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Abstract

We prove that the domain D in Γ×Cz where Γ is a polydisk centered at (0) and the fiber of D over every point of Γ

is a simply connected domain in Cz which contains a small disk {|z| � ε}, where ε is independent of every point of

Γ, is biholomorophic to some complete Hartogs domain. And we give applications of the uniformization of some

fiber spaces.

Keywords: Riemann’s mapping theorem, Robin-Yamaguchi function, complete Hartogs domain, uniformization

of fiber spaces

1. Introduction

As for the classical uniformization problems such as the Hilbert’s 22nd problem of a high dimensional case,

there are some big theories of Griffith (1971) and Bers (1976). But the problem is not solved completely in the

case of the manifold yet. For its special case such as an uniformization of a fiber space, Nishino (1969) proved

that a Stein holomorphic family of C-type covering Riemann surfaces over a complex plane over a disk is C1-

bundle. Yamaguchi (1976) gave a simpler proof than that of Nishino and proved more simply with Maitani (2004)

by another principle. In (Yamaguchi, 1976), he introduced a Robin-Yamguchi function λ(t) which is the Robin

constant of the Green function of a fiber Dt when the base complex parameter of t is fixed which has a pole at a

point of Dt which is independent to the parameter t , proved that log λ(t) is superharmonic under some conditions

and solved an uniformization problem of a Stein holomorphic family of covering Riemann surfaces over P1 by

using this fact in the case that the genus of them is zero and they are Riemann surfaces of parabolic type. His

theorem includes the Nishino’s result as a special case.

The fiber spaces studied by Nishino and Yamaguchi was the one over a disk. Fujita (1979, 1980, 1987) extended

their studies to fiber spaces over a polydisk and Yamaguchi and others also extended the Robin-Yamaguchi function

of several complex variables and got many remarkable results especially in (Kim, Levenberg, & Yamaguchi, 2011).

But the original problem of an uniformization of a Stein holomorphic family whose fibers are of hyperbolic type

Riemann surfaces has been unsolved after that time except for a special case as in (Browder & Yamaguchi, 1994).

In this note, we prove for a manifold D such as a fiber space D = (D, π, Γ) which is considered as a Riemann

domain over Γ × P1 where Γ is a polydisk centered at (0), which has some schlicht branch and whose fibers over

Γ are simply connected ramified covering Riemann surfaces over P1 is mapped biholomorphically to a complete

Hartogs domain (Theorem 5.1). This problem is reduced to a high dimensional Riemann’s mapping theorem

(Theorem 4.4).

We give some applications to the uniformization problem of fiber spaces which have topologicaly the same type

fibers (Theorem 5.2 and 5.3).

Finally we have a local uniformization of a Stein holomorphic family whose fibers are topologically same type open

Riemann surfaces (Definition 6.1) by reducing to a Riemann domain which can be applied to a high dimensional

Riemann mapping theorem (Proposition 6.5 and Theorem 6.6).
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2. Preliminary(1)

Following proposition is well known.

Proposition 2.1 If there is a conformal map ϕ from {|z| < r} to {|w| < R} with ϕ(0) = 0 and ϕ′(0) = 1, then r = R
and ϕ is an identity map for any r with 0 < r � ∞.

Corollary 2.2 Let D be a simply connected domain in Cz such that D � {0}. Then the conformal map ϕ of D to
{|w| < R} with ϕ(0) = 0 and ϕ′(0) = 1 is uniquely determined with R(� ∞).

Proposition 2.3 Let D1 and D2 be a simply connected domain in Cz such that D2 � D1 � 0 and ϕi is a conformal
map of Di to {|w| < Ri} with ϕi(0) = 0 and ϕ′i(0) = 1(i = 1, 2). Then R1 < R2 � ∞.

Proof. If we consider the conformal map ϕ2 ◦ ϕ−1
1 , we have R1 < R2 by Schwarz’s lemma when R2 < ∞ and we

can easy to see when R2 = ∞ because ϕ2 = id. �
Proposition 2.4 Let D be a bounded simply connected domain surrounded by a Jordan curve in Cz such as 0 ∈ D.
Let ϕ be a conformal map of D to {|w| < R} with ϕ(0) = 0 and ϕ′(0) = 1. Then log R is the Robin constant of the
Green function of D which has the pole at z = 0 and ϕ = R · z · exp(−k(z)) where k(z) is some holomorphic function
of D with k(0) = log R.

Proof. Above Green function g = log |R
ϕ
| = − log |z| + log | z

ϕ
|R. When we set u(z) = log | z

ϕ
|R, u(z) is a harmonic

function and the Robin constant is u(0) = log R.

Let v(z) be a conjugate harmonic function of u(z) with v(0) = 0. When we set k(z) = u(z)+iv(z), k(z) is holomorphic

on D and k(0) = log R.

By virtue of Riemann’s method, w = ψ(z) = exp[−{g + i(−argz + v)}] = exp(log |z| + iargz − k(z)) = z · exp(−k(z))

is a conformal map of D to |w| < 1. From Corollary 2.2, ϕ = R · ψ since R · ψ(0) = 0 and (R · ψ)′(0) = 1. �
Proposition 2.5 Let D be the same of Proposition 2.4. Let f be a holomorphic function of D̄ and limz→∂D | f (z)| = R
with f (0) = 0, f (z) � 0 for z � 0 and f ′(0) = a � 0. Then the Robin constant of the Green function g of D which
has the pole at z = 0 is log R

|a| and f is a conformal map of D to {|w| < R}.
Proof. Since g = log |Rf | = − log |z| + log | zf |R is a Green function of D which has the pole at z = 0. It is easy to see

that the Robin constant of g is log R
|a| and f is a conformal map of D to {|w| < R} by argument principle. �

From Corollary 2.2 the following corollary is easy to see.

Corollary 2.6 If a = 1 in the above proposition, f = ϕ where ϕ is the same of Proposition 2.4.

From Proposition 2.4, 2.5 and Corollary 2.6 the following proposition is easy to see.

Proposition 2.7 Let D and ϕ be the same of Proposition 1.4. Let R0 is a positive constant such as R0 < R. If we
set D0 = ϕ−1(|w| < R0), then Robin constant of the Green function of D0 which has the pole at z = 0 is log R0.

3. Preliminary(2)

Definition 3.1 We denote a domain H := {(t,w); |w| < Rt � ∞ for t ∈ Δ(ρ) where Δ(ρ) is a disk centered at 0 with

radius ρ(0 < ρ � ∞)}. We call H a complete Hartogs domain. We denote by H(R) if Rt ≡ R. (In the case (t) varies

in a polydisk Γ centered at (0) we call it samely.)

Following proposition is well known essentially due to Hartogs.

Proposition 3.2 The complete Hartogs domain H is a Stein one, if and only if − log Rt is subharmonic or identically
−∞ on Δ(ρ). (In the case (t) varies in a polydisk Γ, H is a Stein Hartogs domain if and only if − log R(t) is
plurisubharmonic or identically −∞ on Γ).

Proposition 3.3 Let H be a complete Hartogs domain such that − log Rt be a function of C2 class with − log Rt >
−∞. Then there is a biholomorphic map Φ of H to H(1) such as Φ(t, z) = (t,w),Φ(t, 0) = (t, 0) if and only if log Rt

is harmonic on Δ(ρ). (In the case (t) varies in a polydisk Γ and there is a biholomorphic map Φ of H, such as
− log R(t) is of C2 class function with − log R(t) > −∞, to H(1) such as Φ((t), z) = ((t),w),Φ((t), 0) = ((t), 0) if and
only if log R(t) is pluriharmonic on Γ).

Proof. When there is such a mapΦ, |w| = |z|Rt
and ∂2

∂t∂t̄ log |w| = ∂2

∂t∂t̄ log |z|− ∂2

∂t∂t̄ log Rt = 0 when z � 0, ∂
2

∂t∂t̄ log Rt = 0.

When log Rt is harmonic, we set log Rt = u(t) where t = x + iy, x, y ∈ R and t ∈ Δ(ρ). And we set the 1-form
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ω = − ∂u
∂y dx + ∂u

∂x dy. Then ω satisfies the integrability condition because u(t) is a harmonic function on Δ(ρ).

Set v(t) =
∫ x

0
− ∂u(s,0)

∂y ds +
∫ y

0

∂u(x,r)
∂x dr. Then u(t) and v(t) satisfy Cauchy-Riemann differential equations. We set

f (t) = u(t) + iv(t), f (t) is holomorphic on Δ(ρ). Since Rt = eu(t) = |eu(t)+iv(t)| = |e f (t)|, the map Ψ: t = t, z = e f (t)w is

a biholomorphic one of H(1) to H.

When the case (t) varies in a polydisk Γ, refer to (Nishino, 2001, p. 14). �
Corollary 3.4 There is no biholomorphic map Φ of HT := {(t, z); t ∈ Δ(ρ), |z| < Rt = (R2 − |t|2)

1
r ,R > ρ > 0, r > 0}

(the Thullen type Stein domain) to H(1) such that Φ(t, z) = (t,w) and Φ(t, 0) = (t, 0).

Proof. As ∂2

∂t∂t̄ (− log Rt) =
R2

r(R2−|t|2)2 > 0, we have a conclusion from Proposition 3.3. �
Remark 3.5 Let H be the complete Hartogs domain and Rt is continuous function of t. Then H is homeomorphic

to H(R) with 0 < R � ∞.

Definition 3.6 Let D be a domain in Δ(ρ) × Cz and for every fixed t0 in Δ(ρ), Dt0 := D ∩ {t = t0} is a bounded

simply connected domain surrounded by a C2 smooth Jordan curve. And when Dt � {z = 0} for every t ∈ Δ(ρ) and⋃
t∈Δ(ρ) ∂Dt varies in C2 class, that is, there is a defining real valued C2 function in a neighborhoodV of

⋃
t∈Δ(ρ) ∂Dt

in Δ(ρ)×Cz such as ψ(t, z) such that
⋃

t∈Δ(ρ) ∂Dt = {ψ(t, z) = 0}which is a real submanifold of C2 class in Δ(ρ)×Cz,

D ∩V = {ψ(t, z) < 0} andV ∩⋃t∈Δ(ρ)(Dt)
c = {ψ(t, z) > 0}, we call such D a domain of class (A).

We set

k2(t, z) =
( ∂2ψ

∂t∂t̄
|∂ψ
∂z
|2 − 2Re{ ∂

2ψ

∂t̄∂z
∂ψ

∂t
∂ψ

∂z̄
} + |∂ψ
∂t
|2 ∂

2ψ

∂z∂z̄

)
/|∂ψ
∂z
|3.

We remark that it does not depend on the choice of defining function ψ(t, z) of
⋃

t∈Δ(ρ) ∂Dt = {ψ(t, z) = 0} with the

property of the above definition.

Proposition 3.7 (cf. Shiffer (1946, pp. 417, 418) and also Theorem 3.1 in Maitani and Yamaguchi (2004)) Let
D ∈ (A). Then the Green function of Dt which has the pole at z = 0 (especially the Robin constant log Rt of Dt)

varies in C2 class with respect to the variable t.

Lemma 3.8 (Theorem 3.1 in Maitani and Yamaguchi (2004)) Let D ∈ (A) and Φ be a map of D to H such that Φ:
t = t,w = ϕ(t, z) where ϕ(t, z) is a conformal map of Dt to {|w| < Rt} such that ϕ(t, 0) = 0 and ∂ϕ

∂z (t, 0) = 1.

Then, for the Robin-Yamaguchi function log Rt of D and for the Green function log Rt
|ϕ| , − log Rt

|ϕ| is extended to a
defining function of

⋃
t∈Δ(ρ) ∂Dt such as D ∈ (A) and the following equality is concluded.

∂2

∂t∂t̄ log Rt = − 1
π

∫
∂Dt

k2(t, z)| ∂
∂z log Rt

|ϕ| |2ds − 4
π

∫ ∫
Dt
| ∂2

∂t∂z̄ log Rt
|ϕ| |2dudv,

where ∂Dt = {z(s)}, z = u + iv, ds is the arc length element of ∂Dt and k2 is above definition which means the
Levi-curvature of

⋃
t∈Δ(ρ) ∂Dt.

Corollary 3.9 Let the situation be above and D be a Stein domain. Then
∂2

∂t∂t̄ log Rt � − 4
π

∫ ∫
Dt
| ∂2

∂t∂z̄ log Rt
|ϕ| |2dudv � 0, log Rt is a superharmonic function on D and H is a complete Hartogs

Stein domain.

Proof. The first statement is easy to see from Lemma 3.8 and k2 � 0 because D is a Stein domain. The second one

is a well known fact when the first statement is true. The third one is followed by Proposition 3.2. �
Following proposition is owed essentially to H. Yamaguchi.

Proposition 3.10 Let D be a Stein domain, D ∈ (A) and the Robin-Yamaguchi function log Rt be harmonic on Δ(ρ).
Then D is Levi-flat (k2 ≡ 0) and Φ is biholomorphic map from D to H where Φ is the same in Lemma 2.8.

Proof. By Lemma 3.8 and the assumption such as ∂2

∂t∂t̄ log Rt = 0 and k2 � 0, k2 ≡ 0 and | ∂2

∂t∂z̄ log Rt
|ϕ| | = 0 when

z � 0. As log Rt
|ϕ| is a real valued function, ∂2

∂t̄∂z log Rt
|ϕ| = 0 when z � 0. Then ∂2

∂t̄∂z log |ϕ| = 0 when z � 0. Since

∂
∂z log |ϕ| = 1

2

∂ϕ
∂z
ϕ

and ϕ = Rt · z · exp(−k(t, z)) by Proposition 1.4, ∂
∂t̄ { 12 ( 1

z − ∂
∂z k(t, z))} = 0 and ∂2

∂t̄∂z k(t, z) = 0. Since

k(t, 0) = log Rt by Proposition 2.4, k(t, z) − log Rt =
∫ z

0
∂
∂z k(t, z)dz and ∂

∂t̄ (k(t, z) − log Rt) =
∫ z

0
∂2

∂t̄∂z k(t, z)dz = 0.

Since
∂ϕ
∂t̄ = z · exp(−k(t, z))Rt{ ∂∂t̄ (log Rt − k(t, z))} = 0, the function ϕ = Rt · z · exp(−k(t, z)) is holomorphic function

of variables t and z separately and it is holomorphic by Hartogs theorem. Then Φ is biholomorphic. �
Theorem 3.11 Let D ∈ (A). Then D is a Stein domain and the Robin-Yamaguchi function log Rt is harmonic on
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Δ(ρ) if and only if there is a biholomorphic map Φ0 of D to H(1) such that Φ0(t, 0) = (t, 0), Φ0(t, z) = (t,w) and D
is Levi-flat.

Proof. When D is a Stein domain and log Rt is harmonic on Δ(ρ), D is Levi-flat and Φ: D→ H is a biholomorphic

map by Proposition 3.10 where Φ is the same in Lemma 3.8 and there is a map Φ0 as above by Proposition 3.3.

When there is a map Φ0 as above, D is a Stein domain because H(1) is a Stein domain. Set Φ0 with Φ0: t = t,w =
ϕ0(t, z) where ϕ0(t, 0) = 0, ∂

∂zϕ0(t, 0) � 0. Then ϕ0(t, z) = a1(t)z+a2(t)z2+ · · · , where a1(t) � 0 locally near {z = 0}.
By Proposition 2.5, log Rt = − log |a1(t)| and it is harmonic on Δ(ρ) because of a1(t) � 0 and holomorphic. Then

D is Levi-flat by Proposition 3.10. �
4. Conclusion

Lemma 4.1 Let D be a domain of in Δ(ρ) × Cz such that when an arbitrary number t0 in Δ(ρ), Dt0 = D ∩ {t = t0}
is a simply connected domain and Dt0 ⊃ {|z| � ε} where ε is a positive constant which is independent of t0. We
asumme that Φ is the map of D to H such as t = t,w = ϕ(t, z), which is a conformal map of Dt to {|w| < Rt � ∞}
such as ϕ(t, 0) = 0 and ∂

∂zϕ(t, 0) = 1 for fixed t. Then there is a constant δ such that a domain H(δ) with δ < Rt for
every t ∈ Δ(ρ) and Φ−1(H(δ)) = D0 is a domain of the class (A) and ϕ(t, z) is holomorphic on D0.

Proof. There is a small constant δ above by the modified Koebe one-quarter theorem. From Proposition 2.7 the

Green function g0 of D0 which has the pole at z = 0 is log δ
|ϕ| . From Proposition 3.7 −g0 = log

|ϕ|
δ

is a defining

function of D0 ifV = D′ = Φ−1(H(δ′)) where δ and δ′ are nealy equal and δ < δ′ and D0 ∈ (A) of Definition 3.6.

Set ψ = log
|ϕ|
δ

and ϕ(t, z) = δ·z·exp(−k(t, z)) anew. Since ψ is a real valued function,
∂ψ
∂t =

1
2

∂ϕ
∂t
ϕ
= − 1

2
∂k
∂t ,
∂ψ
∂t̄ = − 1

2
∂k̄
∂t̄

and
∂2ψ
∂t̄∂t = − 1

2
∂2k
∂t̄∂t = − 1

2
∂2 k̄
∂t̄∂t . We set k(t, z) = u(t, (x, y))+ iv(t, (x, y)) where z = x+ iy. Then v(t, (x, y)) is a harmonic

function of a variable t since ∂2

∂t̄∂t (k − k̄) = ∂2

∂t̄∂t (2iv(t, (x, y))) = 0 by above equation. And u(t, (x, y)) is a harmonic

one also because

∂2

∂t∂t̄
u(t, (x, y)) =

∫ x

0

− ∂
∂y

(
∂2

∂t∂t̄
v(t, (s, 0)))ds +

∫ y

0

∂

∂x
(
∂2

∂t∂t̄
v(t, (x, r)))dr = 0.

As u(t, (x, y)), v(t, (x, y)) are harmonic functions of a variable t, ∂
2k
∂t∂t̄ =

∂
∂t̄ (
∂k
∂t ) = 0 and ∂k

∂t is a holomorphic function

of a variable t. Therefore k(t, z) is a holomorphic one of t. By Hartogs theorem k is a holomorphic function of (t, z)

because it is holomorphic with respect to t and z separately. Then ϕ(t, z) is a holomorphic function on D0. �
Theorem 4.2 In the same situation of above lemma, the map Φ is biholomorphic.

Proof. Since ϕ(t, z) is holomorphic on D0 and holomorphic of a variable z when t is fixed in Δ(ρ), ϕ(t, z) is a

holomorphic function on D by virtue of Hartogs theorem. �
From Theorem 4.2, Proposition 3.2 and 3.3, the following corollary is easy to see.

Corollary 4.3 Let D be the same of Lemma 4.1. Then D is a Stein domain if and only if − log Rt is subharmonic or
identically −∞ on Δ(ρ). And D is biholomorphic to H(1) if and only if − log Rt is harmonic on Δ(ρ).

Theorem 4.4 Let D be a domain in Γ ×Cz where Γ := {(t1, . . . , tn); |ti| < ρi, 0 < ρi � ∞, i = 1, . . . , n} and for every
point (t0) ∈ Γ, D(t0) := D ∩ {(t) = (t0)} is a simply connected domain and D(t0) ⊃ {|z| � ε} for every (t0) ∈ Γ where
ε is a positive number which is independent of (t0). Let log R(t) be the Robin-Yamaguchi function of D(t).

Then the map Φ of D to a complete Hartogs domain H such as (t) = (t),w = ϕ((t), z), which is a conformal map of
D(t) to {|w| < R(t) � ∞} with fixed (t) such as ϕ((t), 0) = 0 and ∂

∂zϕ((t), 0) = 1, is biholomorphic.

Proof. If we fix (t1, . . . , tn) except ti(1 � i � n) and fix z ∈ {|z| � ε}, ϕ is holomorphic with respect to ti by Theorem

4.2. If we fix (t), ϕ is holomorphic with respect to z. Then ϕ is holomorphic on Γ × Cz by Hartogs theorem. It is

easy to see that Φ is biholomorphic. �
From Theorem 4.4, Proposition 3.2 and 3.3, the following corollary is easy to see.

Corollary 4.5 In the same situation of Theorem 4.4, D is a Stein domain if and only if − log R(t) is plurisubharmonic
on Γ or identically −∞. And D is biholomorphic to H(1) if and only if − log R(t) is pluriharmonic on Γ.

5. Applications

Following theorem is easy to see by the same method of Theorem 4.4 and the uniformization theorem by Koebe.

Theorem 5.1 Let D = (D, π, Γ) be a connected manifold such as a ramified Riemann domain over Γ × P1 with
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the projection π where Γ is the same of Theorem 4.4 and it has a schlicht branch D0 over Γ × {|z| � ε} for some
ε > 0. And we assume that for every (t) ∈ Γ, the fiber D(t) is an irreducible ramified covering Riemann surface
such as simply connected. Then D is biholomorphic to some complete Hartogs domain H in Γ × {|w| � ∞} with
fiber preserving.

Theorem 5.2 Let D is the same of Theorem 5.1. We assume that D is a Stein manifold and for every (t) ∈ Γ, the
fiber D(t) is an irreducible ramified covering Riemann surface with genus g(� ∞) and the number of boundary
components is n(1 � n � ∞) where g and n are independent of (t). We call such D of (g, n) type.

Then we have the following results (I) and (II):

(I) If (g, n) = (0, 1), D(t) is simply connected and there are following cases:

(a) When for every (t) ∈ E which is a capacity positive set with E ⊂ Γ, D(t) is holomorphically isomorphic to C, X
is biholomorphic to H(∞).

(b) When for every (t) ∈ Γ except for a capacity zero set, D(t) is holomorphically isomorphic to the unit disk, D is
biholomorphic to a complete Hartogs Stein domain H (The definition of the set of capacity zero or positive, see
Fujita, 1987, p. 685).

(b′) When for every (t) ∈ Γ, D(t) is holomorphically isomorphic to the unit disk, D is biholomorphic to H with
Rt < ∞ and D′ = (π−1(Γ′), π, Γ′) where Γ′ is the arbitrary polydisk centered at (0) such as Γ′ � Γ is biholomorphic
to some bounded complete Hartogs Stein domain H′.

(II) If (g, n) � (0, 1) and X is homeomorphic to Γ × R where R is a Riemann surface of (g, n) type, the universal
covering space D̃ of D with base point ((t), o) ∈ D0 where o is the point in D0

t whose projection is z = 0, D̃ is
homeomorphic to Γ × R̃ and there are following cases:

(c) When D̃(t) is the case (a) of (I), that is D(t) is holomorphically isomorphic to C∗ for a capacity positive set
E ⊂ Γ, D̃ is biholomorphic to H(∞).

(d) When D̃(t) is the case (b) of (I), D̃ is biholomorphic to H as the same of (b) of (I).

(d′) When D̃(t) is the case (b′) of (I), D̃ is biholomorphic to H with Rt < ∞ and D̃′ is biholomorphic to some
bounded complete Hartogs Stein domain H′ which is samely defined as above (b′) of (I).

Proof. In the case (I), we define a map Φ of D to H where Φ((t), ϕ((t), p)) = ((t),w), where w = ϕ((t), p) is a

conformal map of D(t) to |w| < R(t)(� ∞) with ϕ(t, o) = 0, ∂
∂zϕ((t), o) = 1 by the uniformization theorem by Koebe

where p is a point of D(t). Then the function ϕ((t), p) is uniquely determined.

By Theorem 4.4, ϕ((t), p) is holomorphic on D0. By Hartogs theorem, (t, ϕ) is biholomorphic from D to H. Since

H is a complete Hartogs Stein domain of Γ×C, − log R(t) is plurisubharmonic or identically −∞ by Proposition 3.2.

When − log R(t) = −∞ for a capacity positive set E ⊂ Γ, − log R(t) ≡ −∞ on Γ by the nature of plurisubharmonic

function and the case (a) occurs. When − log R(t) � −∞, − log R(t) > −∞ except for a capacity zero set of Γ and

the case (b) occurs. When − log R(t) > −∞ on Γ, − log R(t) � M on Γ′ where M is a real constant and the case (b′)
occurs.

The case (c), (d) and (d′) of (II) is easy to see from the above discussion because D̃ is a Stein manifold and

biholomorphic to a complete Hartogs Stein domain. �
Theorem 5.3 Let D = (D, π, Γ) be a manifold such as a ramified Riemann domain over Γ×P1 and for every (t) ∈ Γ,
the fiber D(t) is a compact Riemann surface with genus g(� 1) which is independent of (t) where Γ is the same of
Theorem 4.4. And it has a schlicht branch D0 such as over Γ × {|z| � ε, ε > 0}.
Then D̃ which is constructed as the same way of Theorem 5.2 (II), is biholomorphic to Γ × C when g = 1 and D̃ is
biholomorphic to a complete Hartogs domain H when g � 2 where the Hartogs radious R(t) < ∞ for every (t) ∈ Γ.
Proof. When g = 1, D̃ is in the case (I) (a) of Theorem 5.2 and when g � 2, D̃(t) is holomorphically isomorphic to

the unit disk, above statement is easy to see from Theorem 5.1. �
6. Reduction

Definition 6.1 (cf. Definition 3.4 in Adachi, 2001) Let D be a Stein manifold of dimension n + 1(n � 1), Γ :=

{(t1, · · · , tn); |ti| < ρi, 0 < ρi � ∞, i = 1, · · · , n} and π := ( f1, · · · , fn) be a holomorphic map of D onto Γ such that

(1) for any (t) ∈ Γ, π−1(t) = D(t) is an one dimensional irreducible analytic subset of D,
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(2) for the set {p ∈ D; the rank of Jacobian of π at p < n} is contained in a hypersurface S of D and S ∩ D(t) are

isolated points in D(t) for every (t) ∈ Γ
and

(3) (D, π, Γ) is homeomorphic to Γ × R preserving fibers where R is an open Riemann surface.

Then we call D = (D, π, Γ) a Stein holomorphic family of open Riemann surfaces with respect to R.

Proposition 6.2 Let D be the same above. Then the canonical bundle KD has a glovbal holomorphic section g
which has zero only on S with any high order. If S = ∅, we take g such as g � 0.

Proof. Let {ϕi j ∈ O∗(Ui ∩U j),Ui,U j ⊂ D} be the transition function of KD. Then there are solutions of the Cousin

II problem such that {ϕi ∈ O(Ui)} since D is a Cousin II domain by Oka principle. As {ϕi ∈ O(Ui)} is a Cousin II

data, there is a holomorphic function h on D such that { ϕi
h ,Ui} is a non-zero holomorphic section of KD. Let k be

a holomorphic function on D whose zero sets are S . Since D is a Cousin II domain, there is always such a k. Let

m be an arbitrary positive integer.Then { km

h ϕi,Ui} = {gi,Ui} is a holomorphic section g of KD which satisfies the

condition above. �
Proposition 6.3 Let D = (D, π, Γ) be a Stein holomorphic family of open Riemann surfaces with respect to R
which is simply connected. Then it is biholomorphic to a brached Riemann domain over Γ × C. When S = ∅, it is
biholomorphic to an unbranched Riemann domain over Γ × C.

Proof. We consider the linear differential equation
∂( f1,··· , fn,u)

∂(v1
α,··· ,vn+1

α )
= g (1) where g is the same of Proposition 6.2,

(v1
α, · · · , vn+1

α ) are any coordinate variables of D and u is an unknown function.

By virtue of the Cauchy-Kovalevskaya theorem, there is a neighborhood W of a point p in D − S where π(p) is an

arbitrary point of Γ and a local holomorphic solution uW in W of (1) where uW |σ = 0 whereσ is a local holomorphic

section of D through p. By the same method of Lemma 2.2 in (Adachi, 2001) the equation (1) can be regarded

as an analytic family of holomorphic 1-forms on fibers D(t) = { f1 = t1, · · · , fn = tn} which can be considered as

characteristic curves of (1) because we can take g which has zero only on S with sufficient high order if the integer

m in the proof of above proposition take sufficient larage. The local solution uW has an analytic continuation along

each fiber endlessly through W and uW is single valued holomorphic function on (π−1(W), π, π(W)) and a global

holomorphic solution u ∈ O(D) from Lemma 2.2 in (Adachi, 2001).

Set F = ( f1, . . . , fn, u). Then it is a holomorphic map from D to Γ × C. It is easy to see from the condition (2)

of Definition 5.1 that F is scatterd inverse map. Then from Osgood theorem, F−1 defines a branched Riemann

domain over Γ × C which is biholomorphic to D. When S = ∅, it is biholomorphic to an unbranched Riemann

domain over Γ × C because we can take g such as g � 0 from Proposition 6.2. �
Proposition 6.4 If R is not simply connected, the universal covering Stein manifold D̃ = (D̃, π̃,Γ) which is homeo-
morphic to Γ × R̃ is biholomorphic to a branched Riemann domain over Γ × C. When S = ∅, D̃ is biholomorphic
to an unbranched Riemann domain over Γ × C.

Proof. We consider the eqation (1) in the proof of Proposition 6.3. We use the same notations in it. The local holo-

morphic solution uW in W of (1) where uW |σ = 0 has an analytic continuation along any path on each fiber. Since

the universal covering space D̃ is constructed by takeing the universal covering of every fiber, F is a holomorphic

map from D̃ to Γ×C because D̃ is a Stein manifold and F−1 defines a branched Riemann domain over Γ×C which

is biholomorphic to D̃. When S = ∅, it is easy to see the conclusion by the same reason of the proof of above

proposition and above discussion. �
Proposition 6.5 Let D = (D, π, Γ) be a Stein hoomorphic family of open Riemann surfaces with respect to R which
is an arbitrary Riemann surface. When it has a global holomorphic section σ with σ ∩ S = ∅, for every polydisk

Γ′ centered (0) with Γ′ � Γ D̃′ = ( ˜π−1(Γ′), π, Γ′) has a schlicht branch (D0)′ over Γ′ × {|z| � ε} for some ε > 0.
When S = ∅, we have above conclusion always easily if we take Γ′ suficiently small.

Proof. Since the holomorphic map F : D̃→ Γ ×C in the proof of above proposition such as F|σ = 0 and Jacobian

of F is not 0 near Γ′ × {0}, it is easy to see the conclusion above when we take Γ′ small again if necessaly. �
Theorem 6.6 Let D = (D, π, Γ) be a Stein holomorphic family of open Riemann surfaces with respect to an

arbitrary Riemann surface R. For every (t) ∈ Γ there is a neighborhood v(t) � Γ such that D̃′ = (˜π−1(v), π′, v)

is biholomorphic to to some Hartogs Stein domain H′ in γ × C where γ is a polydisk centered at (0) which is
biholomorphic to v(t).
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Proof. From Proposition 6.5 and Theorem 5.1 it is easy to see the above conclusion. �
7. Appendix

Problem 7.1 Let T = (P1(x1, · · · , xn+1), · · · , Pn+1(x1, · · · xn+1)): Cn+1 → Cn+1(ξ1, · · · , ξn+1) be a polynomial map

with JT ≡ 1. When the set {ξ1 = P1, · · · , ξn = Pn} is not empty and an irreducible curve for every (ξ) ∈ Cn, is

T ∈ Aut(Cn+1)?

Remark 7.2 In the case n = 1, Kaliman in 1993 proved that {ξ1 = P1(x1, x2)} is irreducible for every ξ1 ∈ C when

JT ≡ 1. And we proved in (Adachi, 2011) that {ξ1 = P1(x1, x2)} is simply connected for every ξ1 ∈ C by reducing

to the Theorem 2.1 in (Adachi, 2001). Then it is easy to see that T ∈ Aut(C2) if JT ≡ 1 (Theorem 3.2 in Adachi,

2011, that is a proof of two dimensonal Jacobian conjecture).

Remark 7.3 Even in the case n = 1, there is a P(x1, x2) where {ξ = P(x1, x2)} is irreducible for every ξ ∈ C and

{ξ = P} is not simply connected. See for it’s example in (Essen, 2000, p. 256).

Proposition 7.4 We assume further that for every (ξ) ∈ Cn, the fiber {(ξ) = (P)} is an irreducible algebraic curve
of the same type (g, n), then T ∈ Aut(Cn+1).

Proof. Let D = Cn+1 = (Cn+1, (P),Cn) and R be an algebraic Riemann surface of (g, n) type. Then D is a Stein

holomorphic family with respect to R. Then D̃ = Cn+1 is a Stein holomorphic family with respect to R̃. Then if we

consider the following linear partial differencial equation on D̃:

∂(P1, · · · , Pn, u)

∂(x1, · · · , xn+1)
= g

has a global solution u for an arbitrary g ∈ O(Cn+1) from Theorem 2.1 in (Adachi, 2001) in D̃ and u is a single

valued holomorphic function on Cn+1. From Theorem 3.2 in (Adachi (2001)), T ∈ Aut(Cn+1). �
Problem 7.5 In the same notation of Problem 7.1, is the set {ξ1 = P1, · · · , ξn = Pn} not empty and an irreducible

curve of the topologicall same type for every (ξ) ∈ Cn when JT ≡ 1?
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