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Abstract

A glued graph at K2-clone (K3-clone) results from combining two vertex-disjoint graphs by identifying an edge (a triangle)
of each original graph. The clique covering numbers of these desired glued graphs have been investigated recently.
Analogously, we obtain bounds of the clique partition numbers of glued graphs at K2-clones and K3-clones in terms of
the clique partition numbers of their original graphs. Moreover, we characterize glued graphs satisfying such bounds.

Keywords: Clique partitions, Clique coverings, Glued graphs

1. Introduction

Let G1 and G2 be any two graphs with disjoint vertex sets. Let H1 and H2 be nontrivial connected subgraphs of G1 and G2,
respectively, such that H1 � H2 with an isomorphism f . We combine G1 and G2 by identifying H1 and H2 with respect to
the isomorphism f . This resulting graph is called glued graph of G1 and G2 at H1 and H2 with respect to f . We denote
this glued graph by G1��G2

H
where H is the copy of H1 and H2 in the glued graph. We refer to H, H1 and H2 as the clones

of the glued graph, G1 and G2, respectively, and refer to G1 and G2 as the original graphs. Thus the combined graph is
also called the glued graph of G1 and G2 at H-clone The notation G1��G2 represents an arbitrary graph resulting from
gluing graphs G1 and G2 at any isomorphic subgraph H1 � H2 with respect to any of their isomorphism. More details
concerning glued graphs can be explored in Promsakon’s thesis (Promsakon, 2006). Furthermore, planar glued graphs
and perfection of glued graphs are also discussed recently (see (Uiyyasathian and Hemakul, 2006) and (Saduakdee and
Uiyyasathian, 2009).

Cliques are complete subgraphs of a graph that are not necessarily maximal. An n-clique or a clique of order n of a graph
G is a clique of G with n vertices. A clique covering of a graph G is a set of cliques of G, which together contain each
edge of G at least once; if each edge is covered exactly once, then it is called clique partition. The clique covering number

cc(G) and clique partition number cp(G) are the smallest cardinality among all clique coverings and clique partitions of
G, respectively. A minimum clique partition of G is a clique partition of G with cardinality cp(G). Since a clique partition
of a graph G is also a clique covering of G, we always have cc(G) ≤ cp(G).

G − H denotes the graph derived from G obtained by deleting all edges of a subgraph H. In particular, if e is an edge of
G, then G − e is the graph G with the edge e deleted. The notation e(G) stands for the number of edges in a graph G.

The question of calculating clique covering and clique partition numbers was raised by Orlin in 1977. DeBruijn and
Erdős had already proved that partitioning a complete graph Kn into smaller cliques required at least n cliques (DeBruijn
& Erdős, 1948). This yields the following theorem of Orlin which states that for n ≥ 3, cp(Kn − e) = n − 1 where e is any
edge of the complete graph Kn (Orlin, 1977). A recent paper by Pimpasalee et al. (Pimpasalee et al., 2008), investigates
bounds of clique covering numbers of glued graphs at K2-clones as follows:

cc(G1) + cc(G2) − 1 ≤ cc(G1��G2
K2

) ≤ cc(G1) + cc(G2).

They also give a characterization of glued graphs with the clique covering number of each possible value. This paper
investigates analogously the clique partition numbers of glued graphs in terms of their original graphs.

Note first that a glued graph can possibly have its clique partition number less than the clique partition number of each
original graph, see Example A.

Example A Let G1 be a Hamiltonian graph on n vertices with a Hamiltonian path P as shown in the bold edges in Figure
1. and G2 = G1 ∪ P . Then the resulting graph G1��G2

P
is a complete graph, so cp(G1��G2

P
) = 1. Since neither G1 nor G2
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is a complete graph, its clique partition number is more than 1. It is noticeable that the graph gluing of original graphs
with any arbitrary large clique partition number could yield a resulting glued graph with clique partition number 1. This
situation occurs because of the existence of new cliques in the glued graphs.

Consequently, we observed that if G1��G2 does not have a new clique, at least cp(G1) (and cp(G2)) cliques are needed to
partition the copy of G1 (and G2) in G1��G2. Hence,

cp(G1��G2) ≥ max{cp(G1), cp(G2)}.

Back to clique coverings of arbitrary glued graphs, since a set of union between minimum clique coverings of both original
graphs is a clique covering of such glued graph (see Pimpasalee et al., 2008), cc(G1��G2) ≤ cc(G1) + cc(G2). However,
the same situation is not true for clique partition numbers, see Example B.

Example B Claim that cp(Km��Kn
K2

) = min{m, n} for m, n ≥ 3.

Let m ≥ n ≥ 3. Since Km��Kn
K2

can be partitioned into the sets of an m-clique, an (n − 1)-clique and (n − 2) copies of

2-cliques, cp(Km��Kn
K2

) ≤ n. Orlin proved that cp(Kn − e) = n − 1 (Orlin, 1977) for n ≥ 3 and e is an edge of Kn. Since

n ≤ m, we obtain that cp(Km��Kn
K2

) > n − 1. Thus, cp(Km��Kn
K2

) = n. Note that cp(Km) + cp(Kn) = 2 while cp(Km��Kn
K2

) can
be arbitrary large. It is an evident that a graph gluing even at the smallest clone may use much more cliques to partition
our resulting glued graphs than those of original graphs.

This leads us to consider a possible upper bound for the clique partition numbers of arbitrary glued graphs. For any glued
graphs of G1 and G2 at a clone H, since the union of a minimum clique partition of G1 (or G2) and minimum clique
partition of G2 − H (or G1 − H) provides a clique partition of G1��G2

H
, it yields that

cp(G1��G2
H

) ≤ min
i, j=1,2

i� j

{cp(Gi) + cp(G j − H)}. (1)

Our main results focus on the graph gluing at K2-clone and K3-clone. We give some characterizations of glued graphs
with the clique partition numbers of some possible values.

2. Preliminaries

For convenience, throughout the rest of the paper, we refer Kn in the glued graph G1��G2
Kn

to be only the Kn-clone, not an
arbitrary copy of Kn in our graphs. In a clique partition, if an edge e is covered by a 2-clique itself, e is also refered to as
such a clique. Moreover, we will also refer E(G) to be a set of 2-cliques.

Definition 1 Let P be a minimum clique partition of a glued graph G1��G2
H

. We define

P[G1] = {C ∈ P | C is a clique of G1} and P[G2] = {C ∈ P | C is a clique of G2}.

Note from the Definition 1 that P[G1] ∪ P[G2] ⊆ P . However G1��G2
H

contains a new clique C if and only if C �
P[G1] ∪ P[G2]. Any glued graph at Kn-clone does not have a new clique, so we have the following result:

Proposition 2 For a minimum clique partition P of G1��G2
Kn

, P =P[G1] ∪ P[G2].

The known results about an edge deletion or n-clique deletion on the clique partition number are conclued next. Theo-
rems 3-7 help us to investigate bounds of clique partition numbers of glued graphs at K2-clones and K3-clones.

Theorem 3 (Monson, 1996) Let s be the order of the smallest clique containing the edge e among all of the minimum

clique partitions of G. Then

cp(G) − 1 ≤ cp(G − e) ≤ cp(G) + s − 2.

Theorem 4 (Pullman, 1981) For n ≥ 4, n − 1 ≤ cp(Kn − K3) ≤ 2n − 5.

Theorem 5 For any graph G and clique C of G, cp(G) − 1 ≤ cp(G − C), and the equality holds if and only if there exists

a minimum clique partition of G containing C.

Proof. Let P and P
′

be minimum clique partitions of G and G − C, respectively. Then P
′ ∪ {C} is a clique partition of

G, so cp(G) ≤ |P ∪ {C}| and hence cp(G) − 1 ≤ cp(G − C).

If every minimum clique partition of G does not contain C, then P
′ ∪ {C} cannot be a minimum clique partition of G. So,∣∣∣P ′ ∪ {C}∣∣∣ > |P |. Hence, cp(G − C) + 1 =

∣∣∣P ′ ∪ {C}∣∣∣ > |P | = cp(G).

Suppose that P contains C. Then P � {C} is a clique partition of G − C. Thus, cp(G − C) ≤ |P | − 1 = cp(G) − 1.
Therefore, the equality holds.
www.ccsenet.org/jmr 105
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Theorem 6 Let G1 and G2 be graphs containing Kn as a subgraph. If there exists a minimum clique partition of G1 or

G2 containing the Kn-clone, then cp(G1��G2
Kn

) ≤ cp(G1) + cp(G2) − 1

Proof. It follows immediately from equation (1) and Theorem 5. �

Lemma 12 If there exists a minimum clique partition of G1��G2
Kn

containing the Kn-clone, then there exists a minimum

clique partition of G1 or G2 containing the Kn-clone.

Proof. Let P and P1 be minimum clique partitions of G1��G2
Kn

containing the Kn-clone and G1, respectively. Since the
glued graph at Kn-clone has no new cliques, P[G1] and P[G2] are clique partitions of G1 and G2, respectively. Let P1 be
a minimum clique partition of G1. Note that P = (P[G1]�{Kn})∪(P[G2]�{Kn})∪{Kn}. Now, suppose that all minimum
clique partitions of G1 and G2 do not contain the Kn-clone. Then P1 does not contain the Kn-clone. Since P[G1] is a
clique partition of G1 containing the Kn-clone, |P[G1]| > |P1| = cp(G1). Consequently, |P[G1] � {Kn}| ≥ cp(G1). Thus,

|P | = |P[G1] � {Kn}| + |P[G2] � {Kn}| + 1 ≥ cp(G1) + |P[G2] � {Kn}| + 1.

Observe that P1∪(P[G2]�{Kn}) is also a clique partition of G1��G2
Kn

and |P1 ∪ (P[G2] � {Kn})| = cp(G1)+|P[G2] � {Kn}|,
this contradicts the minimality of P . �

Theorem 7 If there exists a minimum clique partition of G1��G2
Kn

containing the Kn-clone, then

cp(G1��G2
Kn

) = cp(G1) + cp(G2) − 1.

Proof. Let P be a minimum clique partition of G1��G2
Kn

containing the Kn-clone. By Proposition 2, P =P[G1]∪P[G2].
Since P contains the Kn-clone, P[G1] ∩ P[G2] = {Kn}. Note that P[G1] and P[G2] are clique partitions of G1 and
G2, respectively,so |P[G1]| ≥ cp(G1) and |P[G2]| ≥ cp(G2). Thus,

cp(G1��G2
Kn

) = |P | = |P[G1] ∪ P[G2]|
= |P[G1]| + |P[G2]| − |P[G1] ∩ P[G2]|
≥ cp(G1) + cp(G2) − 1.

By Lemma 12, without loss of generality, G1 has a minimum clique partition, P1, containing the Kn-clone. Let P2 be a
minimum clique partition of G2. Then (P1 � {Kn}) ∪ P2 is a clique partition of G1��G2

Kn
. Therefore,

cp(G1��G2
Kn

) ≤ |(P1 � {Kn}) ∪ P2| = |(P1 � {Kn})| + |P2| = cp(G1) + cp(G2) − 1.

Hence, cp(G1��G2
Kn

) = cp(G1) + cp(G2) − 1. �

3. Clique Partitions of Glued Graphs at K2-Clones

Theorem 9 shows bounds of clique covering numbers of any glued graphs at K2-clones. An analogous statement for clique
partition numbers is studied in Theorem 10. Notice that the lower bound has the same style while the upper bound does
not. Example B illustrates that cp(G1) + cp(G2) is not an upper bound for the clique partition numbers of G1��G2

K2
.

Remark 8 Let P be a minimum clique partition of G1��G2
K2

.

(i) P[G1] ∩ P[G2] ⊆ {K2}.
(ii) If the K2-clone is contained in P , then P[G1] ∩ P[G2] = {K2}, and, P[G1] and P[G2] are clique partitions of G1
and G2, respectively.

(iii) If the K2-clone is not contained in P , then P[G1]∩P[G2] = ∅, furthermore, if the clone K2 ∈ P[Gi] � P[G j] for

some i � j ∈ {1, 2}, then P[Gi] and P[G j] are clique partitions of Gi and G j − K2, respectively.

Theorem 9 (Pimpasalee et al, 2008) For any graphs G1 and G2,

cc(G1) + cc(G2) − 1 ≤ cc(G1��G2
K2

) ≤ cc(G1) + cc(G2). (2)
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Theorem 10 For any graphs G1 and G2,

cp(G1) + cp(G2) − 1 ≤ cp(G1��G2
K2

) ≤ cp(G1) + cp(G2) + s − 2 (3)

where s is the order of the smallest clique containing the K2-clone among all of the minimum clique partitions of G1 and

G2.

Proof. Without loss of generality, we may assume that G2 has a minimum clique partition containing clique of order s

containing the K2-clone. By equation (1) and Theorem 3, cp(G1��G2
K2

) ≤ cp(G1)+ cp(G2 − K2) ≤ cp(G1)+ cp(G2)+ s− 2.

Now, let P be a minimum clique partition of G1��G2
K2

. If K2 ∈ P , then cp(G1��G2
K2

) = cp(G1) + cp(G2) − 1. Suppose
that K2 �P . Then P is partitioned into P[G1] and P[G2]. We may assume that P[G1] and P[G2] ∪ {K2} are clique
partitions of G1 and G2, respectively. Therefore,

cp(G1��G2
K2

) = |P | = |P[G1]| + |P[G2]| = |P[G1]| + |P[G2] ∪ {K2}| − 1 ≥ cp(G1) + cp(G2) − 1.

�

Recall from Example B that cp(Km��Kn
K2

) = min{m, n}. Note that for the glued graph Km��Kn
K2

, s defined in Theorem 10 is

min{m, n}. Thus, cp(Km)+cp(K2)+ s−2 = 1+1+min{m, n}−2 = cp(Km��Kn
K2

). Therefore, the upper bound in equation (3)
is sharp.

A characterization of G1��G2
K2

whose clique covering number satisfying the lower bound in equation (2) is investigated,
see Pimpasalee et al. (Pimpasalee et al., 2008). Next, we reveal these analogous statements for glued graphs at K2-clones
with clique partition numbers satisfying the lower bound in equation (3).

Theorem 11 For any graphs G1 and G2, the following statements are equivalent:

(i) cp(G1��G2
K2

) = cp(G1) + cp(G2) − 1,

(ii) G1 or G2 has a minimum clique partition containing the K2-clone, and

(iii) cp(G1 − K2) = cp(G1) − 1 or cp(G2 − K2) = cp(G2) − 1.

Proof. (ii) ⇒ (i) This follows directly from Theorems 6 and 10.

(i) ⇒ (iii) Assume that cp(G1��G2
K2

) = cp(G1) + cp(G2) − 1. Let P be a minimum clique partition of G1��G2
K2

. If K2 ∈ P ,
by Lemma 12, there exists a minimum clique partition of G1 or G2 containing the K2-clone . Applying Theorem 5 yields
cp(G1 − K2) = cp(G1) − 1 or cp(G2 − K2) = cp(G2) − 1. Assume that K2 �P . Then |P | = |P[G1]| + |P[G2]|. We may
assume that P[G2] is a clique partition of G2, and then P[G1] is a clique partition of G1−K2. Thus cp(G1)+cp(G2)−1 =
cp(G1��G2

K2
) = |P | = |P[G1]| + |P[G2]| ≥ cp(G1 − K2) + cp(G2), so cp(G1) − 1 ≥ cp(G1 − K2). Again apply Theorem 3

to have cp(G1) − 1 = cp(G1 − K2).

(iii) ⇒ (ii) It follows immediately from Theorems 5. �

Corollary 13 If cp(G1��G2
K2

) = cp(G1) + cp(G2), then cp(G1) ≤ cp(G1 − K2) and cp(G2) ≤ cp(G2 − K2).

Proof. It follows immediately from Theorems 3 and 11. �

Corollary 14 follows directly from Lemma 12 and Theorem 11 .

Corollary 14 If there exists a minimum clique partition of G1��G2
K2

containing the K2-clone, then

(i) cp(G1��G2
K2

) = cp(G1) + cp(G2) − 1, or

(ii) cp(Gi − K2) = cp(Gi) − 1 for some i ∈ {1, 2}.

For any graph G, the statement in Theorem 3, namely cp(G−e) ≥ cp(G)−1, can be rewritten by cp(G−e) = cp(G)+ t for
some t ≥ −1. Next, we consider the clique partition number of a glued graph G1��G2

K2
satisfying cp(Gi − K2) = cp(Gi) + ti

where i ∈ {1, 2}. The special case when ti = −1 for some i ∈ {1, 2} has been already examined in Theorem 11.

www.ccsenet.org/jmr 107
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Theorem 12 Let G1��G2
K2

be a glued graph at K2-clone. If cp(G1 − K2) = cp(G1) + t1 and cp(G2 − K2) = cp(G2) + t2 for

some integers t1, t2, then cp(G1��G2
K2

) = cp(G1) + cp(G2) + t where t = min{t1, t2}.

Proof. First, by Theorem 3 we note that t1, t2 ≥ −1. If ti = −1 for some i ∈ {1, 2}, then the statement is true by Theorem 11.
Otherwise, assume that 0 ≤ t1 ≤ t2. Since a union of a minimum clique partition of G1−K2 and a minimum clique partition
of G2 is a clique partition of G1��G2

K2
, cp(G1��G2

K2
) ≤ cp(G1)+cp(G2)+t1. Let P be a minimum clique partition of G1��G2

K2
.

By Proposition 2, P = P[G1] ∪ P[G2]. Since t1, t2 ≥ 0 and by Corollary 14, the K2-clone is not in P and then P is
partitioned into P[G1] and P[G2]. We have two cases.
Case 1. P[G1] is a clique partition of G1 and P[G2] is a clique partition of G2 − K2. Thus, cp(G1��G2

K2
) = |P | =

|P[G1]| + |P[G2]| ≥ cp(G1) + cp(G2) + t2 ≥ cp(G1) + cp(G2) + t1. Hence, cp(G1��G2
K2

) = cp(G1) + cp(G2) + t where
t = min{t1, t2}.
Case 2. P[G2] is a clique partition of G2 and P[G1] is a clique partition of G1 − K2. Thus, cp(G1��G2

K2
) = |P | =

|P[G1]| + |P[G2]| ≥ cp(G1) + cp(G2) + t1. Hence, cp(G1��G2
K2

) = cp(G1) + cp(G2) + t where t = min{t1, t2}. �

Now a characterization of G1��G2
K2

satisfying the upper bound in equation (2) which states that cp(G1��G2
K2

) = cp(G1) +
cp(G2) + s − 2 where s ≥ 3 is obtained in the following theorem.

Theorem 13 Let G1��G2
K2

be a glued graph of G1 and G2 at K2-clone, and s the order of the smallest clique containing the

K2-clone among all of the minimum clique partitions of G1 and G2 where s ≥ 3. Then cp(G1��G2
K2

) = cp(G1)+cp(G2)+s−2
if and only if, cp(Gi − K2) ≥ cp(Gi) + s − 2 for each i ∈ {1, 2}.

Proof. Assume that cp(G1��G2
K2

) = cp(G1) + cp(G2) + s − 2. We have that cp(G1��G2
K2

) ≤ cp(G j) + cp(Gi − K2) for all
i � j ∈ {1, 2}. It follows that cp(Gi − K2) ≥ cp(Gi) + s − 2 for all i ∈ {1, 2}.
Conversely, assume that cp(Gi − K2) ≥ cp(Gi) + s − 2 for all i ∈ {1, 2}. Let P be a minimum clique partition of
G1��G2

K2
. By Proposition 2, P = P[G1] ∪ P[G2]. Since s ≥ 3 and by Corollary 14, the K2-clone is not in P . Then

|P | = |P[G1]| + |P[G2]|. Without loss of generality, let P[G1] be a clique partition of G1. Then P[G2] is a clique
partition of G2 − K2. Thus, cp(G1��G2

K2
) = |P | = |P[G1]| + |P[G2]| ≥ cp(G1) + cp(G2 − K2) ≥ cp(G1) + cp(G2) + s − 2.

Together with Theorem 10, we have cp(G1��G2
K2

) = cp(G1) + cp(G2) + s − 2 as desired. �

4. Clique Partitions of Glued Graphs at K3-Clones

Pimpasalee obtains bounds of clique covering numbers of any glued graphs at K3-clones as in Theorem 14. We study
these analogous statements for clique partition numbers in this section.

Theorem 14 (Pimpasalee, 2008) For any graphs G1 and G2 containing K3 as a subgraph,

cc(G1) + cc(G2) − 2 ≤ cc(G1��G2
K3

) ≤ cc(G1) + cc(G2).

Definition 15 Let P be a minimum clique partition of a glued graph G1��G2
Kn

. We define

E1[P] =
{
e ∈ E(Kn) | e is not covered by any clique in P[G1]

}
and

E2[P] =
{
e ∈ E(Kn) | e is not covered by any clique in P[G2]

}
.

Note that P[G1] ∪ E1[P] and P[G2] ∪ E2[P] are clique partitions of G1 and G2, respectively.

Theorem 16 Let G1 and G2 be graphs containing K3 as a subgraph. Then

cp(G1) + cp(G2) − 3 ≤ cp(G1��G2
K3

). (4)

Proof. Let P be a minimum clique partition of G1��G2
K3

. Since the clone is a complete graph, P =P[G1] ∪ P[G2].
So, P = [(P[G1] ∪ E1[P]) ∪ (P[G2] ∪ E2[P])] � (E1[P] ∪ E2[P]). Thus,

cp(G1��G2
K3

) = |P | = |[(P[G1] ∪ E1[P]) ∪ (P[G2] ∪ E2[P])] � (E1[P] ∪ E2[P])|
= |P[G1] ∪ E1[P])| + |P[G2] ∪ E2[P])| − |(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| .

108 www.ccsenet.org/jmr
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Since |P[G1] ∪ E1[P]| ≥ cp(G1) |P[G2] ∪ E2[P]| ≥ cp(G2) and |(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])| ≤ 3, we
have

cp(G1��G2
K3

) ≥ cp(G1) + cp(G2) − |(P[G1] ∩ P[G2]) ∪ (E1[P] ∪ E2[P])|
≥ cp(G1) + cp(G2) − 3.

�

Definition 17 Let G be a graph containing a triangle T and P a minimum clique partition of G. Then we say that

1. P is type 1 with respect to the triangle T, if P contains the triangle T;

2. P is type 2 with respect to the triangle T, if P contains a clique of order at least 4 covering the triangle T;

3. Otherwise, P is type 3 with respect to the triangle T, that is, each edge of the triangle T is covered by different

cliques in P .

Remark 18 Let G1��G2
K3

be a glued graph at K3-clone and P a minimum clique partition of G1��G2
K3

.

(i) If P is type 1 with respect to the K3-clone, then P[G1] ∩ P[G2] = {K3}, and hence, P[G1] and P[G2] are clique

partitions of G1 and G2, respectively.

(ii) If P is type 2 with respect to the K3-clone, then P[G1] ∩ P[G2] = ∅, furthermore, P[Gi] and P[G j] are clique

partitions of Gi and G j − K3, respectively, for some i � j ∈ {1, 2}.
(iii) If P is type 3 with respect to the K3-clone, then an element in P[G1] ∩ P[G2] is a proper subset of E(K3),
consequently, |P[G1] ∩ P[G2]| = 0, 1 or 2.

Theorem 19 Let G1��G2
K3

be a glued graph at K3-clone. If G1��G2
K3

has a minimum clique partition which is type 1 or type

2 with respect to the K3-clone, then cp(G1��G2
K3

) ≥ cp(G1) + cp(G2) − 1.

Proof. Let P be a minimum clique partition of G1��G2
K3

. By Proposition 2, P =P[G1] ∪ P[G2].

Case 1. P is type 1 with respect to the K3-clone. By Theorem 7, cp(G1��G2
K3

) = cp(G1) + cp(G2) − 1.

Case 2. P is type 2 with respect to the K3-clone. Without loss of generality, the clique of order at least 4 containing the
K3-clone is in P[G1]. Then P[G1] and P[G2] ∪ {K3} are clique partitions of G1 and G2, respectively. Thus,

cp(G1��G2
K3

) = |P | = |P[G1]| + |P[G2]| = |P[G1]| + |P[G2] ∪ {K3}| − 1 ≥ cp(G1) + cp(G2) − 1.

�

Theorem 20 Let G1��G2
K3

be a glued graph of G1 and G2 at K3-clone. Then cp(G1��G2
K3

) = cp(G1) + cp(G2) − 3 if and

only if there exist minimum clique partitions P1 and P2 of G1 and G2, respectively, such that for each edge e ∈ E(K3), e

must be covered by a 2-clique in P1 or P2.

Proof. First, assume that cp(G1��G2
K3

) = cp(G1) + cp(G2) − 3. Let P be a minimum clique partition of G1��G2
K3

. By
Proposition 2, P =P[G1] ∪ P[G2]. Note that

|P | = |P[G1] ∪ E1[P]| + |P[G2] ∪ E2[P]| − |P[G1] ∩ P[G2]| − |E1[P] ∪ E2[P]| .

Moreover, we have that |P | = cp(G1) + cp(G2) − 3, P[Gi] ∪ Ei[P] is a clique partition of Gi for all i ∈ {1, 2} and
|P[G1] ∩ P[G2]| + |E1[P] ∪ E2[P]| ≤ 3. Hence, |P[Gi] ∪ Ei[P]| = cp(Gi) for all i ∈ {1, 2} and
|P[G1] ∩ P[G2]|+ |E1[P] ∪ E2[P]| = 3. Therefore P[Gi]∪Ei[P] is a minimum clique partition of Gi for all i ∈ {1, 2}.
Let e be an edge in the K3-clone of G1��G2

K3
. If e ∈ P[G1]∩P[G2], then e is covered by a 2-clique in P[G1] and P[G2].

Thus e ∈ P[Gi] ∪ Ei[P] for all i ∈ {1, 2}. Suppose that e �P[G1] ∩ P[G2]. Then there exists a clique C of order more
than two in P covering e. Without loss of generality, assume that C ∈ P[G1]. Then e ∈ E2[P], so e ∈ P[G2]∪ E2[P].

For sufficiency, assume that G1 and G2 have minimum clique partitions P1 and P2, respectively, such that satisfy the
condition in the right hand side of the statement. Let A = {e ∈ E(K3) | e ∈ P1} and B = {e ∈ E(K3) | e ∈ P2}. Note
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that |A| + |B| − |A ∩ B| = e(K3) = 3 and (P1 � A) ∪ (P2 � B) ∪ (A ∩ B) is a clique partition of G1��G2
K3

. Thus,

|(P1 � A) ∪ (P2 � B) ∪ (A ∩ B)| ≥ cp(G1��G2
K3

). Hence,

cp(G1) + cp(G2) − 3 = |P1| + |P2| − |A| − |B| + |A ∩ B|
= |(P1 � A) ∪ (P2 � B) ∪ (A ∩ B)|
≥ cp(G1��G2

K3
).

By Theorem 16, cp(G1��G2
K3

) = cp(G1) + cp(G2) − 3. �

The following theorem gives the possible values of cp(G1��G2
K3

) when G1 or G2 has a minimum clique partition which is
type 1 with respect to the K3-clone.

Theorem 21 Let G1��G2
K3

be a glued graph at K3-clone. If G1 or G2 has a minimum clique partition which is type 1 with

respect to the K3-clone, then

cp(G1) + cp(G2) − 3 ≤ cp(G1��G2
K3

) ≤ cp(G1) + cp(G2) − 1.

Proof. It follows directly from Theorems 6 and 16. �

Theorem 22 Let G1��G2
K3

be any graph at K3-clone and Pi a minimum clique partition of Gi for each i ∈ {1, 2}. Then

cp(G1��G2
K3

) ≤ cp(G1) + cp(G2) − 6 +min{σ1, σ2}

where for each i ∈ {1, 2} , si is the sum of orders of all cliques in Pi containing edges of the K3-clone, and

σi =

⎧⎪⎪⎨⎪⎪⎩2si if Pi is type 2 with respect to the K3 − clone,

si if Pi is type 3 with respect to the K3 − clone.

Proof. Assume that P1 and P2 are minimum clique partitions of G1 and G2, respectively.

Here we suppose that P1 and P2 are type 2 and type 3 with respect to the K3-clone, respectively. For other cases, the
proof follows similarly. Since P1 is type 2 with respect to the K3-clone, there exists a clique C ∈ P1 with order r ≥ 4
containing K3. Then G1 − K3 can be partitioned by the union of P1 � {C} and a minimum clique partition of C − K3.
By Theorem 4, cp(C − K3) ≤ 2r − 5. Thus cp(G1 − K3) ≤ |P1| − 1 + 2r − 5 = cp(G1) + 2r − 6. Since P2 is type 3
with respect to the K3-clone, there exists three cliques in P2 such that each one covers different edge in the K3-clone, say
Q1,Q2 and Q3 of order q1, q2 and q3, respectively. Then G2 − K3 can be partitioned by the union of P2 � {Q1,Q2,Q3}
and a minimum clique partition of Qi deleted an edge in the K3-clone for all i ∈ {1, 2, 3}. We have that cp(Qi − ei) = qi − 1
where Qi covers an edge ei in the K3-clone for all i ∈ {1, 2, 3}. Thus,

cp(G2 − K3) ≤ |P2| − 3 + (q1 − 1) + (q2 − 1) + (q3 − 1) = cp(G2) + q1 + q2 + q3 − 6.

Hence, cp(G1��G2
K3

) ≤ cp(G1) + cp(G2) − 6 +min{σ1, σ2} where σ1 = 2r and σ2 = q1 + q2 + q3. �

5. An Application

In general, the problem of computing clique partition numbers is considered to be difficult. Only for some classes of
graphs can be obtained their clique partition numbers or even given reasonable bounds. The problem of determining the
clique partition numbers of graphs is NP-complete, see Ma et al. (Ma et al., 1988). In an appropriate way, the glue operator
could sometimes be used to reduce a large graph into smaller graphs which are easier to find their clique partition numbers
than directly find the clique partition number of the large graph.

Example C Consider a graph G shown in Figure 2. Here we illustrate the usefulness of the glue operator to find cp(G).
We refer a bold edge in G to be the K2-clone and reduce the graph G into G1,G2 and G3 as shown as in Figure 2. Then G �(
G1��G2

)
��G3

K2 K2
. Note that cp(G1) = 5, cp(G2) = 1 and cp(G3) = 3. Since G1 has a minimum clique partition containing

the K2-clone, by Theorem 10, cp(G1��G2
K2

) = cp(G1) + cp(G2) − 1 = 5 + 1 − 1 = 5. Similarly, G3 has a minimum clique

partition containing the K2-clone, and again by Theorem 10, cp((G1��G2)��G3
K2 K2

) = cp(G1��G2
K2

)+cp(G3)−1 = 5+3−1 = 7.
Hence, cp(G) = 7.
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Figure 1. A glued graph with clique partition number less than those of both original graph

Figure 2. Picture illustrating Example C
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