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1. Introduction

A satisfactory theory of 2-norm on linear space has been introduced and developed by Géhler (Gihler, 1964, p.1-43). A
systematic development of n-normed linear spaces is due to S. S. Kim and Y. J. Cho. (Kim, 1996, p.739-744), R. Malceski
(Malceski, 1997, p.81-102), A. Misiak (Misiak, 1989, p.299-319), and H. Gunawan and M. Mashadi (Gunawan, 2001,
p.631-639). A detailed theory of fuzzy normed linear spaces can be found in (Bag, 2003, p.687-705), (Chang, 1994,
p.429-436), (Felbin, 1993, p.428-440), (Felbin, 1999, p.117-131), and (Krishna, 1994, p.207-217). Al Narayanan and
S. Vijayabalaji (Narayanan, 2005, p.3963-3977) extended the notion of n-normed linear space to fuzzy n-normed linear
space.

Convergence and completeness in fuzzy n-normed linear space were discussed by S. Vijayabalaji and N. Thillaigovin-
dan (Vijayabalaji, 2007, p.119-126) by generalizing it for fuzzy n-normed linear space in terms of @—convergence and
a—completeness.

In the present paper, after an introduction to fuzzy n-normed linear spaces, we shall introduce the notion of @—convergent
sequence and @—Cauchy sequence in fuzzy n-normed linear space. We also introduce the concept of @—completeness
which would provide a more general framework to study the @—completeness of the fuzzy n-normed linear space. Then
we defined level n—fuzzy bounded set and level n—fuzzy closed set in a fuzzy n-normed space.

2. Preliminaries
This section is devoted to a collection of basic definitions and results which will be needed in the sequel.

Definition 2.1. (Gunawan, 2001, p.631-639). Let n € N (natural numbers) and X be a real vector space of dimension
d > n. A real valued function ||e, e, ..., e|| on X X ... X X = X", satisfying the following properties:
N———
n

(1) ||lx1, x2, ..., x|l = O if and only if x, x», ..., x,, are linearly dependent,
(2) |lx1, X2, ..., X, || is invariant under any permutation of xy, xy, ..., X,
3) lIx1, X2, ..oy @x,|| = |||l x1, X2, ..., X,||, where @ € R (set of real numbers),
4 [lx1, X2, ey X1, Y + 2l < 11, X2, vy X1, VI + [0, X2, 0oy X1, 21,
||@, o, ..., o] is called an n-norm on X and the pair (X, ||e, e, ..., ®]) is called an n-normed linear space.
Definition 2.2. (Gunawan, 2001, p.631-639). A sequence {x,} in an n-normed linear space (X, ||e, o, ..., ®||) is said to be:
i. Converge to an x € X (in the n-norm), whenever
lim, S0 [[X1, X2, evy Xn—1, X — X|| = O.

ii. Cauchy sequence, if

lim,, 00 ||x1,x2, ey X1, Xy — xn+p|| =0,Vp=1,2,3,...
iii. Complete, if every Cauchy sequence in it is convergent.

Definition 2.3. (Narayanan, 2005, p.3963-3977). Let X be a linear space over a real field F. A fuzzy subset N of X" x R
is called a fuzzy n-norm on X if and only if:

(N1) For all t € R with t <0, N(x1, X2, ..., X4, 1) = 0.
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(N2) For all € R with ¢t > 0, N(x1, X2, ..., X, t) = 1 if and only if x;, x, ..., x,, are linearly dependent.

(N3) N(x1, x3, ..., X, ) is invariant under any permutation of xy, xp, ..., X;,.

(N4) For all t € R with t > 0, N(x1, x2, ..., CXy, 1) = N(x1, X2, ..., cXp, t/ |c]) if ¢ £ 0, c € F .

(N5) For all s, 1 € R, N(x1, X2, ..., Xy + X, 8 + 1) = min {N(X1, X2, ..., X, 8), N(X1, X2, o0y X5, D)}

(N6) N(x1, x2, ..., X, ) is a non-decreasing function of ¢ € R and tlirgloN(xl s X2y ey Xy 1) = 1.

Then (X, N) is called a fuzzy n-normed linear space.

Theorem 2.4. (Narayanan, 2005, p.3963-3977). Let (X, N) be a fuzzy n-normed linear space. Assume further that
(N7) For all t € R with ¢ > 0, N(xy, x, ..., X, 1) > 0,

implies that x, x, ..., x,, are linearly dependent.

Define ||x1, x2, ..., Xpll, = inf {t : N(x1, x2, ..., X, 1) 2 @}, @ € (0, 1).

Then {||e, e, ..., |, : @ € (0, 1)} is an ascending family of n-norms on X. These n-norms are called @—n-norms on X
corresponding to fuzzy n-norm on X.

Definition 2.5. (Menger, 1942, p.535-537). A binary operation = : [0, 1] x [0, 1] — [0, 1] is a continuous t-norm if =
satisfies the following conditions:

(1) = is commutative and associative.

(2) = is continuous.

B3)ax1=a,forallac€[0,1].

4)a*xb <c+dwhenevera<candb <danda,b,c,de[0,1].

In (Vijayabalaji, 2007, p.119-126) redefine the notion of fuzzy n-normed linear space using t-norm.

Definition 2.6. (Vijayabalaji, 2007, p.119-126). Let X be a linear space over a real field F'. A fuzzy subset N of X" X R is
called a fuzzy n-norm on X if and only if:

(N1") For all t € R with < 0, N(xy, X2, ..., X, 1) = 0.

(N2’) For all ¢ € R with t > 0, N(xy, X2, ..., X, 1) = 1 if and only if x, x, ..., x,, are linearly dependent.
(N3") N(x1, X2, ..., X, 1) is invariant under any permutation of xy, x, ..., X,.

(N4’) For all t € R with ¢ > 0, N(x1, X2, ..., cXp,, t) = N(x1, X2, ..., Xy, t/ |c|) if c £0,c € F .
(NS)Forall s, t € R, N(x1, X2, ..., X + X, S + 1) = N(x1, X2, ..., X, 8) ¥ N(X1, X2, ..., X),, 1).

(N6’) N(x1, x2, ..., X, 1) is left continuous and non-decreasing function such that ,ILIE,N (X1, X2 ey Xy, 1) = 1.

To strengthen the above definition, see the following examples.

Example 2.7. (Narayanan, 2005,p.3963-3977) Let (X, ||e, o, ..., ®||) be an n-normed space, where (x, xp, ..., X,) € X X ... X X.

n

Define a = b = min {a, b} and

1
—L __ whent>0, reR
N (X1, X0, ey X, 1) = {1,202, ’ ’
(x1, %2 ns 1) { 0, whent<O0.

Then (X, N) is an f-n-NLS.

Example 2.8. For (x1, x2, ..., x;,) € X X ... X X, we define a * b = min {q, b} and
————

n

t
N(xl,xz,,_,,xn,t): P e D Whent>0, IER,k>0
0, when t < 0.

Then (X, N) is an f-n-NLS.

Proof:

(N1") For all t € R with < 0, N(xy, X2, ..., X, 1) = 0.
(N2’) For all t € R with ¢ > 0, N(x1, X2, .., X, 1) = 1

— =1 & [|x1, x2, ..., Xu|| = 0 & x1, x2, ..., X, are linearly dependent.

t
111X, 0]

(N3’) As [|x1, X2, ..., X,|| is invariant under any permutation of xi, Xy, ..., X, it follow that N(xy, xp, ..., X, f) is invariant
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under any permutation of xi, x5, ..., X,,. under any permutation of xj, xp, ..., X,.

(N4') For all t € R with # > 0 and ¢ € R\ {0},

_ t/lcl _ t/lel
N(x1, X2, ..., CXp, t/ c]) = ek ]l PR X wertal]
el
— 1 — r —_
= Rl = el = N1 X2y e €2 8/ ).

Thus N(xy, x2, ..., cxp, t/ |c]) = N(x1, X2, ..., CXy, t/ |c]).
(N5’) For all s,t € R,
Ifs+t<0,s=r=0,ands+1>0;(s>0,t<0ors<0,r>0), then

N(x1, X2y ey Xy + X, 8 + 1) 2 N(X1, X2, o0y X, 8) * N(X1, X2, .0y X, 1).
If s >0, >0, s+t > then assume that

N(x1, X2, ..., X, 1) < N(x1, X2, ...y X, 8)

t < S
kX, Xl = skl X2, Xl

= t(s+k|lxi,x2, ..., X)) < s(t+k||x1,x2,...,x;,”)
= t]Ix1, X2, o0, Xyl < s”xl,xz,...,x;ln
= ||lx1, X2, ooy Xl £ f”xl,xz,..., x;,H

Therefore,

[1x1, X2, ooy Xp|| + Hx],xz, ...,x,’1|| <4 ”xl,xz, ,x;,” + ||x1,x2, ,xj,”

< (f + 1) ”xl,xg,...,x;l = (37“) ”xl,xz,...,x;ln.

But,
7 J S+t /
Hx],xz, ey Xy + x,,” < ||1x1, X2y evey Xl + ”xl,xz, ...,an < (7) ||x1,x2, ...,an
Then,
|1 x2,exn | K||x1.x2.....0 | S+t ¢
1+ <1+ t S+ X1 X . X+ 25| < 1K1 X000 ||

= N(X1, X2, o0y Xy + Xy, 8 + 1) = N(x1, X2, ooy Xy, 8) ¥ N(X1, X2, .0y X, 2).

(N6") Clearly N(xy, x, ..., X, 1) is left continuous function. Suppose that , > #; > 0 with 71,1, € [0, 1) then,

[ _ f — Kllx1, %2, Xull(t2—11) >0
bAKX X2 Xall f KX X2 e Xl (2 HIX1 225 e Xn D R X2 e Xl )

for all (x1, xp, ..., x,) € X"

1 > 1
Bkl X2 Xl = I X2, 0]

= N(X1, X2, ey Xy 12) = N(X1, X2y ey Xy 11)
Thus N(xy, x3, ..., X, t) is non-decreasing function of 7 € [0, 1).

Also,

1My o0 N(X1L X0, e s 1) = 1My o s = limy oo £ (14 i) = 1.
Hence (X, N) is called f-n-LNS.

Definition 2.9. (Vijayabalaji, 2007,p.119-126). Let (X, N) be a f-n-NLS and {x,} be a sequence in X then {x,} is said to
be convergent if given r > 0, 1 > 0, 0 < r < 1, there exists an integer ny € N such that N(xy, X, ..., X—1, Xy — X, 1) > 1 — 1
for all n > ng. In this case x is called the limit of the sequence {x,}.

Definition 2.10. (Vijayabalaji, 2007,p.119-126). Let (X, N) be a f-n-NLS and {x,} be a sequence in X. The sequence {x,}
is said to be convergent if and only if

N(X1, X2y eoey X1, X — X, 1) > 1l asn — oo,

Definition 2.11. (Vijayabalaji, 2007,p.119-126). Let (X, N) be a f-n-NLS and {x,} be a sequence in X then {x,} is said to
be a Cauchy sequence if given € > 0 with 0 < € < 1, ¢ > 0, there exists an integer ny € N such that N(xy, x2, ..., X—1, X —
xi, 1) > 1 —¢gforall n,k > ny.

Definition 2.12. (Vijayabalaji, 2007,p.119-126). A f-n-NLS is said to be complete if every Cauchy sequence in it is
convergent.

3. a—Completeness in f-n-NLS

In this section we generalize the notions of convergence and completeness in f-n-NLS by introducing the notions of
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a—convergence, a—Cauchyness and a—completeness in f-n-NLS and studying the a—completeness of fuzzy n-normed
linear space.

Definition 3.1. Let (X,N) be a f-n-NLS and @ € (0,1). A sequence {x,} in X is said to be a—convergent to x if
}L%N(xl,xz, vy X1, X — X, 1) > a, for all t > 0.
Theorem 3.2. Let (X, N) be a f-n-NLS satisfying (N7). If {x,} is an @—convergent sequence in.(X, N), then
}Ln;o||x1,x2, ooy X1, X — X, = 0, Ya € (0, 1).
Proof: Let {x,} be an a—convergent sequence in.(X, N) and suppose that it converges to x. Thus

ImN(xy, X2, ceey X1, X — X, 1) >, V1> 0,.a2 € (0,1).

n—oo

= VYt > 0, dng (¢) such that N(x, X2, ..., Xp—1, X, — X, 1) > a, ¥Vt > 0.
= V¥t > 0, dng (r) such that ||x1, X2, ..., Xp—1, X — Xl <1, Y0 > 19 (7).
Since ¢ > 0 is arbitrary, then

lim ”xlyer vy Xn—15Xp — x”a/ = Oa Ya € (O’ l)

n—oo

Theorem 3.3. Let (X, N) be a f-n-NLS satisfying (N7) and {x,} be a sequence in (X, N) . Then {x,} is convergent to x (see
Definition 2.9) if and only if

lim [lxy, X2, ... Xp-1, X0 = Xllo = 0, Y € (0, 1).

n—oo

Proof: Let {x,} be a convergent sequence in (X, N) to x. Choose « € (0, 1). There exists ny € N such that N(xy, x2, ..., Xp—1, Xp—
x,1) > 1 —aforall n > nyg.

It follows that
115 X2 ooy X1y X — X|l1—o < 8, YR 2 Rp.

Thus

}1_&10 [1X15 X2, ves Xp—15 X — Xll1—q = 0, Y@ € (0, 1).
Conversely, let
,}an}o [1X1, X2, ooy X1, Xy — x|l = O, for every @ € (0, 1) .Fix @ € (0, 1) and ¢ > 0. There exists ny € N such that

inf {r : N(x1, X2, e, Xp1, X — X, 1) = 1 —a} < t,

i.e. the sequence {x,} is convergent to x.
Definition 3.4. Let (X, N) be a f-n-NLS and @ € (0, 1). A sequence {x,} in X is said to be a—Cauchy if
nli_)n;N(xl,xz, wees X1, Xp = Xpip, 1) 2 @, forallt >0, p=1,2, ...

Theorem 3.5. Let (X, N) be a f-n-NLS satisfiying (N7). Then every Cauchy sequence in (X, ||e, o, ..., ||,) is an a—Cauchy
sequence in (X, N), where ||, o, ..., o||, denotes the @—n-norm of N, Ve € (0, 1).

Proof: Let ag € (0,1) and {x,} be a Cauchy sequence in (X, o, e, ..., 'IIQO) .
Then,

lim ”xl,xz, ooy X1, Xn = Xnap||, =0, p=1,2,3, ...
n—o0o

@

Thus for a given & > 0, there exist a positive integer N () such that

Hxl,xz, ooy X1, Xy — xnﬂ,”aO <gVn=N(),p=12.73,..

=inf {t >0 N, X2, ey X1, X = Xpap, 1) 2 a/o} <&V¥Vn=N(e),p=1,273,..

= Vn>N(e),p=1,23,..,3tn,p,&) < esuch that N(xi, X2, ..., Xp—1, Xp = Xnsp, 1 (1, P, &) > @
= N(X1, X2, eve Xpe1, Xn — Xpip, &) 2 @0, V02 N (), p=1,2,3, ...

Since € > 0 is arbitrary, then

'}i_)rroloN(xl,xz, vy X1 Xp = Xnip, €) = o, Y1 > 0.

= {x,} is an @p—Cauchy sequence in (X, N).

Since g € (0, 1) is arbitrary, then every Cauchy sequence in (X, ||e, o, ..., ®||,) is an a—Cauchy sequence in (X, N) for each
a € (0,1).

www.ccsenet.org/jmr 119



Journal of Mathematics Research ISSN: 1916-9795
Vol. 2, No. 2, May 2010 E-ISSN: 1916-9809

Definition 3.6. In f-n-NLS (X, N), every a—convergent sequence is an «—Cauchy sequence.
Proof: Suppose that {x,} is @—convergent to x and a € (0, 1), then we have

Iim N(xy, X2, ..., Xu_1, Xn — X, 1) > a, for all £ > 0.

n—oo

Now, forall p =1,2,3, ...

N(X1, X2, ey Xm 1y X=X ps 1) = N(X1, X2, ooy Xppm 1 X=X+ X—Xp0pp, 1/ 242/2) 2 N (X1, X2, ooy Xpm1, X=X, 1/ 2)2N (X1, X2, o0y Xpm1, X—
Xnip>t/2).

Therefore,

Im N (X1, X2, coor Xa1, Xn = Xpap, 1) = WMN(X1, X2, ooy X1, X — X, 1/2)%

n—oo n—oo

Lm N(x1, X2, ..y X1, X = Xpip, 1/2) > .
n—oo

Hence {x,} is an a—Cauchy sequence in (X, N).
The converse of the above theorem is not necessarily true. This is justified by the following example.

Example 3.7. Let (X, ||e, o, ., ., o||) be an n-normed space and define a = b = min {a, b}, for all a, b € [0, 1]. Define

3
N (rps Xas oy, 1) = | R whent >0, r € R,
0, when 1 <0,

where k > 0. Then (X, N) is an f-n-NLS (see Example 2.8). We now show that

a){x,} is a Cauchy sequence in (X, ||e, o, ..., o||) if and only if {x,} is an a—Cauchy sequence in (X, N).
b){x,} is a convergent sequence in (X, ||e, e, ..., o||) if and only if {x,} is an @—convergent sequence in (X, N).
Proof: a) Let {x,} be a Cauchy sequence in (X, ||e, o, ..., o||)

& 1im [|x1, X2, oo Xum1, Xn = Xap| = 0, forall p = 1,2,3, ...
n—oo

< limN(xl, X5 ey Xp—15Xn — anrp) =

n—oo

lim ! =1>a,forallt,k> 0.

=00 K| | X100 X X0 =X ||

= limN(xl,xz, ooy X1y Xy — x,,+p) >a

n—oo
& {x,} is an @—Cauchy sequence in (X, N).
b) {x,} is a convergent sequence in (X, ||e, o, ..., o)

S lim ||x1, X2, ey X1, X — X[ = 0
n—oo

S MmN (X1, X2, ey X1, X — X) =
n—oo

lim———f——— =1>qa,(forallt,k > 0.

n— o0 LI X2 X1 X =]
S WmN (X1, X2, o0y X1, Xn — X) > @,
n—oo
< {x,} is an @—convergent sequence in (X, N).

Remark 3.8. If there exist a Cauchy sequence in n-normed linear space which is not convergent then there may exist
a Cauchy sequence in R-n-LNS which is not convergent. Thus if there exists an n-normed linear space (X, ||e, o, ..., o||)
which is not complete then the fuzzy n-norm induced by such a crisp n-norm ||e, e, ..., ®|| on an incomplete n-normed linear
space X is an @¢—incomplete f-n-NLS

Theorem 3.9. In f-n-LNS (X, N) in which every @—Cauchy sequence has an a—convergent subsequence is a—complete,
where a * b = min{a, b} .and @ € (0, 1).

Proof: Let {x,} be a a—Cauchy sequence in (X, N) and {x,, } be a subsequence of {x,} that a—converges to x. We prove
that {x,} @—converges to x. Since {x,} is an a—Cauchy sequence, there exists an integer ny € N such that

Lim N(x1, X2, .., Xp—1, Xp = Xpip, ) 2 a, forallt >0, p=1,2, ...
n—oo

Since {x,, } @—converges to x, then

Iim N(xq, x7, coes X1 Xy = X, t/2) > a, for all t > 0.
n—o0o

Now,
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N(x1, X2 ooy X1, X = X, 1) = N(X1, X2, o0y X1, X = Xy + 1y — X, /2 + 1/2)
2 N(X1, X2, ooy Xnm1y X = Xy 5 1/2) 5% N(X1, X2, o0y X1, My = X, 1/2) =

lim N(-xl 3 X2y vees Xp—1, X — X, t) = ’}]_)ngoN(-xl 3 X2y eees Xp—1, X — xﬂ,k s t/z)*

n—oo
’}i_)rroloN(xl,xz, X1, N, — X, H2) > axa = a.

Therefore {x,} a—converges to x in (X, N) and hence it is a—complete.

4. Level Fuzzy bounded sets in f-n-NLS

In this section, we define level n—fuzzy bounded set and level n—fuzzy closed set in a fuzzy n-normed space.

Definition 4.1. Let (X, N) be a f-n-NLS. X is said to be level n—fuzzy bounded (I — n—fuzzy) if for any @ € (0, 1), there
exist 7 (@) such that N(x1, x2, ..., Xu_1, Xn, t (@) > a, for all (x1, x, ..., x,,) € X".

Theorem 4.2. Let (X, N) be a f-n-NLS satisfying (N7). Then X is [ — n—fuzzy bounded iff X is bounded with respect to
||o, o, ..., o], for all @ € (0, 1), where ||o, o, ..., ®||, denotes the & — n — norm of N.

Proof: If X is an / — n—fuzzy bounded then for any « € (0, 1), there exist ¢ (@) such that N(x;, xp, ..., X1, X, t (@)) > «, for
all (x1, x2, ..., x,,) € X".

Therefore ||x1, X2, ..., Xyll, < t (@) ,for all (x1, x, ..., x,) € X" and @ € (0, 1). This implies that X is bounded with respect to
||o,0,...,0||, foralla € (0,1).

Conversely, let X be bounded with respect to ||e, e, ..., ®||, for all @ € (0, 1)
= |[x1, X2, e Xpllg < £ (@) for all (x1, x2, ..., x,) € X",
= ||x1, X2, o0, Xlly < t(@) <t(a@)+ 1, foralla € (0, 1),
= N(X1, X2, ee X1, X, t (@) > @, for all (x1, x2, ..., x,) € X",
= X is [ — n—fuzzy bounded.
Definition 4.1. Let (X, N) be a f-n-NLS. A subset A of X is said to be [ — n—fuzzy closed if for any @ € (0, 1) and {x,} in
X, forall (x1, x2, ..., x,) € X", r}l—yngoN X1, X0, ey Xp — x, 1) > @, ¥Vt >0 = x € A.
Theorem 4.2. Let (X, N) be a f-n-NLS satisfying (N7) and A € X. Then A is [ — n—fuzzy closed iff A is closed with respect
to||e,e,..., ||, forall @ € (0,1).
Proof: Let g € (0, 1) and {x,} be a sequence in (X, o, o, ..., 0|Im)) .
Then,
Jim [y, 2, ey X1, X0 = o =0,
Thus for a given & > 0, there exist a positive integer N () such that
11, X2, ooy X1, X — Xlgy < & VR 2 N(e).
= N(X1, X2, ..., X1, Xp — X, E) = Q.
= ,}an}oN(xl’ X2y ey Xn15 Xn — X, 1) = @, YVt > 0 (since ¢ is arbitrary).
— x€A
= A is closed with respect to ||e, e, ..., ®||, for all @ € (0, 1) .
Since g € (0, 1) is arbitrary, it follows that A is closed with respect to ||e, e, ..., ||, @ € (0, 1).
Conversely, suppose that A is closed with respect to ||e, e, ..., ®||,, for each a € (0, 1).

Choose an arbitrary S8y € (0, 1). Let {x,} be a sequence in A such that
m N (X1, X2, <oy X1, Xn — X, 1) = Bo, ¥Vt > 0.
n—oo
Then for a given € > 0 with 8y — € > 0 and for a given ¢ > 0. There exist a positive integer N (&, t) such that,
N(X1, X0y ees X1, Xy — X, 1) = Bo — &, ¥Vn > N (&,1).
= X1, X2, ever Xpo1, Xn = Xllgy—e < 8, VY 2 N (8, 1).
= lim ||x}, X2, ..., X1, Xy — Xlgy_e = O.
n—oo
= x € A.

Since By € (0, 1) is arbitrary, it follows that A is [ — n—fuzzy closed
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