s))]ds, βn(t0) = x0, (17)

Proof. Let p = α0 − α1, then p(t0) < 0. By (12) and (16) with n = 0,

0 < f (t, α0) +

∫ t

t0
K(t, s, α0(s))ds − [

f (t, α0) + fx(t, α0)(α1 − α0)
]

−
∫ t

t0
[K(t, s, α0(s)) + Kx(t, s, α0(s))(α1(s) − α0(s))] ds

= −
[

fx(t, α0)(α1 − α0) +

∫ t

t0
Kx(t, s, α0(s))(α1(s) − α0(s))ds

]
0 < fx(t, α0)p +

∫ t

t0
Kx(t, s, α0(s))p(s)ds

By (14) we have that fx(t, x) < 0, and Kx(t, s, x) < 0; we conclude that p < 0, thus α0 < α1.

Now, show that β0 > β1; let p = β1 − β0, so p(t0) < 0. From (13) and (17) with n = 0, we have

0 < f (t, β0) + fx(t, α0)(β1 − β0)

+

∫ t

t0

[
K(t, s, β0(s)) + Kx(t, s, α0(s))(β1(s) − β0(s))

]
ds

−
[

f (t, β0) +

∫ t

t0
K(t, s, β0(s))ds

]
= fx(t, α0)(β1 − β0) +

∫ t

t0
Kx(t, s, α0(s))(β1(s) − β0(s))ds

0 < fx(t, α0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds

Again, by (14) we conclude that p < 0, making β1 < β0.

To show that α1 < β1, we combine (16) and (17), both with n = 0:

0 = f (t, β0) + fx(t, α0)(β1 − β0)

+

∫ t

t0

[
K(t, s, β0(s)) + Kx(t, s, α0(s))(β1(s) − β0(s))

]
ds

− [
f (t, α0) + fx(t, α0)(α1 − α0)

]
−

∫ t

t0
[K(t, s, α0(s)) + Kx(t, s, α0(s))(α1(s) − α0(s))] ds

=[ f (t, β0) − f (t, α0)] + fx(t, α0)[β1 − β0 − α1 + α0]

+

∫ t

t0

[
K(t, s, β0(s)) − K(t, s, α0(s))

]
ds

+

∫ t

t0
Kx(t, s, α0(s))

[
β1(s) − β0(s) − α1(s) + α0(s)

]
ds
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The Mean Value Theorem yields the following results:

0 = fx(t, σ)[β0 − α0] + fx(t, α0)[β1 − β0 − α1 + α0]

+

∫ t

t0
Kx(t, s, η(s))[β0(s) − α0(s)]ds

+

∫ t

t0
Kx(t, s, α0(s))[β1(s) − β0(s) − α1(s) + α0(s)]ds,

where σ, η ∈ (α0, β0). By (11) fx(t, x) and Kx(t, s, x) are increasing functions; then, fx(t, α0) < Fx(t, σ) and Kx(t, s, α0) <
Kx(t, s, η).

0 > fx(t, α0)[β0 − α0] + fx(t, α0)[β1 − β0 − α1 + α0]

+

∫ t

t0
Kx(t, s, α0(s))[β0(s) − α0(s)]ds

+

∫ t

t0
Kx(t, s, α0(s))[β1(s) − β0(s) − α1(s) + α0(s)]ds

= fx(t, α0)[β1 − α1] +

∫ t

t0
Kx(t, s, α0(s))[β1(s) − α1(s)]ds

0 < fx(t, α0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds

Then, p < 0 and α1 < β1 by (14).

Next, show that α1 < r < β1. Let p = r − α1, p(t0) = 0 . Since f (t, r) +
∫ t

t0
K(t, s, r(s))ds = 0 we can combine it with (16)

for n = 0, to obtain the following equation.

0 = f (t, r) +

∫ t

t0
K(t, s, r(s))ds − [

f (t, α0) + fx(t, α0)(α1 − α0)
]

−
∫ t

t0
[K(t, s, α0(s)) + Kx(t, s, α0(s))(α1(s) − α0(s))]ds

=[ f (t, r) − f (t, α0)] + fx(t, α0)(α0 − α1)

+

∫ t

t0
[K(t, s, r(s)) − K(t, s, α0(s))]ds +

∫ t

t0
Kx(t, s, α0(s))(α0(s) − α1(s))ds

= fx(t, ν)(r − α0) + fx(t, α0)(α0 − α1)

+

∫ t

t0

[
Kx(t, s, μ(s))(r(s) − α1(s))ds + Kx(t, s, α0(s))(α0(s) − α1(s))

]
ds

Where ν, μ ∈ (α0, r). We again appeal to the increasing nature of both fx and Kx as follows.

0 > fx(t, α0)(r − α0) + fx(t, α0)(α0 − α1)

+

∫ t

t0
[Kx(t, s, α0(s))(r(s) − α1(s))ds + Kx(t, s, α0(s))(α0(s) − α1(s))] ds

= fx(t, α0)(r − α1) +

∫ t

t0
Kx(t, s, α0(s))(r(s) − α1(s))ds

0 < fx(t, α0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds

Once again by virtue of (14) p < 0, so α1 < r. In a similar fashion, by combining equation (10) for x = r with (17) for

n = 0 one can show that r < β1. We can now claim that by induction (15) holds true in light of the fact that we have

just shown the validity of the base and the n = 1 cases. Then, there exist two monotone sequences {αn(t)} and {βn(t)} for

which limn→∞αn(t) = ã = r = b̃ = limn→∞βn(t). It is now clear that {αn(t)} and {βn(t)} converge to the isolated zero of

(10). Below we demonstrate that this convergence is quadratic.

Let pn+1 = r − αn+1 > 0, and qn+1 = βn+1 − r > 0. First, consider the case pn+1 = r − αn > 0. Combining (10) for x = r
and (16) we obtain:
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0 = f (t, r) +

∫ t

t0
K(t, s, r(s))ds − [

f (t, αn) + fx(t, αn)(αn+1 − αn)
]

−
∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, αn(s))(αn+1(s) − αn(s))]ds

=[ f (t, r) − f (t, αn)] − fx(t, αn)(αn+1 − αn) +

∫ t

t0
[K(t, s, r(s)) − K(t, s, αn(s))] ds

−
∫ t

t0
Kx(t, s, αn(s))(αn+1(s) − αn(s))ds

0 = fx(t, γ)(r − αn) − fx(t, αn)(αn+1 − r + r − αn)

+

∫ t

t0
[Kx(t, s, λ(s))(r(s) − αn(s)) − Kx(t, s, αn(s))(αn+1(s) − r(s) + r(s) − αn(s))] ds

= fx(t, γ)pn − fx(t, αn)(pn − pn+1)

+

∫ t

t0

[
Kx(t, s, λ(s))pn(s) − Kx(t, s, αn(s))(pn(s) − pn+1(s))

]
ds

The Mean Value Theorem produces the results above with γ, λ ∈ (αn, r). We have also added and subtracted r where

necessary to incorporate the expressions pn = r − αn and pn+1 = r − αn+1. The increasing nature of the derivatives allows

us to introduce the following inequalities:

0 < f (t, r)pn − fx(t, αn)(pn − pn+1)

+

∫ t

t0

[
Kx(t, s, r(s))pn(s) − Kx(t, s, αn(s))(pn(s) − pn+1(s))

]
ds

=[ fx(t, r) − fx(t, αn)]pn + fx(t, αn)pn+1

+

∫ t

t0
[Kx(t, s, r(s)) − Kx(t, s, αn(s))] pn(s)ds +

∫ t

t0
Kx(t, s, αn(s))pn+1(s)ds

0 < fxx(t, ζ)p2
n + fx(t, αn)pn+1

+

∫ t

t0
Kxx(t, s, ξ(s))p2

n(s)ds +
∫ t

t0
Kx(t, s, αn(s))pn+1(s)ds,

where ζ, ξ ∈ (αn, r) by the MVT. Since f and K are continuous and Ω,Ω∗ are closed with respect to x, we can place the

following bounds on their derivatives, taking into account conditions (11) establishing that both f and K are convex, and

(14) where fx and Kx are both negative.

M1 > | fxx(t, x)|, M2 > |Kxx(t, s, x)|, N1 > | fx(t, x)|, and N2 > |Kx(t, s, x)| (18)

In terms of the new bounds, we obtain the following inequality:

0 <M1 pn(t)2 + M2

∫ t

t0
p2

n(s)ds − N1 pn+1(t) − N2

∫ t

t0
pn+1(s)ds

<M1 p2
n + M2T max

t∈J
pn(t)2 − N1 pn+1(t) − N2T max

t∈J
pn+1(t)

<(M1 + M2T ) max
t∈J

pn(t)2 − (N1 + N2T ) max
t∈J

pn+1(t)

max
t∈J

pn+1(t) <
M1 + M2T
N1 + N2T

max
t∈J

pn(t)2 = A max
t∈J

pn(t)2 (19)

Similarly, for βn+1 = βn − r > 0 we obtain the estimate

max
t∈J

qn+1(t) <
M1 + M2T
N1 + N2T

max
t∈J

qn(t)2 = A max
t∈J

qn(t)2 (20)

where, M1,M2,N1,N2 are the same upper bounds defined by (18). The combination of the results (19) with (20) yields:

max
t∈J

pn+1(t) +max
t∈J

qn+1(t) <A
[
max

t∈J
p2

n(t) +max
t∈J

q2
n(t)

]
.
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This inequality establishes the quadratic convergence of the sequences of iterates {αn(t)} and {βn(t)}. As shown above,

limn→∞αn(t) = ã = r = b̃ = limn→∞βn(t).

The proof of the theorem is complete.

In the case where fx(t, x) < 0, Kx(t, s, x) < 0, Theorem 1 is modified accordingly, as shown below. The proof of the

following theorem is omitted as it closely resembles the previous proof.

Theorem 2. Assume that equation (10) has an isolated zero x = r ∈ [α0, β0] for f ∈ C0,2[Ω,R], K ∈ C0,2[Ω∗,R], as
defined above. Let (11) and the subsequent conditions hold:

fxx ≥ 0, Kxx ≥ 0,

0 > f (t, α0) +

∫ t

t0
K(t, s, α0(s))ds, (21)

0 < f (t, β0) +

∫ t

t0
K(t, s, β0(s))ds, (22)

fx(t, x) > 0, Kx(t, s, x) > 0, (23)

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J,

there exist monotone sequences {αn} and {βn} such that

α0(t) < α1(t) < · · · < αn(t) < r(t) < βn(t) < · · · < β1(t) < β0(t), t ∈ J, (24)

which converge quadratically to r, the isolated zero of (10). The sequences {αn} and {βn} are generated by the following
iterative scheme:

0 = f (t, αn) + fx(t, βn)(αn+1 − αn)

+

∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, βn(s))(αn+1(s) − αn(s))]ds, αn(t0) = x0, (25)

0 = f (t, βn) + fx(t, βn)(βn+1 − βn)

+

∫ t

t0
[K(t, s, βn(s)) + Kx(t, s, βn(s))(βn+1(s) − βn(s))]ds, βn(t0) = x0, (26)

4. Results II

The next set of results represents the cases where f is concave and K convex (and viceversa) for (10); the reader is referred

to Lakshmikantham and Vatsala (1998) for additional details.

Theorem 3. Let the ongoing assumptions on (10) prevail. Then, given the following conditions:

fxx ≤ 0, Kxx ≥ 0, (27)

0 < f (t, α0) +

∫ t

t0
K(t, s, α0(s))ds, (28)

0 > f (t, β0) +

∫ t

t0
K(t, s, β0(s))ds, (29)

fx(t, α0) < 0, Kx(t, s, β0) < 0, (30)

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J,

there exist monotone sequences {αn} and {βn} such that

α0(t) < α1(t) < · · · < αn(t) < r(t) < βn(t) < · · · < β1(t) < β0(t), t ∈ J, (31)

which converge quadratically to r, the isolated zero of (10). The sequences {αn(t)} and {βn(t)} are generated by the
following iterative scheme:

0 = f (t, αn) + fx(t, βn)(αn+1 − αn)

+

∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, αn(s))(αn+1(s) − αn(s))]ds, αn(t0) = x0, (32)

0 = f (t, βn) + fx(t, βn)(βn+1 − βn)

+

∫ t

t0
[K(t, s, βn(s)) + Kx(t, s, αn(s))(βn+1(s) − βn(s))]ds, βn(t0) = x0, (33)
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Proof. Let p = α0 − α1. Combining (28) with (32) with n = 0 yields:

0 < fx(t, β0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds

By (27) we understand that fx is decreasing and Kx is increasing. With this knowledge and condition (30) we produce the

following inequality:

fx(t, β0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds < fx(t, α0)p +

∫ t

t0
Kx(t, s, β0(s))p(s)ds. (34)

Which implies that p < 0 so, α0 < α1. Likewise, for p = β1 − β0 with the aid of (43) with n = 0 and (29) one can show

that p < 0, thus β1 < β0. Subsequently, with p = α1−β1 subtraction of (25) with n = 0 from (26) with n = 0 demonstrates

that p < 0 as shown below.

0 = f (t, β0) + fx(t, β0)(β1 − β0) +

∫ t

t0

[
K(t, s, β0(s)) + Kx(t, s, α0(s))(β1(s) − β0(s))

]
ds

− f (t, α0) − fx(t, β0)(α1 − α0) −
∫ t

t0
[K(t, s, α0(s)) + Kx(t, s, α0(s))(α1(s) − α0(s))] ds

0 > fx(t, β0)(β1 − α1) +

∫ t

t0
Kx(t, s, α0(s))(β1(s) − α1(s))ds

0 < fx(t, β0)p +
∫ t

t0
Kx(t, s, α0(s))p(s)ds,

where we use the MVT and (27). Then, by (34), we obtain the desired conclusion. The same line of reasoning leads us

to conclude that α0(t) < α1(t) < r < β1(t) < β0(t); hence by induction, α0(t) < α1(t) < · · · < αn(t) < r < βn(t) < · · · <
β1(t) < β0(t), t ∈ J.

Quadratic convergence follows in a similar fashion. Letting pn+1 = r − αn+1 > 0, and subtracting (32) from (10) with

x = r yields,

0 = f (t, r) +

∫ t

t0
K(t, s, r(s))ds − f (t, αn) − fx(t, βn)(αn+1 − αn)

−
∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, αn(s))(αn+1(s) − αn(s))] ds

= fx(t, σ)pn − fx(t, βn)(pn − pn+1)

+

∫ t

t0

[
Kx(t, s, η(s))pn(s) − Kx(t, s, αn(s))(pn(s) − pn+1(s))

]
ds

<[ fx(t, αn) − fx(t, βn)]pn + fx(t, βn)pn+1

+

∫ t

t0
[Kx(t, s, r(s)) − Kx(t, s, αn(s))] pn(s)ds +

∫ t

t0
Kx(t, s, αn(s))pn+1(s)ds

< − fxx(t, ν)pn(pn + qn) + fx(t, βn)pn+1

+

∫ t

t0
Kxx(t, s, μ(s))p2

n(s)ds +
∫ t

t0
Kx(t, s, αn(s))pn+1(s)ds.

In the preceding process we have used the mean value property twice with σ, η ∈ (αn, r) and ν ∈ (αn, βn), μ ∈ (αn, r).

From (34) and (27) we have fx(t, βn) < fx(t, α0), Kx(t, s, αn(s)) < Kx(t, s, β0(s)); also p2
n + pnqn <

3
2

p2
n +

1
2
q2

n. Then,

0 <M1

(
3

2
p2

n +
1

2
q2

n

)
− N1 pn+1 + M2T max

t∈J
p2

n(t) − N2T max
t∈J

pn+1(t)

(N1 + N2) max
t∈J

pn+1(t) <
(

3

2
M1 + M2T

)
p2

n(t) +
M1

2
max

t∈J
q2

n(t)

max
t∈J

pn+1(t) <
(

3M1 + 2M2T
2(N1 + N2T )

)
max

t∈J
p2

n(t) +
(

M1

2(N1 + N2T )

)
max

t∈J
q2

n(t)

= B1 max
t∈J

p2
n(t) + B2 max

t∈J
q2

n(t).
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Where the bounds are again defined by (18). Upon letting qn+1 = βn+1 − r > 0 and following a similar procedure, one

completes the quadratic convergence results.

max
t∈J

qn+1(t) <
(

2M1 + 3M2T
2(N1 + N2T )

)
max

t∈J
q2

n(t) +
(

M2T
2(N1 + N2T )

)
max

t∈J
p2

n(t)

=B3 max
t∈J

q2
n(t) + B4 max

t∈J
p2

n(t).

The same definitions for the bounds are applied again above. Ultimately,

max
t∈J

pn+1(t) +max
t∈J

qn+1(t) <(B1 + B4) max
t∈J

p2
n(t) + (B2 + B3) max

t∈J
q2

n(t)

=B
[
max

t∈J
p2

n(t) +max
t∈J

q2
n(t)

]
,

where, B = 3(M1+M2T )
2(N1+N2T )

; the proof is complete.

Variations in the increasing/decreasing character of f (t, x)+
∫ t

t0
K(t, s, x(s))ds and in the convexity properties of f (t, x) and

K(t, s, x) produce subtle differences that are presented below.

Corollary 1. Assume all the conditions of Theorem 3, but replace conditions (27), and (30) by the new conditions

fxx ≥ 0 Kxx ≤ 0, (35)

fx(t, β0) < 0, Kx(t, s, α0) < 0,

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J.

Then, the iterative scheme

0 = f (t, αn) + fx(t, αn)(αn+1 − αn)

+

∫ t

t0
[K(t, s, αn(s)) + Kx(t, s, βn(s))(αn+1(s) − αn(s))]ds, αn(t0) = x0, (36)

0 = f (t, βn) + fx(t, αn)(βn+1 − βn)

+

∫ t

t0
[K(t, s, βn(s)) + Kx(t, s, βn(s))(βn+1(s) − βn(s))]ds, βn(t0) = x0, (37)

generates monotone sequences {αn(t)} and {βn(t)} satisfying (31) which converge quadratically to the isolated zero of (10).

Corollary 2. Assume that all the conditions of Theorem 3 hold, except (28), (29), and (30), which are replaced by the
new conditions

0 > f (t, α0) +

∫ t

t0
K(t, s, α0(s))ds, (38)

0 < f (t, β0) +

∫ t

t0
K(t, s, β0(s))ds, (39)

fx(t, β0) > 0, Kx(t, s, α0) > 0, (40)

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J,

Then, the iterative scheme (36) - (37) generates monotone sequences {αn(t)} and {βn(t)} satisfying (31) which converge
quadratically to the isolated zero of (10).

Corollary 3. Let f and K have the same convexity properties in (35) from Corollary 1, and assume that the remaining
conditions of Corollary 2 hold, except for (40), which is replaced by the condition

fx(t, α0) > 0, Kx(t, s, β0) > 0,

α0(t) ≤ x ≤ β0(t), (t, s) ∈ J × J.

Then, the iterative scheme (32) - (33) generates monotone sequences {αn(t)} and {βn(t)} satisfying (31) which converge
quadratically to the isolated zero of (10).
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5. Conclusions

The methods described above represent the means to find isolated roots of Volterra integral equations of the second kind,

provided that f and K possess convex properties as presented. It is noteworthy that the present work partially complements

the existing body of work where Newton’s Method is used to find the solution of integral equations; see Gutiérrez and

Hernández (2001), Gutiérrez, Hernández, and Salanova (2004), Hübner (1986), and Hernández and Salanova (2005).
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