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1. Introduction

A satisfactory theory of 2-norm on linear space has been introduced and developed by Gähler (Gähler, 1964, p.1-43). A
systematic development of n-normed linear spaces is due to S. S. Kim and Y. J. Cho. (Kim, 1996, p.739-744), R. Malceski
(Malceski, 1997, p.81-102), A. Misiak (Misiak, 1989, p.299-319), and H. Gunawan and M. Mashadi (Gunawan, 2001,
p.631–639). A detailed theory of fuzzy normed linear spaces can be found in (Bag, 2003, p.687-705), (Chang, 1994,
p.429-436), (Felbin, 1993, p.428-440), (Felbin, 1999, p.117-131), and (Krishna, 1994, p.207-217). Al Narayanan and
S. Vijayabalaji (Narayanan, 2005, p.3963-3977) extended the notion of n-normed linear space to fuzzy n-normed linear
space.

Convergence and completeness in fuzzy n-normed linear space were discussed by S. Vijayabalaji and N. Thillaigovin-
dan (Vijayabalaji, 2007, p.119-126) by generalizing it for fuzzy n-normed linear space in terms of α−convergence and
α−completeness.

In the present paper, after an introduction to fuzzy n-normed linear spaces, we shall introduce the notion of α−convergent
sequence and α−Cauchy sequence in fuzzy n-normed linear space. We also introduce the concept of α−completeness
which would provide a more general framework to study the α−completeness of the fuzzy n-normed linear space. Then
we defined level n−fuzzy bounded set and level n−fuzzy closed set in a fuzzy n-normed space.

2. Preliminaries

This section is devoted to a collection of basic definitions and results which will be needed in the sequel.

Definition 2.1. (Gunawan, 2001, p.631–639). Let n ∈ N (natural numbers) and X be a real vector space of dimension
d ≥ n. A real valued function ‖•, •, ..., •‖ on X × ... × X︸������︷︷������︸

n

= Xn, satisfying the following properties:

(1) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent,

(2) ‖x1, x2, ..., xn‖ is invariant under any permutation of x1, x2, ..., xn,

(3) ‖x1, x2, ..., αxn‖ = |α| ‖x1, x2, ..., xn‖, where α ∈ R (set of real numbers),

(4) ‖x1, x2, ..., xn−1, y + z‖ ≤ ‖x1, x2, ..., xn−1, y‖ + ‖x1, x2, ..., xn−1, z‖,
‖•, •, ..., •‖ is called an n-norm on X and the pair (X, ‖•, •, ..., •‖) is called an n-normed linear space.

Definition 2.2. (Gunawan, 2001, p.631–639). A sequence {xn} in an n-normed linear space (X, ‖•, •, ..., •‖) is said to be:

i. Converge to an x ∈ X (in the n-norm), whenever

limn→∞ ‖x1, x2, ..., xn−1, xn − x‖ = 0.

ii. Cauchy sequence, if

limn→∞
∥∥∥x1, x2, ..., xn−1, xn − xn+p

∥∥∥ = 0, ∀p = 1, 2, 3, ....

iii. Complete, if every Cauchy sequence in it is convergent.

Definition 2.3. (Narayanan, 2005, p.3963-3977). Let X be a linear space over a real field F. A fuzzy subset N of Xn × R

is called a fuzzy n-norm on X if and only if:

(N1) For all t ∈ R with t ≤ 0, N(x1, x2, ..., xn, t) = 0.:
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(N2) For all t ∈ R with t > 0, N(x1, x2, ..., xn, t) = 1 if and only if x1, x2, ..., xn are linearly dependent.

(N3) N(x1, x2, ..., xn, t) is invariant under any permutation of x1, x2, ..., xn.

(N4) For all t ∈ R with t > 0, N(x1, x2, ..., cxn, t) = N(x1, x2, ..., cxn, t/ |c|) if c � 0, c ∈ F .

(N5) For all s, t ∈ R, N(x1, x2, ..., xn + x′n, s + t) ≥ min
{
N(x1, x2, ..., xn, s),N(x1, x2, ..., x

′
n, t)

}
.

(N6) N(x1, x2, ..., xn, t) is a non-decreasing function of t ∈ R and lim
t→∞N(x1, x2, ..., xn, t) = 1.

Then (X,N) is called a fuzzy n-normed linear space.

Theorem 2.4. (Narayanan, 2005, p.3963-3977). Let (X,N) be a fuzzy n-normed linear space. Assume further that

(N7) For all t ∈ R with t > 0, N(x1, x2, ..., xn, t) > 0,

implies that x1, x2, ..., xn are linearly dependent.

Define ‖x1, x2, ..., xn‖α = inf {t : N(x1, x2, ..., xn, t) ≥ α} , α ∈ (0, 1) .

Then {‖•, •, ..., •‖α : α ∈ (0, 1)} is an ascending family of n-norms on X. These n-norms are called α−n-norms on X

corresponding to fuzzy n-norm on X.

Definition 2.5. (Menger, 1942, p.535-537). A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a continuous t-norm if ∗
satisfies the following conditions:

(1) ∗ is commutative and associative.

(2) ∗ is continuous.

(3) a ∗ 1 = a, for all a ∈ [0, 1].

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

In (Vijayabalaji, 2007, p.119-126) redefine the notion of fuzzy n-normed linear space using t-norm.

Definition 2.6. (Vijayabalaji, 2007, p.119-126). Let X be a linear space over a real field F. A fuzzy subset N of Xn ×R is
called a fuzzy n-norm on X if and only if:

(N1′) For all t ∈ R with t ≤ 0, N(x1, x2, ..., xn, t) = 0.:

(N2′) For all t ∈ R with t > 0, N(x1, x2, ..., xn, t) = 1 if and only if x1, x2, ..., xn are linearly dependent.

(N3′) N(x1, x2, ..., xn, t) is invariant under any permutation of x1, x2, ..., xn.

(N4′) For all t ∈ R with t > 0, N(x1, x2, ..., cxn, t) = N(x1, x2, ..., cxn, t/ |c|) if c � 0, c ∈ F .

(N5′) For all s, t ∈ R, N(x1, x2, ..., xn + x′n, s + t) ≥ N(x1, x2, ..., xn, s) ∗ N(x1, x2, ..., x
′
n, t).

(N6′) N(x1, x2, ..., xn, t) is left continuous and non-decreasing function such that lim
t→∞N(x1, x2, ..., xn, t) = 1.

To strengthen the above definition, see the following examples.

Example 2.7. (Narayanan, 2005,p.3963-3977) Let (X, ‖•, •, ..., •‖) be an n-normed space, where (x1, x2, ..., xn) ∈ X × ... × X︸������︷︷������︸
n

.

Define a ∗ b = min {a, b} and

N (x1, x2, ..., xn, t) =
{

t
t+‖x1,x2,...,xn‖ , when t > 0, t ∈ R,

0, when t ≤ 0.

Then (X,N) is an f-n-NLS.

Example 2.8. For (x1, x2, ..., xn) ∈ X × ... × X︸������︷︷������︸
n

, we define a ∗ b = min {a, b} and

N (x1, x2, ..., xn, t) =
{

t
t+k‖x1,x2,...,xn‖ , when t > 0, t ∈ R, k > 0

0, when t ≤ 0.

Then (X,N) is an f-n-NLS.

Proof:

(N1′) For all t ∈ R with t ≤ 0, N(x1, x2, ..., xn, t) = 0.

(N2′) For all t ∈ R with t > 0, N(x1, x2, ..., xn, t) = 1

⇐⇒ t
t+k‖x1,x2,...,xn‖ = 1 ⇐⇒ ‖x1, x2, ..., xn‖ = 0 ⇐⇒ x1, x2, ..., xn are linearly dependent.

(N3′) As ‖x1, x2, ..., xn‖ is invariant under any permutation of x1, x2, ..., xn, it follow that N(x1, x2, ..., xn, t) is invariant
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under any permutation of x1, x2, ..., xn. under any permutation of x1, x2, ..., xn.

(N4′) For all t ∈ R with t > 0 and c ∈ R\ {0} ,
N(x1, x2, ..., cxn, t/ |c|) = t/|c|

t/|c|+k‖x1,x2,...,xn‖ =
t/|c|

t+k|c|‖x1 ,x2 ,...,xn‖
|c|

= t
t+k|c|‖x1,x2,...,xn‖ =

t
t+k‖x1,x2,...,cxn‖ = N(x1, x2, ..., cxn, t/ |c|).

Thus N(x1, x2, ..., cxn, t/ |c|) = N(x1, x2, ..., cxn, t/ |c|).
(N5′) For all s, t ∈ R,

If s + t < 0, s = t = 0, and s + t > 0; (s > 0, t < 0 or s < 0, t > 0), then

N(x1, x2, ..., xn + x′n, s + t) ≥ N(x1, x2, ..., xn, s) ∗ N(x1, x2, ..., x
′
n, t).

If s > 0, t > 0, s + t > then assume that

N(x1, x2, ..., x
′
n, t) ≤ N(x1, x2, ..., xn, s)

⇒ t
t+k‖x1,x2,...,x

′
n‖ ≤ s

s+k‖x1,x2,...,xn‖

⇒ t (s + k ‖x1, x2, ..., xn‖) ≤ s
(
t + k

∥∥∥x1, x2, ..., x
′
n

∥∥∥)
⇒ t ‖x1, x2, ..., xn‖ ≤ s

∥∥∥x1, x2, ..., x
′
n

∥∥∥
⇒ ‖x1, x2, ..., xn‖ ≤ s

t

∥∥∥x1, x2, ..., x
′
n

∥∥∥
Therefore,

‖x1, x2, ..., xn‖ +
∥∥∥x1, x2, ..., x

′
n

∥∥∥ ≤ s
t

∥∥∥x1, x2, ..., x
′
n

∥∥∥ + ∥∥∥x1, x2, ..., x
′
n

∥∥∥
≤
(

s
t
+ 1

) ∥∥∥x1, x2, ..., x
′
n

∥∥∥ = ( s+t
t

) ∥∥∥x1, x2, ..., x
′
n

∥∥∥ .
But,∥∥∥x1, x2, ..., xn + x′n

∥∥∥ ≤ ‖x1, x2, ..., xn‖ +
∥∥∥x1, x2, ..., x

′
n

∥∥∥ ≤ (
s+t
t

) ∥∥∥x1, x2, ..., x
′
n

∥∥∥
Then,

1 + k‖x1,x2,...,xn+x′n‖
s+t

≤ 1 + k‖x1,x2,...,x
′
n‖

t
⇒ s+t

s+t+k‖x1,x2,...,xn+x′n‖ ≤ t
t+k‖x1,x2,...,x

′
n‖

⇒ N(x1, x2, ..., xn + x′n, s + t) ≥ N(x1, x2, ..., xn, s) ∗ N(x1, x2, ..., x
′
n, t).

(N6′) Clearly N(x1, x2, ..., xn, t) is left continuous function. Suppose that t2 > t1 > 0 with t1, t2 ∈ [0, 1) then,
t2

t2+k‖x1,x2,...,xn‖ − t1
t1+k‖x1,x2,...,xn‖ =

k‖x1,x2,...,xn‖(t2−t1)
(t2+k‖x1,x2,...,xn‖)(t1+k‖x1,x2,...,xn‖) ≥ 0

for all (x1, x2, ..., xn) ∈ Xn

⇒ t2
t2+k‖x1,x2,...,xn‖ ≥ t1

t1+k‖x1,x2,...,xn‖ ⇒ N(x1, x2, ..., xn, t2) ≥ N(x1, x2, ..., xn, t1)

Thus N(x1, x2, ..., xn, t) is non-decreasing function of t ∈ [0, 1) .

Also,

limn→∞ N(x1, x2, ..., xn, t) = limn→∞ t
t+k‖x1,x2,...,xn‖ = limn→∞ t

t

(
1 + 1

tk‖x1,x2,...,xn‖
)
= 1.

Hence (X,N) is called f-n-LNS.

Definition 2.9. (Vijayabalaji, 2007,p.119-126). Let (X,N) be a f-n-NLS and {xn} be a sequence in X then {xn} is said to
be convergent if given r > 0, t > 0, 0 < r < 1, there exists an integer n0 ∈ N such that N(x1, x2, ..., xn−1, xn − x, t) > 1 − r

for all n ≥ n0. In this case x is called the limit of the sequence {xn}.
Definition 2.10. (Vijayabalaji, 2007,p.119-126). Let (X,N) be a f-n-NLS and {xn} be a sequence in X. The sequence {xn}
is said to be convergent if and only if

N(x1, x2, ..., xn−1, xn − x, t) → 1 as n → ∞.

Definition 2.11. (Vijayabalaji, 2007,p.119-126). Let (X,N) be a f-n-NLS and {xn} be a sequence in X then {xn} is said to
be a Cauchy sequence if given ε > 0 with 0 < ε < 1, t > 0, there exists an integer n0 ∈ N such that N(x1, x2, ..., xn−1, xn −
xk, t) > 1 − ε for all n, k ≥ n0.

Definition 2.12. (Vijayabalaji, 2007,p.119-126). A f-n-NLS is said to be complete if every Cauchy sequence in it is
convergent.

3. α−Completeness in f-n-NLS

In this section we generalize the notions of convergence and completeness in f-n-NLS by introducing the notions of
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α−convergence, α−Cauchyness and α−completeness in f-n-NLS and studying the α−completeness of fuzzy n-normed
linear space.

Definition 3.1. Let (X,N) be a f-n-NLS and α ∈ (0, 1). A sequence {xn} in X is said to be α−convergent to x if
lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) > α, for all t > 0.

Theorem 3.2. Let (X,N) be a f-n-NLS satisfying (N7). If {xn} is an α−convergent sequence in.(X,N) , then

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖α = 0, ∀α ∈ (0, 1).

Proof: Let {xn} be an α−convergent sequence in.(X,N) and suppose that it converges to x. Thus

lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) > α, ∀ t > 0, .α ∈ (0, 1).

=⇒ ∀t > 0, ∃n0 (t) such that N(x1, x2, ..., xn−1, xn − x, t) > α, ∀t > 0.

=⇒ ∀t > 0, ∃n0 (t) such that ‖x1, x2, ..., xn−1, xn − x‖α ≤ t, ∀n ≥ n0 (t) .

Since t > 0 is arbitrary, then

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖α = 0, ∀α ∈ (0, 1).

Theorem 3.3. Let (X,N) be a f-n-NLS satisfying (N7) and {xn} be a sequence in (X,N) . Then {xn} is convergent to x (see
Definition 2.9) if and only if

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖α = 0, ∀α ∈ (0, 1).

Proof: Let {xn} be a convergent sequence in (X,N) to x. Choose α ∈ (0, 1). There exists n0 ∈ N such that N(x1, x2, ..., xn−1, xn−
x, t) > 1 − α for all n ≥ n0.

It follows that

‖x1, x2, ..., xn−1, xn − x‖1−α ≤ t, ∀n ≥ n0.

Thus

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖1−α = 0, ∀α ∈ (0, 1) .

Conversely, let

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖α = 0, for every α ∈ (0, 1) .Fix α ∈ (0, 1) and t > 0. There exists n0 ∈ N such that

inf {r : N(x1, x2, ..., xn−1, xn − x, r) ≥ 1 − α} < t,

i.e. the sequence {xn} is convergent to x.

Definition 3.4. Let (X,N) be a f-n-NLS and α ∈ (0, 1). A sequence {xn} in X is said to be α−Cauchy if

lim
n→∞N(x1, x2, ..., xn−1, xn − xn+p, t) ≥ α, for all t > 0, p = 1, 2, ....

Theorem 3.5. Let (X,N) be a f-n-NLS satisfiying (N7). Then every Cauchy sequence in (X, ‖•, •, ..., •‖α) is an α−Cauchy
sequence in (X,N) , where ‖•, •, ..., •‖α denotes the α−n-norm of N, ∀α ∈ (0, 1).

Proof: Let α0 ∈ (0, 1) and {xn} be a Cauchy sequence in
(
X, ‖•, •, ..., •‖α0

)
.

Then,

lim
n→∞

∥∥∥x1, x2, ..., xn−1, xn − xn+p

∥∥∥
α0
= 0, p = 1, 2, 3, ...

Thus for a given ε > 0, there exist a positive integer N (ε) such that∥∥∥x1, x2, ..., xn−1, xn − xn+p

∥∥∥
α0
< ε, ∀n ≥ N (ε) , p = 1, 2, 3, ...

=⇒inf
{
t > 0 : N(x1, x2, ..., xn−1, xn − xn+p, t) ≥ α0

}
< ε,∀n ≥ N (ε) , p = 1, 2, 3, ....

=⇒ ∀n ≥ N (ε) , p = 1, 2, 3, ..., ∃t (n, p, ε) < ε such that N(x1, x2, ..., xn−1, xn − xn+p, t (n, p, ε)) ≥ α0

=⇒ N(x1, x2, ..., xn−1, xn − xn+p, ε) ≥ α0,∀n ≥ N (ε) , p = 1, 2, 3, ...

Since ε > 0 is arbitrary, then

lim
n→∞N(x1, x2, ..., xn−1, xn − xn+p, ε) ≥ α0, ∀t > 0.

=⇒ {xn} is an α0−Cauchy sequence in (X,N) .

Since α0 ∈ (0, 1) is arbitrary, then every Cauchy sequence in (X, ‖•, •, ..., •‖α) is an α−Cauchy sequence in (X,N) for each
α ∈ (0, 1).

www.ccsenet.org/jmr 119



Journal of Mathematics Research
Vol. 2, No. 2, May 2010

ISSN: 1916-9795
E-ISSN: 1916-9809

Definition 3.6. In f-n-NLS (X,N) , every α−convergent sequence is an α−Cauchy sequence.

Proof: Suppose that {xn} is α−convergent to x and α ∈ (0, 1), then we have

lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) > α, for all t > 0.

Now, for all p = 1, 2, 3, ...

N(x1, x2, ..., xn−1, xn−xn+p, t) = N(x1, x2, ..., xn−1, xn−x+x−xn+p, t/2+t/2) ≥ N(x1, x2, ..., xn−1, xn−x, t/2)∗N(x1, x2, ..., xn−1, x−
xn+p, t/2).

Therefore,

lim
n→∞N(x1, x2, ..., xn−1, xn − xn+p, t) ≥ lim

n→∞N(x1, x2, ..., xn−1, xn − x, t/2)∗
lim
n→∞N(x1, x2, ..., xn−1, x − xn+p, t/2) > α.

Hence {xn} is an α−Cauchy sequence in (X,N) .

The converse of the above theorem is not necessarily true. This is justified by the following example.

Example 3.7. Let (X, ‖•, •, ., ., •‖) be an n-normed space and define a ∗ b = min {a, b}, for all a, b ∈ [0, 1] . Define

N (x1, x2, ..., xn, t) =
{

t
t+k‖x1,x2,...,xn‖ , when t > 0, t ∈ R,

0, when t ≤ 0,

where k > 0. Then (X,N) is an f-n-NLS (see Example 2.8). We now show that

a){xn} is a Cauchy sequence in (X, ‖•, •, ..., •‖) if and only if {xn} is an α−Cauchy sequence in (X,N).

b){xn} is a convergent sequence in (X, ‖•, •, ..., •‖) if and only if {xn} is an α−convergent sequence in (X,N).

Proof: a) Let {xn} be a Cauchy sequence in (X, ‖•, •, ..., •‖)
⇔ lim

n→∞
∥∥∥x1, x2, ..., xn−1, xn − xn+p

∥∥∥ = 0, for all p = 1, 2, 3, ....

⇔ lim
n→∞N

(
x1, x2, ..., xn−1, xn − xn+p

)
=

lim
n→∞

t

t+k‖x1,x2,...,xn−1,xn−xn+p‖ = 1 > α, for all t, k > 0.

⇔ lim
n→∞N

(
x1, x2, ..., xn−1, xn − xn+p

)
> α

⇔ {xn} is an α−Cauchy sequence in (X,N).

b) {xn} is a convergent sequence in (X, ‖•, •, ..., •‖)
⇔ lim

n→∞ ‖x1, x2, ..., xn−1, xn − x‖ = 0

⇔ lim
n→∞N (x1, x2, ..., xn−1, xn − x) =

lim
n→∞

t
t+k‖x1,x2,...,xn−1,xn−x‖ = 1 > α,for all t, k > 0.

⇔ lim
n→∞N (x1, x2, ..., xn−1, xn − x) > α,

⇔ {xn} is an α−convergent sequence in (X,N).

Remark 3.8. If there exist a Cauchy sequence in n-normed linear space which is not convergent then there may exist
a Cauchy sequence in R-n-LNS which is not convergent. Thus if there exists an n-normed linear space (X, ‖•, •, ..., •‖)
which is not complete then the fuzzy n-norm induced by such a crisp n-norm ‖•, •, ..., •‖ on an incomplete n-normed linear
space X is an α−incomplete f-n-NLS

Theorem 3.9. In f-n-LNS (X,N) in which every α−Cauchy sequence has an α−convergent subsequence is α−complete,
where a ∗ b = min {a, b} .and α ∈ (0, 1) .

Proof: Let {xn} be a α−Cauchy sequence in (X,N) and
{
xnk

}
be a subsequence of {xn} that α−converges to x. We prove

that {xn} α−converges to x. Since {xn} is an α−Cauchy sequence, there exists an integer n0 ∈ N such that

lim
n→∞N(x1, x2, ..., xn−1, xn − xn+p, t) ≥ α, for all t > 0, p = 1, 2, ....

Since
{
xnk

}
α−converges to x, then

lim
n→∞N(x1, x2, ..., xn−1, xnik

− x, t/2) > α, for all t > 0.

Now,
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N(x1, x2, ..., xn−1, xn − x, t) = N(x1, x2, ..., xn−1, xn − xnik
+ nik − x, t/2 + t/2)

≥ N(x1, x2, ..., xn−1, xn − xnik
, t/2) ∗ N(x1, x2, ..., xn−1, nik − x, t/2) =⇒

lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) ≥ lim

n→∞N(x1, x2, ..., xn−1, xn − xnik
, t/2)∗

lim
n→∞N(x1, x2, ..., xn−1, nik − x, t/2) > α ∗ α = α.
Therefore {xn} α−converges to x in (X,N) and hence it is α−complete.

4. Level Fuzzy bounded sets in f-n-NLS

In this section, we define level n−fuzzy bounded set and level n−fuzzy closed set in a fuzzy n-normed space.

Definition 4.1. Let (X,N) be a f-n-NLS. X is said to be level n−fuzzy bounded (l − n−fuzzy) if for any α ∈ (0, 1), there
exist t (α) such that N(x1, x2, ..., xn−1, xn, t (α)) > α, for all (x1, x2, ..., xn) ∈ Xn.

Theorem 4.2. Let (X,N) be a f-n-NLS satisfying (N7). Then X is l − n−fuzzy bounded iff X is bounded with respect to
‖•, •, ..., •‖α for all α ∈ (0, 1), where ‖•, •, ..., •‖α denotes the α − n − norm of N.

Proof: If X is an l− n−fuzzy bounded then for any α ∈ (0, 1), there exist t (α) such that N(x1, x2, ..., xn−1, xn, t (α)) > α, for
all (x1, x2, ..., xn) ∈ Xn.

Therefore ‖x1, x2, ..., xn‖α ≤ t (α) ,for all (x1, x2, ..., xn) ∈ Xn and α ∈ (0, 1) . This implies that X is bounded with respect to
‖•, •, ..., •‖α for all α ∈ (0, 1) .

Conversely, let X be bounded with respect to ‖•, •, ..., •‖α for all α ∈ (0, 1)

=⇒ ‖x1, x2, ..., xn‖α ≤ t (α) for all (x1, x2, ..., xn) ∈ Xn,

=⇒ ‖x1, x2, ..., xn‖α ≤ t (α) ≤ t (α) + 1, for all α ∈ (0, 1) ,

=⇒ N(x1, x2, ..., xn−1, xn, t (α)) > α, for all (x1, x2, ..., xn) ∈ Xn,

=⇒ X is l − n−fuzzy bounded.

Definition 4.1. Let (X,N) be a f-n-NLS. A subset A of X is said to be l − n−fuzzy closed if for any α ∈ (0, 1) and {xn} in
X , for all (x1, x2, ..., xn) ∈ Xn, lim

n→∞N (x1, x2, ..., xn − x, t) ≥ α,∀t > 0 =⇒ x ∈ A.

Theorem 4.2. Let (X,N) be a f-n-NLS satisfying (N7) and A ⊂ X. Then A is l−n−fuzzy closed iff A is closed with respect
to ‖•, •, ..., •‖α for all α ∈ (0, 1) .

Proof: Let α0 ∈ (0, 1) and {xn} be a sequence in
(
X, ‖•, •, ..., •‖α0

)
.

Then,

lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖α0

= 0,

Thus for a given ε > 0, there exist a positive integer N (ε) such that

‖x1, x2, ..., xn−1, xn − x‖α0
< ε, ∀n ≥ N (ε) .

=⇒ N(x1, x2, ..., xn−1, xn − x, ε) ≥ α0.

=⇒ lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) ≥ α0,∀t > 0 (since ε is arbitrary).

=⇒ x ∈ A

=⇒ A is closed with respect to ‖•, •, ..., •‖α for all α ∈ (0, 1) .

Since α0 ∈ (0, 1) is arbitrary, it follows that A is closed with respect to ‖•, •, ..., •‖α, α ∈ (0, 1).

Conversely, suppose that A is closed with respect to ‖•, •, ..., •‖α, for each α ∈ (0, 1).

Choose an arbitrary β0 ∈ (0, 1). Let {xn} be a sequence in A such that

lim
n→∞N(x1, x2, ..., xn−1, xn − x, t) ≥ β0,∀t > 0.

Then for a given ε > 0 with β0 − ε > 0 and for a given t > 0. There exist a positive integer N (ε, t) such that,

N(x1, x2, ..., xn−1, xn − x, t) ≥ β0 − ε, ∀n ≥ N (ε, t) .

=⇒ ‖x1, x2, ..., xn−1, xn − x‖β0−ε ≤ t, ∀n ≥ N (ε, t) .

=⇒ lim
n→∞ ‖x1, x2, ..., xn−1, xn − x‖β0−ε = 0.

=⇒ x ∈ A.

Since β0 ∈ (0, 1) is arbitrary, it follows that A is l − n−fuzzy closed
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