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Abstract
In this paper, we study the equation

a% u(x, 1) + (=) u(x,H) =0

with the initial condition

u(x,0) = f(x)

for x € R”-the n-dimensional Euclidean space. The operator (®)* is operator iterated & times , defined by

P2\ prq o ) k
0 0
koo_ .
o= [(Z ﬁxg) +[Z 8x2]]
i=1 i Jj=p+1 J

p + q = nis the dimension of the Euclidean space R”, u(x, ) is an unknown function for (x,7) = (x,X2,...,Xy,1) €
R" % (0, 00), f(x) is the given generalized function , k is a positive integer and c is a positive constant. Moreover, if we put
g = 0 and k = 1we obtain the solution of equation.

(% u(x, 1) = 2a3u(x, ) =0

Which is related to the triharmonic heat equation.
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1. Introduction

It is well known that for the heat equation

9 _ 2
E u(x, 1) = c”Au(x, t) (1)

with the initial condition
u(x,0) = f(x)

2

n
0
where A = Z ﬁ is the Laplace operator and (x, 1) = (x1, X2, ..., X, ) € R" X (0, 00), we obtain

-1 9%

o1 x — yI*
u(x, 1) = Ay jﬂ;n exp (— a0 )f(y)dy (@)

as the solution of (1).

Now, (2) can be written u(x, t) = E(x, 1) * f(x) where

R 2
E()C,t) = WCXP(—E). (3)

E(x,1) is called the heat kernel, where |x|* = x? + x3 + - -+ + x> and 1 > 0, see (F. John, p208-209).
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In 1996, A. Kananthai (1997) has introduced the Diamond operator ¢ defined by

L 2 [ pg 5 2
o= (Nam] (2 55 e
i= i Jj=p+1 J
2
or ¢ can be written as the product of the operators in the form ¢ = AO = OA where A = Z —— is the Laplacian and
i=1 9%
r 5 Ptq 2
0= Z — - Z —— s the ultra-hyperbolic. The Fourier transform of the Diamond operator also has been studied
x: X4
1 i Jj=p+1 J
and the elementary solution of such operator, see (A. Kananthai, 1999).

Next, K. Nonlaopon and A. Kananthai (2003) study the equation

2 u(x, 1) = 20u(x, 1)

ot
We obtain the ultra-hyperbolic heat kernel
ptq
_ Il i=1 A Z Jj=p+1 j
B0 = G gyre P [_ A% ' @

Next, W. Satsanit has been first introduced the ®* operator where ®* defined by

P )3 g o VY
Z d + Z d

— ox? 6x

i= i Jj=p+1

B 555

p+1

®k

INNOSES Z(A +0O)(a —0O)*

3 1 54
= (5o0+-nA
(705 + 720

where
62 62 (92
A = —+—+...+
axt  8x3 0x2
ik 0? ik 0? 0? 0?
O = _+_+...+_____ .....
ox7  0x3 0x; 3xp " 6xp " oxp .,
( P P & )2 ( » P * Y
Q = _+_+...+_ +...
ax?  8x3 0x2 9 Bxp . 0x3.,
Now, the purpose of this work is to study the equation
0
% u(x, 1) + (=@ ulx, 1) =0 )
with the initial condition
u(x,0) = f(x)

for x € R”-the n-dimensional Euclidean space. The ®* operator is defined by

o2\ pta )\ k
[[Z 6_) +[ 5 5_”
= o} o 0%

L AP klp 2V P2 \( 2 g AT 21t
S S (S5 L S £

Jj=p+1 i=1 Jj=p+1 J Jj=p+1

®k

INNOSES Z(A +0O)(a —O)*

3 1 54
~o0+ —A
(795 + 747
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p + g = nis the dimension of the Euclidean space R”, u(x,t) is an unknown function for (x,#) = (xj,x2,...,X,,1) €
R" % (0, ), f(x) is the given generalized function and c is a positive constant. We obtain u(x,t) = E(x,t) * f(x) as a

solution of (5), where
p 3 ptq 3¢
-2 l[z gg] + [ Z gﬁ] l 1+ i€, %)

i=1 j=p+l

1
E(x,t) = a0 j}; ) exp dé. (6)

The function E(x, ?) is the elementary solution of (5).

All properties of E(x, t) will be studied in details.

Now, if we put ¢ = 0 and k = 1 in (5), then (5) reduces to the equation

9 2.3

£ u(x,t) — c"Au(x, 1) =0

which is related to the triharmonic heat equation.

Before going that points, the following definitions and some concepts are needed.

2. Preliminaries

Definition 2.1 Let f(x) € L;(R")-the space of integrable function in R”. The Fourier transform of f(x) is defined by
70 = G [ e 0w ds ™

where & = (£1,&2,...,&) and x = (X1, X2,...,%,) € R, (&, x) =&x1 +Ex0 + -+ -+ Exy and dx = dxy dxy . .. dx,,.

Also, the inverse of Fourier transform is defined by

NACY

1 o
- Gy |, e de ®

If f is a distribution with compact supports f can be written as (See A. H. Zemanian, 1965, Theorem 7.4-3, p.187 Eq.(2.1))

— 1 .
_ —i(§,x)
[ = e <f(x), e > . )
Lemma 1 Given the function
po V¥ (g VY
f(x) =exp —[[ x,zJ +[ Z xi] ]
i=1 Jj=p+1
where
(x1,%2,...,x,) ER", p+¢g=n,

and k is the positive number . Then

a2 T
| ]R"f(x)dx' < W . m

where pT+q = 5 and I denoted the gamma function. That is fRn f(x)dx is bounded.

Proof.

[ = Lol {59 +(55 4] )

Jj=p+1

for k is a positive integer. By changing the coordinate.Now , put

X1 =Y, X2=Y25--.5 Xp=DYp
dxy =dyy, dx; =dy,,..., dx,=dy,

and

Xp+l = Yp+ls Xpt2 = Yp+2s---5 Xptqg = Yp+q
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dxp+l = dyp+1, d-xp+2 = de+27 e dxp+q = dyp+q
Then we obtain
3 k
ptq P 3
fdx = f exp|-|| D, yi) + (Z y?] dy (10)
R R = —
Jj=p+1 i=1
Let us transform to bipolar coordinates defined by
VI =TWi1,Yy2 =TWa,..., yp = }"Wp
and Vprl = SWpals Yps2 = SWpids o3 Vpag = SWpigs, PHG =1
where w} + w3 +--~+wf, =1 andwfm +wi+2+~--+wf,+q =1, Thus
k
F(x)dx = f exp (— (r©+ 5°) )r”_ls"_ldrdsdﬂpdﬁq 11
R" R”

where
dy = " s drdsdQ,dQ,

dQ, and dQ, are the elements of surface area on the unit sphere in R” and R? respectively.By computing directly , we
obtain

Fdx = 9,0, f f exp (— (©+ sé)")rp*‘s*‘drds (12)
R» 0 0
P/2 2/?

——and Q, = ———.
[(p/2) 7 T(g/2)
Since (% + s > % + §¢  then

where Q, =

exp(—(r® + s9F) < exp(~(r® + s%)
Thus

A

| f(x)dx| < Q,,qu f exp(—r6k—s6k)r”_lsq_ldrds
R 0o Jo

Q,Q, \fo exp (—rﬁk) P ldr fow exp (—sék) s 1ds

Put u = r% dr = 6—lku$’1du and v = s%,ds = &vﬁ’ldv
Then we obtain
Q Q 00 00
If fx)dx| < P 2q f e_“u&_'duf e veldy
R (6k)* Jo 0

Q,0

- (g’k)jr(é)r(%)

2P/ T(L)T(L)
(6k)*  T(5)I(%)

o2 T(ET(E)

9% T(5Hr¢)

A

Where ’%q = 5. That s fRn f(x)dx is bounded.

Lemma 2 (The Fourier transform of (—®)*6)

1y
reoros SO (G o8] ¢+ Gt )]

where F is the Fourier transform defined by Eq.(7) and if the norm of & is given by ||| = (f% + §§ +...+ ,%)1/2 then

3k
k 6k
— 5 <
Fw)lo < ool
that is F(-®)* is bounded and continuous on the space S’ of the tempered distribution. Moreover, by Eq.(8)
— 1 3 3 k
-®)fo=F lw[(f%+§%+...+§,2,) +(§127+1 +§12,+2+...+§1%+q) ]
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Proof. By Eq. (9)

1

— k —
F(=®)o = a2

(_®)k6, e—i(ﬁx))

k_—i(£.x)
(zﬂ)n/z o, (-®)e >

[u—

6’( ®)k 1( ®)e 1(§x)>

I
~~
[\®}
3=
=
<
)
—_—— —~ —~
o)
—~
: é
~
T~
|
A
Ju—
v
\
-
o~
&
¥
——

- G ®)kl( ) IW> Cr >"/2< o (-5)ee)
e el ]
(271-) i=1 Jj=p+1

p+q 3
Zf - Z f] ‘l(ffx)> on ),1/2 <5( ®)F 11 7 * [Zf) —z(f.x)>

Jj=p+1

TUYR

~ 1 k713 . p 5 ptq ptq
_ W<6,(—®) 26D ij, Zlf Zé - Zlf
= Pt p+
n 3
(5 1)4{26,-2] ’<f”>
= < (@) Zf f & —i(s‘»X)>
= (27_[);1/2 Sh

By keeping on operator (—®) with k — 1 times , we obtain

F(-@)s = ((2 ))‘Z (& + §%+...+§§)3+(§i+1+§ﬁ+z+---+f§+q)3]k
Now,
IF(-®) s = (ZHW |(§1 f§+---+§§)3+(§§+1+f,%+z+---+f§+q)3|k
< (2)m|§1 .+§ﬁlk|(§f+...+§5)2+(§%+...+§,§)2+(§f+...+§,3)2‘k
< G quenﬁk

12
where ||¢]| = (ff +E&+.+ f,%) / , &(i=1,2,...,n) € R. Hence we obtain 7 (—®)*d is bounded and continuous on the
space &’ of the tempered distribution.

Since ¥ is 1 — 1 transformation from the space S’ of the tempered distribution to the real space R, then by (8)

®5 =F !

on )n/2 [(51 f% +... +§i)3 + (flzm +§127+2 +... +§[21+q)3].

That completes the proof.
3. Main Results

Theorem 1 Given the equation

gt u(x, )+ (=@ u(x, 1) = 0 (13)

with the initial condition

u(x,0) = f(x) (14)
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The operator

o [[Z—J{z :—;]3]" k

1
oo+ Lany
(4 1 )

p + q = n is the dimension of Euclidean space R", k is a positive integer, u(x,t) is an unknown function for (x,t) =
(X1, X2, ..., X, 1) € R" X (0, 00), f(x) is the given generalized function, and c is a positive constant. Then we obtain

P 3 ptq
E(x,t) = (271T)” j;;n exp [—cz [(; 612) (Zf ] l t+i(¢, x)] dé. (15)

as a elementary solution of (13).
Proof. Taking the Fourier transform defined by (7) to both sides of (13), we obtain

9 P 3 ptq 3
Eﬁ(g, N+ [(; glz) +( Z sz) } wé ) =0,

J=p+1

(see Lemma 8). Thus

P 3 p+q 3\
e 1 = K@ exp —czr[[z f?] +[ D 5_,2-} ]] (16)
i=1 Jj=p+1

where K(&) is constant and u(¢,0) = K(&).
Now , for k is positive number. Thus w(&, t) in (16) is bound and can be written by

A ]

J=p+l1

u(é, 1 = K& exp

Now , by (14) we have

K@ =E,0) = f6) = fR e f() dx (18)

1
(2m)ni2
and by the inversion (8)in (17) and (18) we obtain

u(x, 1) = ST fR ,1 ECIYE, 1) dE
ptq 3¢
i(§.%) p=i(E,y) _
(2ﬂ)n fﬂ fﬂ Y f(y)exp|—c t[(z ) {j;lf ]J dy dé.
Thus
1 i(&,x-y) 2 al
uwn = o f f”e ) exp | -2t (Z ) J;1§ o) dydé
or
1 , ptq .
uxn = oo fR ” fR Jexp|~ct ,- J;lg +i(€ x—y)| fO) dydé. (19)
Set

de. (20)

1 P ptq -
B0 = o fR exp l-&r[(Zg}) (Z £ ” )

J=p+1
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Thus (19) can be written in the convolution form
u(x,t) = E(x,t) = f(x).

Now, the E(x,t) given by (15) exists.
We obtain u(x,t) = E(x,t) = f(x) is a solution of (13), where E(x, ) is defined by (15). and k is positive integer.

Theorem 2 The kernel E(x,t) defined by (15) has the following properties :
(1) E(x,t) € C™-the space of continuous function for x € R", t > 0 with infinitely differentiable.

0
(2) (E + c2(—®)k) E(x,t) =0 for t > 0.and k is positive integer.

(3) E(x,t) >0 for t>0.

1 T(L)T(%)
9.2n71/2k2 (e T(HIN(S)
Thus E(x,t) is bounded for any fixed t > 0.

(4) |E(x,0)| <

for t>0,

(5) linOlE(x, 1) =0.
1

Proof.
(1) From (15), since

dé.

" 1 0" 2 < 2 ’ o 2 ’
o (e = G e 3 P| ¢ [[Zg) +{Z§j]l t+i(&, x)

Thus E(x,1) e C* forx e R", ¢t > 0.
(2) By computing directly, we obtain

2 20 ank _
(at”( ®) )E(x,t)_O.

for t > 0 where E(x,t) is defined by (15).
(3) E(x,t) >0 fort > 0is obvious by (15).

(4) We have
1 P 3 ptg 3¢
E(x,f) = —— -t 2 2 i de.
(x, 1) a0 fRH exp|-c I(;g,) +[j;lgj] +i(¢, x)| dé
put
&=y, L=y, E =
d(f] = dyl, dfz = dyz,. ey dfp = dyp
and

é‘:p+l = Yp+1s §p+2 = YVp42s--es §p+q = Yp+q

d§p+l = dyp+ls d§p+2 = dyp+Zs ey d§p+q = dyp+q

» 3 p 31k
E(x,0) = (2710" fR expi_czt[(Zﬁ) +[ g,?]] +i(§,x)‘ dy.
" i=1

Thus ,we obtain

i=1 i

k
1 p 3 prqg )
|E(x, D] < @ ﬁn exp [_C%((Z ylz] +[ Z yi] ] } dy. 21

i=1 j=p+1
The same process as Lemma 2.1 then (21) becomes

1 T(L)T(&)
9.2nxn/22 (25 T(5HI(L)

[ECx, 1) <
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(5)We have
3 + 31k
1 2 C 2 N 2 d
E(x,1) = —Cc't : : i(&, .
0= fow || B8] +| 28 | vien| e
i Jj=p+
Since E(x, t) exists , then
lim E(x, f) = ! f 6N dg
t—0 ’ (271')" R
=0(x), for xeR". (22)

See (R. Haberman,1983 , p396, Eq.(10.2.19b)). then
111% u(x,t) = u(x,0) =6 * f(x) = f(x)
11—

which satisfies (14)
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