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Abstract

For the first-order language the compactness theorem was proved by K. Gödel and A. I. Mal’cev in 1936. In 1955,

it was proved by J. Łoś (1955) by means of the method of ultraproducts. Unfortunately, for the usual second-order

language the compactness theorem does not hold. Moreover, the method of ultraproducts is also inapplicable to

second-order models. A possible way out of this situation is to refuse the most vulnerable place in the construction

of ultraproducts connected with the factorization relatively an ultrafilter, i.e., to stay working with the ordinary non

factorized product. It compels us instead of the single usual set–theoretical equality = to use several generalized
equalities ≈first and ≈second for first and second orders, and instead of the single usual set-theoretical belonging

∈ to use several generalized belongings <−second. Following that it is necessary to refuse the usual set-theoretical

interpretation (γ(x0), . . . , γ(xk)) ∈ γ(u) of the second basic (after equality) atomic formula (x0, . . . , xk)u and to

replace it by the generalized interpretation (γ(x0), . . . , γ(xk))<−τγ(u), where xτi
i are variables of the first-order types

τi, uτ is a variable of the second-order type τ = [τ0, . . . , τk] (i.e. predicate), and γ is some evaluation of variables

on some mathematical system U.

This paper is devoted to rigorous development of the expressed general idea. For the generalized in such a manner

second-order language the compactness theorem is proved by means of the method of infraproducts consisting in

rejection of the Łoś factorization. In the end of the paper the method of infraproducts is applied for the construction

of some uncountable models of the second-order generalized Peano–Landau arithmetic.

Keywords: second-order language, generalized equality, generalized belonging, infraproduct, infrafiltration, com-

pactness, Peano–Landau arithmetics

1. Introduction

For the first-order language the compactness theorem was proved by K. Gödel and A. I. Mal’cev in 1936 (see,

e.g., Ershov & Palyutin, 1984; §17; Mal’cev, 1970, 8.3; Tourlakis, 2003, 1.5.42). In 1955 it was proved by J. Loś

(1955) by means of the method of ultraproducts (see also Ershov & Palyutin, 1984, §17; Mendelson, 1997, 2.14).

Unfortunately, for the usual second-order language (see, e.g., Mal’cev, 1970, §6; Mendelson, 1997, Appendix;

Takeuti, 1975, §16) the compactness theorem does not hold (see, e.g., Mendelson, 1997, Appendix; Boolos &

Jeffrey, 1989, §18). Moreover, the method of ultraproducts is also inapplicable to second-order models.

A possible way out of this situation is to refuse the most vulnerable place in the construction of ultraproducts

connected with the factorization relatively an ultrafilter, i.e., to stay working with the ordinary non factorized

product. This refusal compels us instead of the single usual set–theoretical equality = to use several generalized
equalities ≈first and ≈second for first and second orders, and instead of the single usual set-theoretical belonging

∈ to use several generalized belongings <−second. Following that it is necessary to refuse the usual set-theoretical

interpretation (γ(x0), . . . , γ(xk)) ∈ γ(u) of the second basic (after equality) atomic formula (x0, . . . , xk)u and to

replace it by the generalized interpretation (γ(x0), . . . , γ(xk))<−τγ(u), where xτii are variables of the first-order types
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τi, uτ is a variable of the second-order type τ = [τ0, . . . , τk] (i.e. predicate), and γ is some evaluation of variables

on some mathematical system U.

This paper is devoted to rigorous development of the expressed general idea. A short presentation of this idea was

announced in Zakharov (2008).

In capacity of initial formulas the formulas of the following two forms were taken: the formula yσδσzσ for the

generalized equality δσ and the formula (xτ0
0
, . . . , xτkk )ετuτ for the generalized belonging ετ, where yσ and zσ are

the variables of the first- or the second-order type σ and xτii and uτ are the variables of the first-order types τi and

the second-order type τ ≡ [τ0, . . . , τk], respectively.

These atomic formulas are interpreted on an evaluated mathematical system (U, γ) (with an evaluation γ of vari-

ables on U) in the following generalized way: γ(y) ≈σ γ(z) and (γ(x0), . . . , γ(xk))<−τγ(u), where ≈σ is a generalized
relation of equality (more exactly, an equivalence relation) and <−τ is a generalized correspondence of belonging.

Generalized equalities and generalized belongings are connected with each other by the initial principle of change
of equals (see axiom E4 from section 4).

More exactly, we introduce a generalized second-order signature Σg
2

containing, in addition to individual and

predicate constants and variables, the symbols δτ and ετ. With respect to this signature formulas ϕ in the language

L(Σ
g
2
) are defined by usual induction, when we start from the above-mentioned atomic formulas.

To give a semantics of the language L(Σ
g
2
) we define mathematical systems U of the signature Σg

2
. The satisfaction

of a formula ϕ on a system U with respect to an evaluation of variables γ is defined according to the above-

mentioned generalized interpretation of the atomic formulas (in notation U |= ϕ[γ]).

The semantics for the language L(Σ
g
2
), presented in the given paper, differs both from the standard semantics (see

Mendelson, 1997, Appendix; Takeuti, 1975, §16) and from the Henkin semantics (see Mendelson, 1997, Appendix;

Takeuti, 1975, §21; Rossberg, 2004; Shapiro, 1991; Väänänen, 2001), which restricts the range of values of the

evaluation γ(xτ) for a variable xτ of a second-order type τ by some subset of the power-set P(τ(X)) of the terminal
τ(X) of the mathematical system U ≡ (X, S ).

In the given paper the following generalized compactness theorem is proved:

LetΦ be a set of formulas of the language L(Σ
g
2
). Let for every finite subset f of the setΦ there exist a mathematical

system U f of the signature Σg
2

and an evaluation of variables γ f on the system U f such that U f |= ϕ[γ f ] for every
formula ϕ ∈ f . Then there exist a mathematical system U of the signature Σg

2
and an evaluation of variables γ on

the system U such that U |= ϕ[γ] for every formula ϕ ∈ Φ (see Theorem 2 in section 8).

This system U is constructed with the help of some ultrafilter starting from the systems U f by means of the method
of infraproducts consisting in rejection of the Łós factorization.

The most delicate point in the proof of the compactness theorem is the demonstration of the property of infrafil-
tration for a quantified formula ∃xτψ for a variable xτ of a second-order type τ = [τ0 . . . , τk], which requires some

preliminary assertions (see Propositions 2 and 4).

In order to enlarge the area of possible applications of the above-mentioned theorem, it is proved in a polygrade

language with basic and auxiliary grades. Therefore interpretations are defined on polygrade domains of the form

[A0, . . . , Am; K0, . . . ,Kn−1], where K0, . . . ,Kn−1 are the fixed auxiliary sets (which are absent when n = 0). It allows

to consider in capacity of models modules AK over the fixed ring K.

The introducing the suite H ≡ [K0, . . . ,Kn−1] of the fixed auxiliary sets requires the introducing the additional

condition of H-concordance of mathematical systems U ≡ (X, S ) and V ≡ (Y,T ), where S and T are the poly-

grade superstructures over the supports X ≡ [A0, . . . , Am,K0, . . . ,Kn−1) and Y ≡ [B0, . . . , Bm,Ko, . . . ,Kn−1]. This

condition means the similarity of the systems U and V with respect to all elements of the signature Σ
g
2

connnected

with the fixed auxiliary suite H. Also we use the similar condition of H-concordance of an evaluation γ on the
system U and an evaluation δ on the system V . In turn, this entails the necessity of introducing the additional

condition of H-concordance in defining the satisfactions U |= (∃xτϕ)[γ] and U |= (∀xτϕ)[γ], which is not required

for n = 0, i.e., when the auxiliary suite is absent.

With the exception of the condition of H-concordance and some technical difficulties, the polygrade variant U =
([A0, . . . , Am; K0, . . . ,Kn−1]; S ) considered in this paper does not differ in principal from the purely onegrade variant

(A; S ).
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In the end of the paper the method of infraproducts is applied for the construction of models of the second-order

generalized Peano–Landau arithmetic. The supports of these models are the Baire sets NF
0 , which are uncountable

in general.

Further in the paper the redesignation of a symbol-string ρ by a symbol-string σ will be denoted by ρ ≡ σ or

σ ≡ ρ.
2. Types

For fixed integers m, n ∈ ω0 define by induction the semitypes and the types:

1) for any i ∈ m + 1 the symbol-string 〈i, 1〉 is the semitype and the type;

2) for any j ∈ n the symbol-string 〈 j, 0〉 is the semitype and the type;

3) if τ is a type, then τ is the semitype;

4) if τ is a semitype, then [τ] is the type;

5) if τ0, . . . , τk are semitypes and k ≥ 1, then (τo, . . . , τk) is the semitype.

This definition is a generalization of the corresponding definition from Takeuti (1975, §20).

Further instead of [(τo, . . . , τk)] we shall write simply [τo, . . . , τk]. So the notation [τo, . . . , τk] may be used for

k ≥ 0.

Semantics of semitypes and types will be explained in the next section.

Types 〈i, 1〉 and 〈 j, 0〉will be called the first-order types. If τ0, . . . , τk are first-order types and k ≥ 0 then [τ0, . . . , τk]

will be called the second-order type.

For a type τ ≡ [τ0, . . . , τk] with k ≥ 0 the types τ0, . . . , τk will be called the parents of the type τ and will be denoted

by p0τ,. . . ,pkτ, respectively. Consider the set P(τ) ≡ {p0τ, . . . , pkτ} of all parents of the type τ.

For any first-order type τ put formally pτ ≡ τ and P(τ) ≡ {pτ} = {τ}.
With any type τ we associate the semitype τ̌ of the type τ as follows:

1) if τ is a first-order type, then τ̌ ≡ τ;
2) if τ = [τ1] and τ1 is a semitype, then τ̌ ≡ τ1.

In other words, the semitype of a type is obtained by omitting the square brackets.

An auxiliary type is defined by induction in the following way:

1) any type of the form 〈 j, 0〉 is an auxiliary type for every j ∈ n;

2) if τ is an auxiliary type, then [τ] is the auxiliary type;

3) if τ0, . . . ,τk are auxiliary types and k ≥ 1, then [τ0, . . . , τk] is an auxiliary type.

A type will be called basic if it is not auxiliary.

Thus for a second-order type τ ≡ [τ0, . . . , τk] the index set k + 1 is decomposed on two subsets M(τ) and N(τ) so

that for any μ ∈ M(τ) the type τμ is basic and for any ν ∈ N(τ) the type τν is auxiliary.

3. Formations and Terminals

Further in the paper K0, . . . ,Kn−1 are fixed auxiliary sets. If n = 0 then all the fixed sets are absent.

Define the formation G ≡ [P0, . . . , Pl−1] of the rank l ∈ ω0 in the following way:

1) G ≡ [P0, . . . , P−1] ≡ ∅ for l = 0;

2) G ≡ [P0, . . . , P0] ≡ P for l = 1;

3) G ≡ [P0, . . . , Pl−1] ≡ (Pi | i ∈ l) ≡ (P0, . . . , Pl−1) for l ≥ 2.

Further we fix the auxiliary formation H ≡ [K0, . . . ,Kn−1] of the rank n ∈ ω0.

Define the formation X ≡ [A0, . . . , Am,K0, . . . ,Kn−1] of the rank m + 1|n over the set H in the following way:

1) X ≡ [A0, . . . , Am,K0, . . . ,Kn−1] ≡ [A0, . . . , Am] for n = 0 and m ∈ ω0;

23



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

2) X ≡ [A0, . . . , Am,K0, . . . ,Kn−1] ≡ 〈[A0, . . . , Am], [K0, . . . ,Kn−1]〉 for n ≥ 1 and m ∈ ω0.

The sets A0, . . . , Am are called basic in X. A formation X may be without auxiliary sets but should contain at least

one basic set.

Define the terminals τ(X) of the semitypes τ over the formation X by induction:

1) 〈i, 1〉(X) ≡ Aj;

2) 〈 j, 0〉(X) ≡ Kj;

3) if τ is a semitype then [τ](X) ≡ P(τ(X)), where P denotes the operation of taking power-set of the intended set;

4) if τ0, . . . , τk are semitypes and k ≥ 1 then (τ0, . . . , τk)(X) ≡ τ0(X) × . . . × τk(X).

Thus for semitypes τ0, . . . , τk with k ≥ 1, for the type τ ≡ [τ0, . . . , τk], and for its semitype τ̌ = (τ0, . . . , τk) the

following equalities τ(X) = P(τ0(X) × . . . × τk(X)) and τ̌(X) = τ0(X) × . . . × τk(X) are fulfilled.

4. Signatures and Formulas

A non-empty setΘ of types τwill be called the type domain of rank m+1|n if τ ∈ Θ implies pτ ∈ Θ for every parent

pτ of the type τ. In a type domain Θ select the belonging type subdomain Θb ≡ {τ ∈ Θ | ∃k ∈ ω0∃τ0, . . . , τk ∈
Θ(τ = [τ0, . . . , τk])}.
A collection Σc ≡ (Στc | τ ∈ Θ) of collections Στc ≡ (στω | ω ∈ Ωτ) of constants στω of the types τ will be called the

signature of constants of the type domain Θ. Sets Ωτ may be empty, and then Στc = ∅.

The constants στω of the first-order type τ are called individual or objective ones. Constants of other types are

called predicate.

A collection Σe ≡ (δτ | τ ∈ Θ) of binary predicate symbols of (generalized) equalities δτ of the types τ will be

called a signature of (generalized) equalities of the type domain Θ. In follows from the definition of the type

domain that for every equality symbol δτ the collection Σe contains necessarily the equality symbols δpτ for every

parent pτ of the type τ.

A collection Σb ≡ (ετ | τ ∈ Θ) of binary predicate symbols of (generalized) belongings ετ of the types τ will be

called the signature of (general) belongings of the type domain Θ.

A collection Σv ≡ (Στv | τ ∈ Θ) of denumerable sets Στv of variables xτ, yτ,. . . of the type τ will be called the

signature of variables of the type domain Θ. The sets Στv may be empty. The variables xτ, yτ, . . . of the first-order

types τ are called individual or objective. The variables of other types are called predicate.

Further we shall always assume that for every type τ ∈ Θ there are either constants or variables of this type.

The quadruple Σg ≡ Σc|Σe|Σb|Σv will be called a (polygrade) generalized signature of the rank m+1|n or a signature
with generalized equalities and belongings.

The language L(Σg) of the generalized signature Σg consists of:

1) all types τ from the type domain Θ;

2) all members of all signatures from Σg;

3) logical symbols ¬, ∨, ∧,⇒, ∀, and ∃.

4) parenthesis.

If the type domain Θ contains first- and second-order types only and at least one second-order type, then we shall

say that the signature Σg and the language L(Σg) have the second order (see Mendelson, 1997, Appendix; van

Dalen, 1983, p. 4). In this case the notations Σ
g
2

and L(Σ
g
2
) will be used.

Constants and variables of a type τ are called terms of the type τ of the language L(Σg).

The atomic formulas of the language L(Σg) are defined in the following way:

1) if q and r are terms of a type τ ∈ Θ, then qδτr is an atomic formula;

2) if τ0,. . . , τk are the types from Θ for k ≥ 0, τ ≡ [τ0, . . . , τk] ∈ Θ, qτ0
0

, . . . , qτkk are terms of types τ0, . . . , τk,

respectively, and rτ is a term of the type τ, then (qτ0

0
, . . . , qτk

k )ετrτ is an atomic formula; in particular for k = 0 the

symbol-string qτ0

0
ε[τ0]r[τ0] is an atomic formula.
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The formulas of the language L(Σg) are constructed from atomic ones with the use of connectives ∨, ∧, ¬, ⇒,

quantifiers ∃xτ and ∀xτ with respect to variables xτ, and parenthesis.

The logical axiom schemes of (polygrade) type theory in the language L(Σg) of the generalized signature Σg are

schemes of the predicate calculus where variables and terms substituting each other must be of the same type

τ ∈ Ω.

In addition to these axiom schemes consider the following equality axioms for types τ ∈ Θ:

E1) ∀xτ(xδτx);

E2) ∀xτ, yτ(xδτy⇒ yδτx);

E3) ∀xτ, yτ, zτ(xδτy ∧ yδτz⇒ xδτz);

E4) ∀xτ0
0
, yτ0

0
, . . . , xτkk , y

τk
k , u

τ, vτ(x0δτ0 y0 ∧ . . . ∧ xkδτk yk ∧ uδτv ⇒ ((x0, . . . , xk)ετu ⇔ (y0, . . . , yk)ετv))), where τ ≡
[τ0, . . . , τk].

Axiom E4 is the initial principle of change of equals.

The inference rules in the depicted type theory are:

ϕ, ϕ⇒ ψ
ψ

(MP) and
ϕ(xτ)
∀xτϕ(xτ)

(Gen).

If there are nonlogical axioms or axiom schemes written by second-order formulas, we shall say that a (mathemat-
ical) generalized second-order theory is given.

5. Mathematical Systems of the Signature Σg With Generalized Equalities and Belongings

5.1 Definition of a Mathematical System of the Generalized Signature Σg

Let Σg be a fixed signature of the rank m + 1|n defined in the previous section. Fix also a formation X ≡
[A0, . . . , Am,K0, . . . ,Kn−1] of the rank m + 1|n.

For the formation X and the signature Σg consider the following collections:

1) the collection S c ≡ (S τc | τ ∈ Θ) of collections S τc ≡ (sτω | ω ∈ Ωτ) of constant structures sτω ∈ τ(X) of the types
τ;

2) the collection S e ≡ (≈τ| τ ∈ Θ) of generalized equality relations ≈τ⊂ τ(X) × τ(X) of the types τ on the sets
τ(X), containing the usual set-theoretic equality relations = on the sets τ(X), i.e., such relations ≈τ that for every

elements r, s ∈ τ(X) the equality r = s implies the generalized equality r ≈τ s;

3) the collection S b ≡ (<−τ | τ ∈ Θb) of generalized belonging correspondences <−τ ⊂ τ̌(X) × τ(X) of the types
τ, containing the usual set-theoretic belonging correspondences ∈ from the sets τ̌(X) into the sets τ(X), i.e., such

correspondences <−τ that for every elements p ∈ τ̌ and P ∈ τ(X) the belonging p ∈ P implies the generalized

belonging p<−τP;

4) the collection S v ≡ (τ(X) | τ ∈ Θ) of the terminals τ(X) of the types τ over the formation X.

The quadruple S ≡ (S c, S e, S b, S v) of the above-mentioned collections will be called a (polygrade) superstructure
of the signature Σg over the formation X.

The pair U ≡ (X, S ) will be called a mathematical system of the generalized signature Σg with the support X and
the superstructure S . This notion is a generalization of the notion of an algebraic system of the signature Σ1 (see

Ershov & Palyutin, 1984, §15).

The mathematical system U ≡ (X, S ) will be called also an interpretation of the signature Σg on the support X.

Further for a type τ = [τ0, . . . , τk] and elements p ≡ (p(0), . . . , p(k)), q ≡ (q(0), . . . , q(k)) ∈ τ̌(X) = τ0(X) × · · · ×
τk(X) along with p(0) ≈τ0

q(0) ∧ · · · ∧ p(k) ≈τk q(k) we shall also write p ≈τ̌ q.

5.2 Concordance of Mathematical Systems of the Generalized Second-Order Signature

Two mathematical systems U ≡ (X, S ) and V ≡ (Y,T ) of the signature Σ
g
2

will be called H-concordant if:

1) for every auxiliary type τ ∈ Θ and every ω ∈ Ωτ the constants sτω ∈ τ(X) and tτω ∈ τ(Y) = τ(X) coincide, where

by definition of terminals τ(X) = τ(Y);
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2) for every auxiliary type τ ∈ Θ the equalities ≈τ⊂ τ(X) × τ(X) and ≈τ⊂ τ(Y) × τ(Y) coincide, where as above

τ(Y) × τ(Y) = τ(X) × τ(X);

3) for every auxiliary type τ ∈ Θb the belongings <−τ ⊂ τ̌(X) × τ(X) and <−τ ⊂ τ̌(Y) × τ(Y) coincide, where by the

same reason τ̌(Y) × τ(Y) = ˇτ(X) × τ(X);

4) for every suite p ≡ (p(0), . . . , p(k)) ∈ sτω ⊂ τ̌(X) = τ0(X) × · · · × τk(X) there exists a suite q ≡ (q(0), . . . , q(k)) ∈
tτω ⊂ τ̌(Y) = τ0(Y) × · · · × τk(Y) such that q(ν) = p(ν), and for every q there exists p such that p(ν) = q(ν) for every

ν ∈ N(τ) and every type τ ≡ [τ0, . . . , τk] such that M(τ) � ∅ and N(τ) � ∅.

The property of H-concordance means the identity of the systems U and V with respect to all elements connected

with the auxiliary set H.

The generalized equalities ≈τ and the generalized belongings <−τ admit some additional conditions.

A system U will be called balanced, if ∀P,Q ∈ τ(X)(P ≈τ Q⇔ ∀p ∈ P∃q ∈ Q(q ≈τ̆ p)∧ ∀q ∈ Q∃p ∈ P(p ≈τ̆ q)),

where τ0, . . . , τk ∈ Θ, k ≥ 0 and τ ≡ [τ0, . . . , τk] ∈ Θ.

A system U will be called regular, if ∀p ∈ τ̆(X)∀P ∈ τ(X)(p<−τP ⇔ ∃q ∈ P(p ≈τ̆ q)), where τ0, . . . , τk ∈ Θ, k ≥ 0

and τ ≡ [τ0, . . . , τk] ∈ Θ.

A system U will be called normal, if ∀p, q ∈ σ(X)(p ≈σ q⇔ p = q) ∧ ∀p ∈ τ̆(X)∀P ∈ τ(X)(p<−τP⇔ p ∈ P).

A system U will be called extensional, if ∀P,Q ∈ τ(X)(P ≈τ Q ⇔ ∀p(p<−τP ⇒ p<−τQ) ∧ ∀q(q<−τQ ⇒ q<−τP)),

where τ ∈ Θb.

5.3 Evaluations and Models

An evaluation on a system U ≡ (X, S ) of the signature Σg is a mapping γ, defined on the set of all variables of

the signature Σg and associating with the variable xτ of the type τ ∈ Θ the element γ(xτ) of the terminal τ(X) (see

Ershov & Palyutin, 1984, §16; Takeuti, 1975, 16.17]). The pair (U, γ) consisting of the system U of the signature

Σg and and the evaluation γ on U will be called an evaluated mathematical system of the signature Σg.

Evaluated mathematical systems (U, γ) and (V, δ) of the signature Σg will be called H-concordant if:

1) the systems U and V are H-concordant;

2) for every auxiliary type τ ∈ Θ the evaluations γ(xτ) ∈ τ(X) and δ(xτ) ∈ τ(Y) = τ(X) coincide i.e., γ(xτ) = δ(xτ)
(see 4.1);

3) for every suite p ≡ (p(0), . . . , p(k)) ∈ γ(xτ) ⊂ τ̌(X) = τ0(X)×· · ·×τk(X) there exists a suite q ≡ (q(0), . . . , q(k)) ∈
δ(xτ) ⊂ τ̌(Y) = τ0(Y) × · · · × τk(Y) such that q(ν) = p(ν) and, for every q there exists p such that p(ν) = q(ν) for

every ν ∈ N(τ) and every type τ = [τ0, . . . , τk] such that M(τ) � ∅ and N(τ) � ∅.

The property of H-concordance means the identity of the evaluated systems (U, γ) and (V, δ) with respect to all

elements connected with the auxiliary set H.

An evaluation γ on a system U and an evaluation δ on a system V will be called H-concordant if they satisfy

conditions 2) and 3) from the previous definition.

Define the value q[γ] of a term q relatively the evaluation γ on the system U in the following way (see Ershov &

Palyutin, 1984, §16; Mal’cev, 1970, §6; Mendelson, 1997, 2.2; Schoenfield, 1967, 3.2):

1) if στ is a constant of a type τ ∈ Θ, then στ[γ] ≡ sτ;

2) if xτ is a variable of a type τ ∈ Θ, then xτ[γ] ≡ γ(xτ).

Define the satisfaction of a formula ϕ of the language L(Σ
q
2
) on a system U of the signature Σq

2
relatively an

evaluation γ (in designation U |= ϕ[γ]) by induction in the following way (see Mendelson, 1997, 2.2; Schoenfield,

1967, 3.2; Takeuti, 1975, 16.17):

1) if q and r are terms of a type τ ∈ Θ and ϕ ≡ (qδτr), then U |= ϕ[γ] is equivalent to q[γ] ≈τ r[γ];

2) if τ0, . . . , τk are types from Θ for k ≥ 0, τ ≡ [τ0, . . . , τk] ∈ Θ, q0, . . . , qk are terms of the types τ0, . . . ,τk, respec-

tively, r is a term of the type τ, and ϕ ≡ (q0, . . . , qk)ετr, then U |= ϕ[γ] is equivalent to (q0[γ], . . . , qk[γ])<−τr[γ];

3) if ϕ ≡ ¬ψ, then U |= ϕ[γ] iff U |= ψ[γ] is not true;

4) if ϕ ≡ (ψ ∨ ξ), then U |= ϕ[γ] iff U |= ψ[γ] or U |= ξ[γ];
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5) if ϕ ≡ (ψ ∧ ξ), then U |= ϕ[γ] iff U |= ψ[γ] and U |= ξ[γ];
6) if ϕ ≡ (ψ⇒ ξ), then U |= ϕ[γ] iff that U |= ψ[γ] implies U |= ξ[γ];
7) if ϕ ≡ ∃xτψ, then U |= ϕ[γ] is equivalent to U |= ψ[γ′] for some evaluation γ′ H-concordant with γ and such

that γ′(yσ) = γ(yσ) for every variable yσ � xτ;

8) if ϕ ≡ ∀xτψ, then U |= ϕ[γ] is equivalent to U |= ψ[γ′] for every evaluation γ′ H-concordant with γ and such

that γ′(yσ) = γ(yσ) for every variable yσ � xτ.

Note that bringing into use in points 7) and 8) of this definition the additional (in comparison with Ershov &

Palyutin, 1984, §16; Mendelson, 1997, 2.2; Shoenfield, 1967, 3.2) property of H-concordance of the evaluations

γ and γ′ is stipulated by the initial polygrade structure of considered mathematical systems and by the presence of

the fixed auxiliary formation H ≡ [K0, . . . ,Kn−1].

Let Φ be a set of formulas of the language L(Σ
q
2
). An evaluated mathematical system (U, γ) of the signature Σ

q
2

will

be called a model for the set Φ if U |= ϕ[γ] for every formula ϕ ∈ Φ (see Ershov & Palyutin, 1984, §17).

A model (U, γ) for Φ will be called a model of the second order if at least one formula from Φ contains at least one

second order variable.

A model (U, γ) will be called balanced, regular, normal, extensional etc., if the system U is the same.

A model (U, γ) for a set Φ will be called second-order, if at least one formula from Φ contains at least one second-

order variable.

Remark that if a system U ≡ [X, S ] is considered in an axiomatic set theory, then the satisfaction of a closed

formula ϕ of the language L(Σ
g
2
) under any evaluation γ is reduced to correctness of the relativization ϕr of ϕ on

the corresponding terminal of the support X in this set theory.

In particular, since equality axioms E1− E4 are closed formulas, their relativizations E1r − E4r take the following

forms:

E1r) ∀x ∈ τ(X)(x ≈τ x);

E2r) ∀x, y ∈ τ(X)(x ≈τ y⇒ y ≈τ x);

E3r) ∀x, y, z ∈ τ(X)(x ≈τ y ∧ y ≈τ z⇒ x ≈τ z);

E4r) ∀x0, y0 ∈ τ0(X) . . .∀xk, yk ∈ τk(X)∀u, v ∈ τ(X)(x0 ≈τ0 ∧ . . . ∧ xk ≈τk yk ∧ u ≈τ v ⇒ ((x0, . . . , xk)<−τu ⇔
(y0, . . . , yk)<−τv)), where τ ≡ [τ0, . . . , τk], k ≥ 0 and all types are in Θ.

The satisfaction of formulas E1r − E3r means that all generalized equalities ≈τ are equivalence relations on cor-

responding sets τ(X), and the satisfaction of formula E4r means the property of replacing of equals in the atomic

formula with the generalized belonging <−τ.
Further we shall say that a system U of the signature Σ

g
2

has true generalized equalities and belongings, if axioms

E1 − E4 from section 3 are satisfied on U with respect to some (and consequently to any) evaluation γ. It means

that formulas E1r − E4r are correct for the system U in the used set theory.

5.4 The Generalized Equality of Values of Evaluations and Satisfiability

For every formula ϕ of the language L(Σ
q
2
) we define the formula ϕ∗ by means of induction:

1) ϕ∗ ≡ ϕ for every atomic formula ϕ;

2) (ψ ∧ ξ)∗ ≡ ψ∗ ∧ ξ∗;
3) (¬ψ)∗ ≡ ¬ψ∗;
4) (∃xτψ)∗ ≡ ∃xτψ∗;

5) (ψ ∨ ξ)∗ ≡ ¬(¬ψ∗ ∧ ¬ξ∗);
6) (ψ⇒ ξ)∗ ≡ ¬(ψ∗ ∧ ¬ξ∗);
7) (∀xτψ)∗ ≡ ¬(∃xτ(¬ψ∗)).
Say that a formula ϕ is normalizable, if for every mathematical Σ

q
2
-system U and every evaluation γ on U the

following condition holds: U |= ϕ[γ]⇔ U |= ϕ∗[γ].
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Lemma 1 Let formulas ψ and ξ be normalizable. Then formulas ψ ∧ ξ, ¬ψ, ψ ∨ ξ, ψ ⇒ ξ, ∀xτψ and ∃xτψ are
normalizable too.

A proof of this lemma uses the definition of satisfiability and some well known tautologies only, so it is omitted.

Proposition 1 Every formula of the language L(Σ
g
2
) of the generalized second–order signature Σg

2
is normalizable.

Proof. Denote by Φ the set of all formulas of the language L(Σ
g
2
). The subset of the set Φ consisting o formulas

containing at most n ∈ ω0 logical symbols ¬, ∧,⇒, ∨, ∃, ∀, denote by Φn. It is clear that Φ =
⋃

(Φn | n ∈ ω0).

Prove by the complete induction principle the following assertion A(n): every formula ϕ ∈ Φ is normalizable.

If n = 0, then the formula ϕ is atomic, and so by the definition, of the operation ϕ �→ ϕ∗ we have ϕ∗ ≡ ϕ.

Consequently the assertion A(0) is true.

Suppose for all m < n the assertion A(m) is true. Let ϕ ∈ Φn. If ϕ ≡ ψ∧ξ, ϕ ≡ ¬ψ, ϕ ≡ ∃xτψ, ϕ ≡ ψ∨ξ, ϕ ≡ ψ⇒ ξ
or ϕ ≡ ∀xτψ, then ψ, ξ ∈ Φn−1. Therefore by the induction hypothesis the formulas ψ and ξ are normalizable. By

the previous Lemma 1 the formula ϕ is normalizable. Hence the assertion A(n) is true. �.

Proposition 2 Let U be a mathematical system of the second–order signature Σg
2

with true generalized equalities
and belongings. Then for every formula ϕ of the language L(Σ

g
2
) and every H-concordant evaluations γ and δ on

the system U such that γ(xτ) ≈τ δ(xτ) for every variable xτ of every type τ ∈ Θ the properties U |= ϕ[γ] and
U |= ϕ[δ] are equivalent.

Proof. The set of all formulas ϕ of the language L(Σ
g
2
) constructed by induction from the atomic formulas with the

use of connectives ¬ and ∧ and quantifier ∃ denote by Ψ. The subset of the set Ψ consisting of formulas containing

at most n ∈ ω0 logical symbols ¬, ∧, and ∃ denote by Ψn. It is clear that Ψ =
⋃

(Ψn | n ∈ ω0).

Prove by the complete induction principle the assertion of Proposition 2 A(n): for every formula ϕ ∈ Ψn and every
mentioned evaluations γ and δ Proposition 2 is true.

Let n = 0 and ϕ ∈ Ψ0. Then ϕ is an atomic formula. At first consider the atomic formula ϕ of the form qτδτrτ.
Suppose that qτ = xτ and rτ = στω. Then U |= ϕ[γ] is equivalent to γ(x) ≈τ sτω and U |= ϕ[δ] is equivalent to

δ(x) ≈τ sτω. Since, by our condition γ(x) ≈τ δ(x), assuming U |= ϕ[γ] and using axioms E2r and E3r we infer

U |= ϕ[δ]. The inverse inference is checked in the same way. For the terms qτ and rτ of other forms the reasons

are quite similar.

Now consider the atomic formula ϕ of the form (qτ0
0
, . . . , qτkk )ετrk for τ ≡ [τ0, . . . , τk] ∈ Θb. Assume that qτλλ = xτλλ

and rτ = uτ for some variables xλ and u. Then U |= ϕ[γ] is equivalent to (γ(x0), . . . , γ(xk))<−τγ(u) and U |= ϕ[δ] is

equivalent to (δ(x0), . . . , δ(xk))<−τδ(u).

Suppose U |= ϕ[γ]. Since, by our condition, γ(xτλλ ) ≈τλ δ(xτλλ ), assuming U |= ϕ[γ] and using axiom E4r we infer

U |= ϕ[δ]. The inverse inference is checked in the same way. For the terms qτλλ and rτ of other kinds the reasons

are quite similar.

Assume that assertion A(m) is true for every m < n. Let ϕ ≡ ∃xτψ. Then ψ ∈ Ψn−1. Let be given some H-

concordant evaluations γ and δ such that γ(xτ) ≈τ δ(xτ).

Suppose U |= ϕ[γ]. It is equivalent to U |= ψ[γ′] for some evaluation γ′, H-concordant with γ and such that

γ′(y) = γ(y) for any yσ � xτ.

Define an evaluation δ′ on U setting δ′(y) ≡ δ(y) for every yσ � xτ and δ′(x) ≡ γ′(x). Then δ′(y) = δ(y) ≈σ γ(y) =

γ′(y) and δ′(x) = γ′(x), i.e., δ′(x) ≈τ γ′(x).

Check that the evaluations δ′ and γ′ are H-concordant. If σ is an auxiliary first-order type, then δ′(yσ) ≡ δ(y) =

γ(y) = γ′(y). If τ is an auxiliary first-order type, then δ′(xτ) = γ′(xτ).

Let σ and τ be second-order types. Let p ∈ δ′(yσ) = δ(y). Since δ and γ are H-concordant, for p there exists

q ∈ γ(y) such that q(ν) = p(ν) for every ν ∈ N(σ). Since γ and γ′ are H-concordant, there exists r ∈ γ′(y) such

that r(ν) = q(ν). So for p there is r ∈ γ′(y) such that r(ν) = p(ν) for every ν ∈ N(σ). The inverse property can be

established in the same way. , The property of H-concordancy for xτ holds automatically because δ′(xτ) ≡ γ′(xτ).

Since δ′ and γ′ are H-concordant and δ′(xτ) ≈ γ′(xτ) then by our condition, U |= ψ[γ′]↔ U |= ψ[δ′]. Consequently

we obtain the property U |= ψ[δ′]. By construction, δ′(y) = δ(y) for every yσ � xτ.

Check that the evaluations δ and δ′ are H-concordant. If σ is an auxiliary first-order type, then δ′(yσ) = δ(y). If τ
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is an auxiliary first-order type, then δ′(xτ) = γ′(x) = γ(x) = δ(x).

Let σ and τ bee second-order types. Since δ′(yσ) = δ(y), the property of H-concordancy obviously holds. Let

p ∈ δ(x). Since δ and γ are H-concordant, we see that there exists q ∈ γ(x) such that q(ν) = p(ν). Since γ and

γ′ are H-concordant, there exists r ∈ γ′(x) = δ′(x) such that r(ν) = q(ν). So r(ν) = p(ν) for every ν ∈ N(τ). The

inverse property is established in the same way.

By the definition of satisfiability, we conclude that U |= ϕ[δ]. The inverse inference of U |= ϕ[γ] from U |= ϕ[δ] is

established quite analogously.

Now let ϕ ≡ ψ ∧ ξ. Then ψ, ξ ∈ Ψn−1. Consequently, U |= ψ[γ] ↔ U |= ψ[δ] and U |= ξ[γ] ↔ U |= ξ[δ]. From

here (U |= ψ[γ]&U |= ξ[γ])↔ (U |= ψ[δ]&U |= ξ[δ]). So U |= ϕ[γ]↔ U |= ϕ[δ].

Finally, let ϕ ≡ ¬ψ. Then ψ ∈ Ψn−1. Consequently, U |= ψ[γ] ↔ U |= ψ[δ]. From here U |= ϕ[γ] ↔ ¬(U |=
ψ[γ])↔ ¬(U |= ψ[δ])↔ U |= ϕ[δ].

This proves that the assertion A(n) is true. By the complete induction principle, the assertion A(n) is true for every

natural number n ∈ ω0, i.e., the assertion of Proposition 2 holds for every formula ϕ ∈ Ψ.

Now let ϕ be an arbitrary formula of the language L(Σ
g
2
). In virtue of Proposition 1 we have U |= ϕ[γ]↔ U |= ϕ∗[γ]

and U |= ϕ[δ] ↔ U |= ϕ∗[δ]. By the definition of the operation ϕ �→ ϕ∗, we have ϕ∗ ∈ Ψ. As proved above

U |= ϕ∗[γ]↔ U |= ϕ∗[δ]. In result, we obtain the equivalence U |= ϕ[γ]↔ U |= ϕ[δ]. �
5.5 An Example of a Good Model for the Second-Order Equality Axioms

Construct for axioms E1 − E4 a regular, balanced, extensional, second-order model.

Take m = 0, n = 0, ρ ≡ 〈0, 1〉, σ ≡ [ρ], Θ ≡ {ρ, σ}, Ωρ = ∅, Ωσ = ∅, Σ
ρ
c = ∅, and Σσc = ∅. Then Σe ≡ (δρ, δσ),

Θb = {σ}, Σb ≡ (ετ | τ ∈ Θb), i.e., Σb consists of the symbol εσ = ε[ρ] only, and the collection Σv ≡ (Στv | τ ∈ Θ)

consists of a denumerable set Σ
ρ
v of variables xρ, yρ, . . . of the first-order type ρ and a denumerable set Σσv of

variables uσ, vσ, . . . of the second-order type σ.

Consider the one grade signature Σ0 ≡ Σc | Σe | Σb | Σv of the rank 1|0, and its language L(Σ0). This language

contains three atomic formulas: xρδρyρ, uσδσvσ and xρεσuσ.

Take the set of all closed segments of straight lines on the plane as a set A ≡ A0. Then X = A. Since Ωρ = Ωσ = ∅,

there are no constants. For segments p, q ∈ A put p ≈ρ q, if q is obtained from p by some parallel transfer. For

sets P,Q ∈ P(A) of segments put P ≈σ Q, if (∀p ∈ P∃q ∈ Q(p ≈ρ q)) ∧ (∀q ∈ Q∃p ∈ P(q ≈ρ p)). For a segment

p ∈ A and a set of segments P ∈ P(A) put p<−σP, if and only if ∃q ∈ A(q ≈ρ p ∧ q ∈ P), i.e., the segment p can be

transferred into the set P with some parallel transfer.

The collection of terminals S v ≡ (τ(X) | τ ∈ Θ) consists of the terminal ρ(X) = A and the terminal σ(X) = P(A).

The constructed collections form the one grade superstructure S over the set X = A. Consider the mathematical

system U ≡ [A, S ] of the signature Σ0.

Proposition 3 The above-constructed mathematical system U together with any evaluation γ of variables of the
language L(Σ0) on the system U form the regular, balanced, extensional, second-order model for equality axioms
E1 − E4.

Proof. The correctness of the equality axioms follows from the definition. The same is true for the balance property.

Check the extensionality property. Assume p ∈ P. Then p<−σP. Suppose the right side of the extensionality

formula. By condition we conclude p<−σQ. By the regularity property there exists an element q ∈ Q such that

q ≈ρ p. The inverse finding of an element p ∈ P for a given element q ∈ Q such that p ≈ρ q is established quite

similarly. In accordance with the definition of the equality ≈σ we conclude that P ≈σ Q. So, we have inferred the

left side of the extensionality formula. It follows from the correctness of axiom E4r that the left side implies the

right one. �
6. Infraproducts of Collections of Evaluated Mathematical Systems of the Generalized Second-Order Sig-
nature Σg

2

Let (U f | f ∈ F) be a pairwise H-concordant collection of mathematical systems of the second-order signature Σ
g
2

with true generalized equalities and belongings.

By definition, U f ≡ (Xf , S f ), where Xf ≡ [A0 f , . . . , Am f ,K0, . . . ,Kn−1].
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Consider the sets Ai ≡∏(Ai f | f ∈ F) and the formation X ≡ [A0, . . . , Am,K0, . . . ,Kn−1] ≡ prod(Xf | f ∈ F).

Let τ ≡ [τ0, . . . , τk] be a second-order type and k ≥ 0.

If μ ∈ M(τ), then τμ = 〈i, 1〉 for some i. So τμ(X) = Ai =
∏

(Ai f | f ∈ F) =
∏

(τμ(Xf ) | f ∈ F). If ν ∈ N(τ)
then τν = 〈 j, 0〉 for some j. So τν(X) = Kj = τν(Xf ) for every f ∈ F. This means that the terminals of different

parent types of the type τ over the formation X have quite different constitutions. Therefore it is convenient to

introduce the following notation. For elements p ∈ τ̌(X) = τ0(X) × · · · × τk(X) and f ∈ F define the element

p( f ) ∈ τ̌(Xf ) = τ0(Xf ) × · · · × τk(Xf ) setting p( f )(μ) ≡ p(μ)( f ) for every μ ∈ M(τ) and p( f )(ν) ≡ p(ν) for every

ν ∈ N(τ)).

For elements P ⊂ τ̌(X) and f ∈ F define the element P〈 f 〉 ⊂ τ̌(Xf ) setting P〈 f 〉 ≡ {ξ ∈ τ̌(Xf ) | ∃p ∈ P(p( f ) = ξ)}.
LetD be a subset of the power-set P(F). Define the superstructure S of the signature Σ

g
2

over the formation X.

At first define the constant structures sτω ∈ τ(X) for τ ∈ Θ and ω ∈ Ωτ.
If τ is a basic first-order type, then τ(X) =

∏
(τ(Xf ) | f ∈ F). Therefore define sτω ∈ τ(X) setting sτω(Xf ) ≡ sτ

ω f
for every f ∈ F. If τ is an auxiliary first-order type, then τ(X) = τ(Xf ) and sτ

ω f does not depend on the index f .

Therefore put sτω ≡ sτ
ω f for some (and then for every) f ∈ F.

If τ = [τ0, . . . , τk] is a second-order type, then put sτ
ω f ≡ {p ∈ τ̌(X) | ∀ f ∈ F(p( f ) ∈ sτω)}.

In result we obtain the collections S τc ≡ (sτω | ω ∈ Ωτ) and the collection S c ≡ (S τc | τ ∈ Θ).

Now define the generalized equalities ≈τ⊂ τ(X) × τ(X).

If τ is a basic first-order type, then for p, q ∈ τ(X) put p ≈τ q iff ∃G ∈ D∃g ∈ G(p(g) ≈τ,g q(g)). If τ is an auxiliary

first-order type, then the equality ≈τ, f does not depend on the index f . Therefore for p, q ∈ τ(X) put p ≈τ q iff

p ≈τ, f q for some (and then for every) f ∈ F.

If τ = [τ0, . . . , τk] is a second-order type, then for P,Q ⊂ τ̆(X) put P ≈τ Q iff ∃G ∈ D∀g ∈ G(P〈g〉 ≈τ,g Q〈g〉).
In result we obtain the collection S e ≡ (≈τ| τ ∈ Θ).

Now define the generalized belongings <−τ ⊂ τ̌(X) × τ(X). Let τ ∈ Θb. By definition, τ = [τ0, . . . , τk] for some

τ0, . . . , τk ∈ Θ. For p ∈ τ̌(X) and P ⊂ τ̌(X) put p<−τP iff ∃G ∈ D∀g ∈ G(p(g)<−τ,gP〈g〉) (Note 1).

In result we obtain the collection S b ≡ (<−τ | τ ∈ Θb).

Consider also the collection S v ≡ (τ(X) | τ ∈ Θ) consisting of the τ-terminals of the formation X.

The constructed collections compose the superstructure S ≡ (S c, S e, S b, S v) over the formation X. Therefore we

can consider the mathematical system U ≡ (X, S ) of the signature Σ
g
2
. It will be called the infra-D-product of the

collection of mathematical systems (U f | f ∈ F) of the generalized second-order signature Σg
2

and will be denoted

by infra-D-prod(U f | f ∈ F).

Further we assume thatD is a filter.

Now let ((U f , γ f ) | f ∈ F) be a pairwise H-concordant collection of evaluated mathematical systems of the

second-order signature Σ
g
2

with true generalized equalities and belongings.

Define the evaluation γ on the system U ≡ infra-D-prod(U f | f ∈ F) in the following way.

Let x be a variable of a type τ. If τ is a first-order basic type, then define γ(x) ∈ τ(X) setting γ(x)( f ) ≡ γ f (x) for

every f ∈ F. If τ is an auxiliary first-order type, then put γ(x) ≡ γ f (x) for some (and then for every) f ∈ F.

If τ = [τ0, . . . , τk] is a second-order type, then put γ(x) ≡ {p ∈ τ̌(X) | ∀ f ∈ F(p( f ) ∈ γ f (x))}.
The evaluation γ will be called the crossing of the collection of evaluations (γ f | f ∈ F) and will be denoted by

�� (γ f | f ∈ F).

Lemma 2 Let (U f | f ∈ F) be a pairwise H-concordant collection of mathematical systems of the second-order
signature Σg

2
and let every evaluated mathematical system (U f , γ f ) be a model for equality axioms E1 − E4. Then

the pair (infra-D-prod(U f | f ∈ F), �� (γ f | f ∈ F)) is also a model for axioms E1 − E4.

Proof. Let t0, t′0 ∈ τ0(X), . . . , tk, t′k ∈ τk(X), P, P′ ⊂ τ̆(X) = τ0(X) × . . . × τk(X), p ≡ (t0, . . . , tk), p′ ≡ (t′0, . . . , t
′
k),

p ≈τ̆ p′ and P ≈τ P′.

Assume that p<−τP. By the definition of the belonging ∃G1 ∈ D∀g ∈ G1(p(q)<−τ,gP〈q〉). By the definition of the
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first-order equalities, ∃G2 ∈ D∀g ∈ G2(p(g) ≈τ̆,g p′(g)). Finally, by the definition of the second order equalities

∃G3 ∈ D∀g ∈ G3(P〈g〉 ≈τ,g P′〈g〉). Since every system (Ug, γg) satisfies E4, we see that p′(g)<−τ,gP′〈g〉 for every

g ∈ G ≡ G1 ∩ G2 ∩ G3. So p′<−τP′. Hence, p<−τP ⇒ p′<−τP′. The inverse implication is checked quite similarly.

This proves axiom E4. The validity of axioms E1, E2, E3 is obvious. �
Further for a formula ϕ ∈ L(Σ) the set { f ∈ F | U f |= ϕ[γ f ]} will be denoted by Gϕ.

Lemma 3 Let τ = [τ0, . . . , τk] be a second-order type. Let sτω be the constants constructed above for the support
X ≡ prod(Xf | f ∈ F). Then sτω〈 f 〉 = sτ

ω f for every f ∈ F.

Proof. Let ξ ∈ sτω〈 f 〉, i.e., ξ = p( f ) for some p ∈ sτω. By definition, ξ = p( f ) ∈ sτ
ω f . Consequently, sτω( f ) ⊂ sτ

ω f .

Conversely, let ξ f ∈ sτ
ω f . Since the collection of systems (U f | f ∈ F) is H-concordant, using the axiom of choice

we can find a collection (ξg | g ∈ F \ { f }) such that ξg ∈ sτωg and ξg(ν) = ξ f (ν) for every ν ∈ N(τ). Define the

element p ∈ τ̆(X) setting p(μ)(g) ≡ ξg(μ) for every g ∈ F and every μ ∈ M(τ) and p(ν) ≡ ξ f (ν) for every ν ∈ N(τ).
Then p(g) = ξg ∈ sτωg for every g ∈ F implies p ∈ sτω. Since ξ f = p( f ), we have ξ f ∈ sτω〈 f 〉. Hence, sτ

ω f ⊂ sτω〈 f 〉.
�
Lemma 4 Let τ = [τ0, . . . , τk] be a second-order type. Let x be a variable of the type τ and γ(x) be the evaluation
constructed above for the system U ≡ (X, S ). Then γ(x)〈 f 〉 = γ f (x) for every f ∈ F.

The proof is completely similar to the proof of the previous lemma.

7. Infrafilteration of Formulas of the Second-Order Language L(Σ
g
2
) of the Generalized Second-Order Sig-

nature Σg
2

Consider a non-empty set F and a filterD on F.

By analogy with the first order language (Ershov & Palyutin, 1984, §17; Mal’cev, 1970, 8.2) a formula ϕ of

the language L(Σ
g
2
) of the second-order signature Σ

g
2

with generalized equalities and belongings will be called

infrafiltrated with respect to the filter D if for every pairwise H-concordant collection ((U f , γ f ) | f ∈ F) of

evaluated mathematical systems of the second-order signature Σ
g
2

with true generalized equalities and belongings

the property infra-D-prod(U f | f ∈ F) |= ϕ[�� (γ f | f ∈ F)] is equivalent to the property {g ∈ F | Ug |= ϕ[γg]} ∈ D.

Lemma 5 Every atomic formula is infrafiltered with respect to any filterD on the set F.

Proof. At first consider an atomic formula ϕ of the form qτδτrτ. Assume that qτ = xτ and rτ = στω. Then U |= ϕ[γ]
is equivalent to γ(x) ≈τ sτω, and analogously for the pair (U f , γ f ).

Let τ be a first-order type. Let Gϕ ∈ D, i.e., γg(x) ≈τ,g sτωg for every g ∈ Gϕ ∈ D. If τ is a basic type, then

γg(x) = γ(x)(g) and sτωg implies γ(x)(g) ≈τ,g sτω(g) for every g ∈ Gϕ ∈ D. So γ(x) ≈τ sτω. If τ is an auxiliary

type, then γg(x) = γ(x) and sτωg = sτω. Besides, ≈τ,g coincides with ≈τ. Hence γ(x) ≈τ sτω. In both cases we have

obtained the property U |= ϕ[γ].

Conversely, let U |= ϕ[γ], i.e., γ(x) ≈τ sτω. If τ is a basic type, then there exists G ∈ D such that γ(x)(g) ≈τ,g sτω(g)

for every g ∈ G. But it means that γg(x) ≈τ,g sτωg, i.e., Ug |= ϕ[γg] for every g ∈ G ∈ D. Since G ⊂ Gϕ, we have

Gϕ ∈ D. If τ is an auxiliary type then γ f (x) ≈τ, f sτ
ω f for every f ∈ F. Consequently, Gϕ ∈ G again.

Now let τ ≡ [τ0, . . . , τk] be a second-order type. Let Gϕ ∈ D, i.e., γg(x) ≈τ,g sτωg for every g ∈ Gϕ ∈ D. According

to Lemmas 3 and 4 the equalities sτωg = sτω〈g〉 and γg(x) = γ(x)〈g〉 are correct. Therefore γ(x)〈g〉 ≈τ,g sτω〈g〉 for

every Gϕ ∈ D. Consequently, γ(x) ≈τ sτω, i.e., U |= ϕ[γ].

Conversely, let U |= ϕ[γ], i.e., γ(x) ≈τ sτω. By the definition of the second-order equality γ(x)〈g〉 ≈τ,g sτω〈g〉 for

some G ∈ D and every g ∈ G. Using Lemmas 3 and 4 we obtain γg(x) ≈τ,g sτωg, i.e., Ug |= ϕ[γg] for every g ∈ G.

Since G ⊂ Gϕ, we infer that Gϕ ∈ D.

For terms qτ and rτ of other forms the reasons are quite similar.

Now consider an atomic formula ϕ of the form (qτ0

0
, . . . , qτk

k )ετrτ for τ ≡ [τ0, . . . , τk] ∈ Θb. Assume that qτλλ = xτλλ
and rτ = uτ for some variables xλ and u. Then U |= ϕ[γ] is equivalent to (γ(x0), . . . , γ(xk))<−τγ(u) and analogously

for the pair (U f , γ f ).

Let Gϕ ∈ D, i.e., (γg(x0), . . . , γg(xk))<−τ,gγg(u) for every g ∈ Gϕ ∈ D. Consider the elements ξ f ≡ (γ f (x0), . . . , γ f (xk))

and p ≡ (γ(x0), . . . , γ(xk)) ∈ τ̆(X). Let f ∈ F. Then p( f )(μ) ≡ p(μ)( f ) = γ(xμ)( f ) = γ f (xμ) = ξ f (μ) for every

μ ∈ M(τ) and p( f )(ν) ≡ p(ν) = γ(xν) = γ f (xν) = ξ f (ν) for every ν ∈ N(τ). Consequently, p( f ) = ξ f . By Lemma

3 γ f (u) = γ(u)〈 f 〉. In result we obtain p(g)<−τ,gγ(u)〈g〉 for every g ∈ Gϕ ∈ D. By definition, it means that p<−τγ(u),
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i.e., U |= ϕ[γ].

Conversely, let U |= ϕ[γ], i.e., (γ(x0), . . . , γ(xk))<−τγ(u). By the definition of the second-order belonging for p ≡
(γ(x0), . . . , γ(xk)) there exists G ∈ D such that p(g)<−τ,gγ(u)〈g〉 for every g ∈ G. By Lemma 4 γ(u)〈g〉 = γg(x). By

the previous paragraph ξg = p(g). Consequently, ξg<−τ,gγg(u), i.e., Ug |= ϕ[γg] for every g ∈ G. Since G ⊂ Gϕ, we

infer that Gϕ ∈ D.

For terms qτλλ and rτ of other forms the reasons are quite similar. �
A proof of the property of infrafiltration for the quantified formula ∃xτϕ for the polygrade language L(Σ

g
2
) of the

generalized second-order signature Σ
g
2

is more delicate than for the first-order language. Therefore we begin it with

a subsidiary proposition.

Let ((U f , γ f ) | f ∈ F) be a pairwise H-concordant collection of evaluated mathematical systems of the second-

order signature Σ
g
2

with true generalized equalities and belongings. Let β be an evaluation on the system U ≡
infra-D-prod(U f | f ∈ F), H-concordant with the evaluation γ ≡ �� (γ f | f ∈ F).

With respect to the evaluation β for every f ∈ F define the evaluation δ f on the system U f in the following way.

Let x be a variable of a type τ. If τ is a basic first-order type, then put δ f (x) ≡ β(x)( f ). If τ is an auxiliary first-order

type, then put δ f (x) ≡ β(x). If τ is a second-order type, then put δ f (x) ≡ β(x)〈 f 〉.
Proposition 4 1) The collection ((U f , δ f ) | f ∈ F) of the evaluated mathematical systems (U f , δ f ) of the second-
order signature Σg

2
with true generalized equalities and belongings is pairwise H-concordant;

2) the evaluated systems (U f , γ f ) and (U f , δ f ) are H-concordant;

3) for the evaluation δ ≡ �� (δ f | f ∈ F) the equalities δ(xτ) ≈τ β(xτ) hold for any variable xτ;

4) the evaluations δ and β are H-concordant.

Proof. 1) Let x be a variable of a type τ. If τ is an auxiliary first-order type, then δ f (x) = β(x) = δg(x) for every

f , g ∈ F.

Let τ ≡ [τ0, . . . , τk] be a second-order type. Fix some f , g ∈ F. Consider an arbitrary element ξ ∈ δ f (x) = β(x)〈 f 〉.
By definition, ξ = p( f ) for some p ∈ β(x) ⊂ τ̌(X) = τ0(X)× . . .×τk(X). Consider the element η ≡ p(g) ∈ β(x)〈g〉 =
δg(x). Then η(ν) = p(g)(ν) = p(ν) and ξ(ν) = p( f )(ν) = p(ν) implies η(ν) = ξ(ν) for every ν ∈ N(τ). The inverse

finding the element ξ corresponding to the given element η is realized in the similar manner.

2) If τ is an auxiliary first-order type, then δ f (xτ) ≡ β(xτ) and γ(xτ) ≡ γ f (xτ). By condition, β(xτ) = γ(xτ).
Consequently, δ f (xτ) = γ f (xτ).

Let τ ≡ [τ0, . . . , τk] be a second-order type. Consider an arbitrary element ξ ∈ γ f (x). In virtue of Lemma 4 we

have γ f (x) = γ(x)〈 f 〉. Since ξ ∈ γ(x)〈 f 〉, by definition there exists p ∈ γ(x) such that ξ = p( f ). By condition, for

p ∈ γ(x) there is q ∈ β(x) such that q(ν) = p(ν) for any ν ∈ N(τ). Consider the element η ≡ q( f ) ∈ β(x)〈 f 〉 = δ f (x).

Then η(ν) = q( f )(ν) = q(ν) = p(ν) = p( f )(ν) = ξ(ν). The inverse condition is checked in the same way.

3) Let x be a variable of a type τ. If τ is a basic first-order type, then by the definition of the evaluations δ and

δ f we obtain δ(x)( f ) ≡ δ f (x) = β(x)( f ) for any f ∈ F, i.e., δ(x) = β(x). If τ is an auxiliary first-order type, then

δ(x) = δ f (x) = β(x) for some f ∈ F.

Let τ be a second-order type. Then δ(x) =
∏

(δ f (x) | f ∈ F). In virtue of Lemma 4 δ(x)〈 f 〉 = δ f (x) = β(x)〈 f 〉 for

any f ∈ F. By the definition of the second-order equality, we conclude that δ(x) ≈τ (β)(x).

4) Let τ be an auxiliary first-order type. Then δ(xτ) = δ f (xτ) for some f ∈ F. By definition, δ f (xτ) = β(xτ).
Consequently, δ(xτ) = β(xτ).

Let τ = [τ0, . . . , τk] be a second-order type. Let p ∈ β(x). By the definition of the cut, p( f ) ∈ β(x)〈 f 〉 = δ f (x)

for every f ∈ F. By the definition of the crossing, p ∈ δ(x). So for p ∈ β(x) there exists q = p ∈ δ(x) such that

q(ν) = p(ν) for every ν ∈ N(τ).

Conversely, let q ∈ δ(xτ). By the definition of the crossing, q( f ) ∈ δ f (x) = β(x)〈 f 〉 for every f ∈ F. Fix some

element f0 ∈ F. By the definition of the cut, there is p ∈ β(x) such that p( f0) = q( f0). If ν ∈ N(τ), then

p( f0)(ν) = q( f0)(ν). However p( f0)(ν) = p(ν) and q( f0)(ν) = q(ν). Therefore p(ν) = q(ν) for every ν ∈ N(τ). �
Proposition 5 Let a formula ψ be infrafiltrated with respect to the filterD. Then the formula ∃xτψ is infrafiltrated
byD too.
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Proof. Denote the formula ∃xτψ by ϕ. Let Gϕ ∈ D, i.e., Ug |= ϕ[γg] for every g ∈ Gϕ ∈ D. Further we shall write

simply G instead of Gϕ.

The presented satisfaction property means that Ug |= ψ[γ′g] for some evaluation γ′g, H-concordant with the evalu-

ation γg and such that γ′g(y) = γg(y) for every yσ � xτ . For every f ∈ F define the evaluation δ f setting δ f ≡ γ f

if f ∈ F \ G and δ f ≡ γ′f if f ∈ G. Check that the evaluated systems (U f , δ f ) and (Ug, δg) are H-concordant for

every f , g ∈ F. If f , g ∈ F \G, then δ f = γ f and δg = γg. Since the evaluations γ f and γg are H-concordant, our

assertion is true. Let f , g ∈ G. Then δ f = γ
′
f and δg = γ

′
g. Let x be a variable of a type τ.

For an auxiliary first-order type τ we have γ′f (x) = γ f (x) and γ′g(x) = γg(x). Since the evaluations γ f and γg are

H-concordant, we infer that γ f (x) = γg(x). Consequently δ f (x) = γ′f (x) = γ′g(x) = δg(x).

Let τ be a second-order type. Let p ∈ δ f (x) = γ′f (x). Then there exists q ∈ γ f (x) such that q(ν) = p(ν) for every

ν ∈ N(τ). Since the evaluations γ f and γg are H-concordant, there is r ∈ γg(x) such that r(ν) = q(ν). Since the

evaluations γg and γ′g are H-concordant as well, there exists s ∈ γ′g(x) = δg(x) such that s(ν) = r(ν) = q(ν) = p(ν)
for any ν ∈ N(τ). The inverse condition is checked in the same way.

In the cases when f ∈ F \G and g ∈ G or conversely the arguments are similar.

So the collection ((U f , δ f ) | f ∈ F) of evaluated mathematical systems of the signature Σ
g
2

with true generalized

equalities and belongings is pairwise H-concordant. Consider the evaluation δ ≡ �� (δ f | f ∈ F).

Check that δ(y) = γ(y) for every yσ � xτ. Let σ be a basic first-order type. If g ∈ G, then δ(y)(g) = δg(y) = γ′g(y) =

γg(y) = γ(y)(g). If f ∈ F \G, then δ(y)( f ) = δ f (y) = γ f (y) = γ(y)( f ). Consequently, δ(y) = γ(y).

Let σ be an auxiliary first-order type. Then δ(y) = δ f (y) = γ f (y) = γ(y) for some f ∈ F \G.

Let σ be a second-order type. Then δ(y) =
∏

(δ f (y) | f ∈ F). If f ∈ G, then δ f (y) = γ′f (y) = γ f (y). If f ∈ F \G,

then δ f (y) = γ f (y). So δ(y) =
∏

(γ f (y) | f ∈ F) = γ(y).

Thus for every y � x we have δ(y) = γ(y).

Check that the evaluations γ and δ are H-concordant. Let yσ � xτ.

If σ in an auxiliary first-order type, then δ(y) = γ(y).

Let σ be a second-order type. It was proved above that δ(y) = γ(y). Consequently for every p ∈ δ(y) there is

q ≡ p ∈ γ(y) such that q(ν) = p(ν) for any ν ∈ N(σ).

If τ is an auxiliary first-order type, then δ(x) = δ f (x) = γ f (x) = γ(x) for some f ∈ F \G.

Let τ be a second-order type. Let p ∈ γ(xτ) =
∏

(γ f (x) | f ∈ F). If f ∈ F \G, then δ f = γ f . If g ∈ G, then δg = γ
′
g

and the evaluations γ′g and γg are H-concordant.

Consider the nonempty set A ≡ ⋃(γ′g(x) | g ∈ G). Define the mapping α : G → P(A) \ {∅} setting α(g) ≡ {η ∈
γ′g(x) ⊂ A | ∀ν ∈ N(τ)(η(ν) = p(g)(ν))}. According to the point 3 of the definition of H-concordant systems the set

α(g) is non-empty.

By the axiom of choice there exists a function ch : P(A) \ {∅} → A such that chP ∈ P. Consider the function

β ≡ ch ◦ α : G → A and the corresponding collection β = (ηg ∈ A | g ∈ G). Since ηg = β(g) = ch(α(g)) ∈ α(g)

then, we have ηg(ν) = p(g)(ν) = p(ν) for every ν ∈ N(τ).

Define the element q ∈ τ̌(X) setting q(μ)( f ) ≡ p(μ)( f ) for every f ∈ F \ G, q(μ)(g) ≡ ηg(μ) for every g ∈ G and

every μ ∈ M(τ), and q(ν) ≡ ηg(ν) = p(ν) for every ν ∈ N(τ) and every g ∈ G.

Then q( f )(μ) = q(μ)( f ) = p(μ)( f ) = p( f )(μ) for every μ ∈ M(τ) and q( f )(ν) = q(ν) = p(ν) = p( f )(ν) for every

ν ∈ N(τ) implies q( f ) = p( f ) ∈ γ f (x) = δ f (x) for every f ∈ F \ G. If g ∈ G, then q(g)(μ) = q(μ)(g) = ηg(μ) for

every μ ∈ M(τ) and q(g)(ν) = q(ν) = ηg(ν) for every ν ∈ N(τ) implies q(g) = ηg ∈ γ′g(x) = δg(x). Consequently,

q ∈ ∏(δ f (x) | f ∈ F) = δ(xτ). Besides, q(ν) = p(ν) for every ν ∈ N(τ). The inverse finding the element p
corresponding to the given element q is realized in the similar manner.

So the evaluations γ and δ are really H-concordant.

By condition and construction, Ug |= ψ[δg] for every g ∈ G ∈ D. Since the formula ψ is infrafiltered, the

obtained property implies the property U |= ψ[δ]. Since the evaluation δ is H-concordant with the evaluation γ and

δ(yσ) = γ(yσ) for every yσ � xτ, we obtain the property U |= ϕ[γ].

33



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

Conversely, let U |= ϕ[γ]. It is equivalent to U |= ψ[β] for some evaluation β, H-concordant with the evaluation γ
and such that β(y) = γ(y) for every yσ � xτ.

Consider the evaluation δ ≡ �� (δ f | f ∈ F) from Proposition 4, corresponding to the evaluation β. According

to Proposition 4 the evaluations δ and β are H-concordant and δ(zρ) ≈ρ β(zρ) for every variable zρ. It follows

from Proposition 2 that the property U |= ψ[β] is equivalent to the property U |= ψ[δ]. Since the formula ψ is

infrafiltrated, the property U |= ψ[δ] is equivalent to the property G ≡ {g ∈ F | Ug |= ψ[δg]} ∈ D.

By Proposition 4 the evaluations δg and γg are H-concordant. Let yσ � xτ. If σ is a basic first-order type, then

δg(y) = β(y)(g) = γ(y)(g) = γg(y). If σ is an auxiliary first-order type, then δg(y) = β(y) = γ(y) = γg(y). Finally, if

σ is a second-order type, then δg(y) = β(y)〈g〉 = γ(y)〈g〉. Since by Lemma 4 γ(y)〈g〉 = γg(y), we have δg(y) = γg(y).

Consequently in all the cases δg(y) = γg(y) for every yσ � xτ. Therefore the property Ug |= ψ[δg] is equivalent to

the property Ug |= ϕ[γg]. So {g ∈ F | Ug |= ϕ[γg]} = G ∈ D. This implies Gϕ ∈ D. �
The following two lemmas are the same as ones for the first-order language.

Lemma 6 Let formulas ψ and ξ be infrafiltered with respect to the filterD. Then the formula ψ ∧ ξ is infrafiltered
byD too.

Proof. Denote the formula ψ∧ ξ by ϕ. Let Gϕ ∈ D, i.e., Ug |= ϕ[γg] for all g ∈ Gϕ ∈ D. This property is equivalent

to conjunction of the properties Ug |= ψ[γg] and Ug |= ξ[γg]. Since these formulas are infrafiltered, it is equivalent

to conjunction of the properties U |= ψ[γ] and U |= ξ[γ], but it is equivalent to the property U |= ϕ[γ].

Conversely, let U |= ϕ[γ]. It is equivalent to the conjunction of the properties U |= ψ[γ] and U |= ξ[γ]. Then

Gψ ∈ D and Gξ ∈ D. Consider G ≡ Gψ ∩ Gξ. Then Ug |= ψ[γg] and Ug |= ξ[γg] implies Ug |= ϕ[γg] for every

g ∈ G ∈ D. Hence, Gϕ ∈ D. �
Lemma 7 Let a formula ψ be infrafiltered with respect to the ultrafilterD. Then the formula ¬ψ is infrafiltered by
D too.

Proof. Denote the formula ¬ψ by ϕ. By assumption, the properties Gψ ∈ D and U |= ψ[γ] are equivalent.

By definition, F \ Gϕ = {g ∈ F | the property Ug |= ϕ[γg] does not hold}. But Ug |= ϕ[γg] is equivalent to the

assertion that the property Ug |= ψ[γg] does not hold. Consequently the property Ug |= ψ[γg] is equivalent to the

assertion that the property Ug |= ϕ[γg] does not hold. It implies F \Gϕ = Gψ.

Let Gϕ ∈ D. SinceD is an ultrafilter, we have Gψ = F \Gϕ � D. So the property U |= ψ[γ] does not hold. By the

definition of the satisfiability, it means that U |= ϕ[γ].

Conversely, let U |= ϕ[γ]. Then the property U |= ψ[γ] does not hold. Therefore Gψ � D. SinceD is an ultrafilter,

we have Gϕ = F \Gψ ∈ D. �
Theorem 1 Every formula ϕ of the language L(Σ

g
2
) of the second-order signature Σg

2
with generalized equalities

and belongings is infrafiltered with respect to any ultrafilterD on the set F.

Proof. The set of all formulas ϕ of the language L(Σ
g
2
), constructed by induction from atomic formulas by means

of the connectives ¬ and ∧ and the quantifier ∃, will be denoted by Ψ. The subset of the set Ψ, consisting of all

formulas containing at most n logical symbols ¬, ∧, and ∃, will be denoted byΨn. Obviously, Ψ =
⋃

(Ψn | n ∈ ω0).

Using the complete induction principle (see Mendelson, 1997, 3.1, Proposition 3.9) we shall prove the following

assertion A(n): every formula ϕ ∈ Ψn is infrafiltered.

If n = 0, then ϕ is an atomic formula. By Lemma 5 it is infrafiltered. Consequently, A(0) holds.

Assume that for every m < n the assertion A(m) holds. Let ϕ ∈ Ψn. If ϕ = ¬ψ, then ψ ∈ Ψn−1. Therefore, ψ
is infrafiltered. By Lemma 7 the formula ϕ is infrafiltered too. If ϕ = ψ ∧ ξ, then ψ, ξ ∈ Ψn−1. Therefore, by

the inductive assumption, the formulas ψ and ξ are infrafiltered. By Lemma 6 the formula ϕ is infrafiltered too.

Finally, if ϕ = ∃xτψ, then ψ ∈ Ψn−1. Consequently as above the formula ψ is infrafiltered. By Proposition 5 the

formula ϕ is infrafiltered too. So the assertion A(n) holds.

By the complete induction principle the assertion A(n) holds for every n ∈ ω0. This means that any formula ϕ ∈ Ψ
is infrafiltered.

Let ϕ be an arbitrary formula of the language L(Σ
g
2
). Consider for ϕ the accompanying formula ϕ∗ defined in section

4. By the definition of the operation ϕ �→ ϕ∗, we have ϕ∗ ∈ Ψ. As proved above the formula ϕ∗ is infrafiltered, i.e.,

{g ∈ F | Ug |= ϕ∗[γg]} ∈ D ↔ U |= ϕ∗[γ]. Proposition 1 implies the equivalences U |= ϕ∗[γ] ↔ U |= ϕ[γ] and
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Ug |= ϕ∗[γg] ↔ Ug |= ϕ[γg]. In result we get the following chain of equivalences: {g ∈ F | Ug |= ϕ[γg]} ∈ D ↔
{g ∈ F | Ug |= ϕ∗[γg]} ∈ D ↔ U |= ϕ∗[γ]↔ U |= ϕ[γ]. It means that the formula ϕ is infrafiltered. �.

This theorem has one important corollary. Let Φ be some set of formulas of the language L(Σ
g
2
) of the generalized

second-order signature Σ
g
2
. Let the set Φ has a model (U0, γ0) of the signature Σ

g
2

with true generalized equalities

and belongings. Take an arbitrary set F and an arbitrary ultrafilter D on F. Consider the collection of the models

((U f , γ f ) | f ∈ F) such that (U f , γ f ) ≡ (U0, γ0). The infra-D-product infra-D-prod(U f | f ∈ F) of the collection

(U f | f ∈ F) will be called the infra-D-power of the system U0 with the exponent F and will be denoted by

infra-D-power(U0, F). The crossing �� (γ f | f ∈ F) of the collection (γ f | f ∈ F) will be called the crossing of the
evaluation γ0 in the quantity F and will be denoted by �� (γ0, F).

Corollary LetΦ be some set of formulas of the language L(Σ
g
2
). If the setΦ has a model (U0, γ0) of the signature Σg

2

with true generalized equalities and belongings, then for every set F and every ultrafilterD on F the setΦ has also
the model (infra-D-power(U0, F), �� (γ0, F)) of the signature Σg

2
with true generalized equalities and belongings.

It implies that if a set Φ of formulas of the language L(Σ
g
2
) has a model with true generalized equalities and

belongings, then it has the same model of an arbitrary large power. Therefore the generalized second-order logic
has the upper Lövengame–Skolem property, in contrast with the standard second-order logic, which does not have

this property (see Mendelson, 1997, Appendix, (III)).

8. Compactness Theorem for Formulas of the Language L(Σ
g
2
) of the Generalized Second-Order Signature

Theorem 2 Let Φ and Ψ be some sets of formulas of the language L(Σ
g
2
) of the generalized second-order signature

Σ
g
2
. Let for every finite subset f of the setΦ the set of formulas f+(E1−E4)+Ψ has a model (U f , γ f ) of the signature
Σ

g
2

such that collection ((U f , γ f ) | f ∈ F) is pairwise H-concordant. Then the set of formulas Φ + (E1−E4) + Ψ

has a model (U, γ) of the signature Σg
2
.

Proof. Consider the set F ≡ { f ⊂ Φ | 0 < | f | < ω0} of all finite non-empty subsets from Φ.

For an element f ∈ F consider the set F f ≡ {g ∈ F | f ⊂ g}. Since f ∈ F f , we have F f � ∅. The set

C ≡ {F f | f ∈ F} has the finite intersection property. So there is some ultrafilterD on the set F including the set C.

Consider the system U ≡ infra-D-prod(U f | f ∈ F), constructed in Section 6. Consider the evaluation γ ≡ ��
(γ f | f ∈ F) on the system U, constructed in Section 6. By Lemma 2 from Section 6 U is a system with the true

generalized equalities and belongings.

Prove that the evaluated system (U, γ) is a model for the set Φ.

Suppose ϕ ∈ Φ. Consider the set F{ϕ}. By condition, U{ϕ} |= ϕ[γ{ϕ}]. Consider the set Gϕ ≡ {g ∈ F | Ug |= ϕ[γg]}.
If g ∈ F{ϕ}, then {ϕ} ⊂ g implies ϕ ∈ g. Therefore Ug |= ϕ[γg]. Consequently, F{ϕ} ⊂ Gϕ. Since F{ϕ} ∈ D, we have

Gϕ ∈ D.

By Theorem 1 from Section 7 we infer the property U |= ϕ[γ]. So (U, γ) is a model for the set Φ. The fact that

(U, γ) is a model for the set Ψ follows immediately from Theorem 1. �
9. Uncountable Models of the Second-Order Generalized Peano–Landau Arithmetic

At first we describe the Peano–Landau arithmetic in the generalized second-order language of the onegrade signa-

ture of the rank 1|0.

Put m = 0 and n = 0, i.e., we shall consider the single basic first-order type of the form π ≡ 〈0, 1〉 without auxiliary

first-order types. Consider the second-order types κ ≡ [π] and ρ ≡ [π, π] and the type domain Θ ≡ Θ2
Ar2 ≡ {π,κ, ρ}

of the rank 1|0 with the belonging type subdomain Θb ≡ {κ, ρ}.
Put Ωπ ≡ 1, Ωκ ≡ ∅, Ωρ ≡ 1, and consider collections Σπc ≡ (σπω | ω ∈ Ωπ) = σπ0, Σκc ≡ (σκω | ω ∈ Ωκ) = ∅,

and Σ
ρ
c ≡ (σ

ρ
ω | ω ∈ Ωρ) = σρ0. They compose the signature of constants of the type domain Θ of the form Σc ≡

(Στc | τ ∈ Θ) = (σπ
0
,∅, σ

ρ
0
) containing the constant σπ

0
, which is an objective first-order constant for denoting the

natural number 0, and the constant σ
ρ
0
, which is a predicate second-order constant for expressing of the succession

relation of Peano between a natural number a and it’s successor a + 1.

Further along with σπ
0

and σ
ρ
0

we shall simply write 0 and σ, respectively.

Take the signature of the generalized equalities of the type domain Θ of the form Σe ≡ (δτ | τ ∈ Θ) = (δπ, δκ , δρ)
containing the first-order equality δπ and the second-order equalities δ[π] and δ[π, π].

Take the signature of the generalized belongings of the type domain Θ of the form Σb ≡ (ετ | τ ∈ Θb) = (εκ , ερ).
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Finally, take a denumerable set Σπv of objective variables xπ, yπ, . . . of the first-order type π and denumerable sets

Σκv and Σ
ρ
v of predicate variables uκ , vκ , . . . and uρ, vρ, . . . of the second-order types κ and ρ, respectively.

They form the signature Σv ≡ (Στv | τ ∈ Θ) = (Σπv ,Σ
κ

v ,Σ
ρ
v) of variables of the type domain Θ.

Consider the one grade generalized signature Σ
g
Ar2
≡ Σc|Σe|Σb|Σv of the rank 1|0 and its language L(Σ

g
Ar2

). Terms

p, q, r, . . . of this language are constants and variables only, the atomic equality formulas have the forms qπδπrπ,
qκδκrκ , and qρδρrρ. Respectively, the atomic belonging formulas have the forms qπεκrκ and (pπ, qπ)ερrρ.

Further along with xπ, yπ, . . . and δπ we shall simply write x, y, . . . and δ.

The axioms of the second-order generalized Peano–Landau arithmetic are the following ones:

A1) ∀x1, x2, y((x1, y)ερσ ∧ (x2, y)ερσ⇒ x1δx2);

A2) ∀x, y1, y2((x, y1)ερσ ∧ (x, y2)ερσ⇒ y1δy2);

A3) ∀x, y((x, y)ερσ⇒ ¬(yδ0));

A4) ∀uκ(0εκuκ ∧ ∀x, y(xεκuκ ∧ (x, y)ερσ⇒ yεκuκ)⇒ ∀z(zεκuκ)).

Consider the following generalized extensionality properties:

PE 1) ∀uκ , vκ(uκδκvκ ⇔ ∀x(xεκuκ ⇔ xεκvκ));

PE 2) ∀uρ, vρ(uρδρvρ ⇔ ∀x, y((x, y)ερuρ ⇔ (x, y)ερvρ)).

Consider the set N0 ≡ ω0 of all natural numbers, which was constructed in the theory NBG of sets and classes.

For the formation N0 of the rank 1|0 and of the signature Σ
g
Ar2

consider the following collections S πc ≡ (sπω | ω ∈
Ωπ) = sπ

0
, S κ

c ≡ (sκω | ω ∈ Ωκ) = ∅, and S ρc ≡ (sρω | ω ∈ Ωρ) = sρ
0
. They compose the collection of constant

structures S c ≡ (S τc | τ ∈ Θ) = (sπ
0
,∅, sρ

0
), containing the constant structure sπ

0
∈ π(N0) = N0, which is the initial

natural number, and the constant structure sρ
0
∈ ρ(N0) = P(N0×N0), which is the set of all pairs of natural numbers

of the form 〈a, a + 1〉.
Further along with sπ

0
and sρ

0
we shall write simply 0 and s, respectively.

Consider the collection of the equality relations of the form S e ≡ (≈τ| τ ∈ Θ) = (≈π,≈κ ,≈ρ) ≡ (= |N2
0,= |P(N0)2,=

|P(N0 × N0)2), containing in the capacity of the first-order equality relation ≈π and of the second-order equality

relations ≈κ and ≈ρ the restrictions on the indicated sets one and the same set-theoretical equality = in the theory

NBG.

Consider the collection of the belonging correspondences of the form S b ≡ (<−τ | τ ∈ Θ) = (<−κ , <−ρ) ≡ (∈
|N0×P(N0), ∈ |(N0×N0)×P(N0×N0)), containing in the capacity of the belonging correspondences <−κ and <−ρ the

restrictions on the indicated sets one and the same set-theoretical belonging correspondence ∈ in the theory NBG.

Finally, take the collection of the terminals over the formation N0 of the form S v ≡ (τ(N0) | τ ∈ Θ) = (π(N0),κ(N0),

ρ(N0)) = (N0,P(N0),P(N0 × N0)).

These collections compose the one grade superstructure S Ar2 ≡ (S c, S e, S b, S v) of the signature Σ
g
Ar2

of the rank

1|0 over the formation N0.

The system Ar2 ≡ (N0, S Ar2) of the signature Σ
g
Ar2

can be called the natural series of Peano–Landau of the second-
order in the set theory NBG, because it models the following Peano–Landau postulates:

P1) ∀a1, a2, b(〈a1, b〉 ∈ s ∧ 〈a2, b〉 ∈ s⇒ a1 = a2);

P2) ∀a, b1, b2(〈a, b1〉 ∈ s ∧ 〈a, b2〉 ∈ s⇒ b1 = b2);

P3) ∀a, b(〈a, b〉 ∈ s⇒ b � 0);

P4) ∀P(0 ∈ P ∧ ∀a, b(a ∈ P ∧ 〈a, b〉 ∈ s⇒ b ∈ P)⇒ ∀c(c ∈ P)).

Consider an evaluation γ on the system Ar2 such that γ(x) ∈ π(N0) = N0, γ(uκ) ∈ κ(N0) = P(N0), and γ(uρ) ∈
ρ(N0) = P(N0 × N0).

For the evaluated system (Ar2, γ) the following assertion holds.

Lemma 8 The evaluated system (Ar2, γ) is the standard model for the set of formulas E1, E2, E3, E4, A1, A2, A3,
A4, PE1, and PE2 of the language L(Σ

g
Ar2

).
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Proof. The satisfactions Ar2 |= A1[γ], Ar2 |= A2[γ], Ar2 |= A3[γ], and Ar2 |= A4[γ] follow from the correctness

for the system Ar2 of Peano–Landau postulates P1, P2, P3, and P4, respectively. The other satisfactions are

checked immediately. �
Therefore the evaluated system (Ar2, γ) can be called the generalized natural series of Peano–Landau of the
second-order in the set theory NBG.

Now construct an uncountable model. Take an arbitrary set F and an arbitrary ultrafilter D on F. Consider the

system infra-D-power(Ar2, F) and the evaluation �� (γ, F), defined in section 7.

Theorem 3 The evaluated system (infra-D-power(Ar2, F), �� (γ, F)) is the generalized model for the set of formu-
las E1, E2, E3, E4, A1, A2, A3, A4, PE1, and PE2 of the language L(Σ

g
Ar2

). The support of the model is the Baire
set NF

0 . If |F| ≥ ω0, then the support is uncountable.

Proof. The assertion follows from the preceding lemma and Theorem 1. �.

10. Conclusion

The compactness theorem for the generalized second-order logic allows us to build unusual, but interesting models

of such classical theories as the arithmetic, the theory of real numbers, and so on.

For example, if we shall add to the axioms of Section 9 the countable set of axioms ∃xτ¬(xδn̄), where n̄ denotes the

n-th numeral (see Mendelson, 1997, p. 160), then using the compactness theorem from Section 8 we can construct

a generalized model of the second-order generalized Peano–Landau arithmetic with infinite elements.

For the similar set of axioms there exists a generalized model of the generalized second-order theory of real
numbers with infinitely large and infinitely small elements.

The limited frames of the article did not allow the authors to present these ideas in more details. However they

illustrate that the material, presented in the given paper, shows a new interesting direction in constructing some

generalized models of classical second-order theories.
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Notes

Note 1. Note that use a generalized belonging was explored in the forcing method in the form x ∈p y (see e.g.,

Shoenfield, 1967, 9.8).
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