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Abstract

Let M be a (connected) complex manifold and E be a closed capacity zero set. Let X be a (connected) complex

compact Kobayashi hyperbolic space whose universal covering space is Stein and let f be a holomorphic map of

M − E to X. Then f can be extended holomorphically to a map of M to X.
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1. Introduction

Nishino in 1979 proved the extension problem in the case that dim M = 1, E is a closed logarithmic capacity

zero set and X is a compact Riemann surface whose genus is greater than 1 using the Ahlfors theory of covering

surfaces. Masakazu Suzuki in 1987 gave the same result using a method of differential geometry and a result in a

case that E is a closed pluripolar set set in M which is a domain D in Cm with m � 1 and X is a manifold whose

universal covering is a polynomial convex bounded domain in Cn in the case that the image of the map of D− E is

relatively copact in X in (Suzuki, 1988) in the sequel.

We shall prove the case when M is a complex manifold with an arbitrary dimension, E is a closed capacity zero

set in M (see Definition 3.2) and X is a compact Kobayashi hyperbolic space with arbitrary dimension whose

universal covering space is Stein (Theorem 4.6) using the Kobayashi hyperbolic geometry and Fujimoto’s theorem

(Proposition 3.4) according to a properties owing Suzuki’s method. Our results contain generalizations of Nishino

and Suzuki theorems (Theorem 3.7, Corollary 3.8, Theorem 4.6 and Corollary 4.7). About this problem, see

section 2.2 in (Noguchi,1993). And we give some appications (Corollary 4.8 and Theorem 4.9).

2. Preliminary (1)

We show the lemmas by the same way in (Suzuki, 1987). But we claim it independently to an existence of a

holomorphic map f of M − E to X.

Let Δ be the unit disk in z-plane and e be a compact set of Δ of logarithmic capacity zero. Let g = 4|dw|2
(1−|w|2)2 be a

Poincaré metric of Δ in w-plane. Since the universal covering surface of Δ − e is Δ, we set a hyperbolic metric of

Δ − e as h(z)|dz|2 = (π−1|U)∗g|V where U ⊂ Δ − e,V ⊂ Δ and π(V) = U where π is an universal covering map of Δ

to Δ − e.

From the Selberg theorem in (Selberg, 1937), there is a harmonic function u on Δ − e such that u = 0 on ∂Δ and

u(z)→ ∞ when z ∈ Δ − e, z0 ∈ e and z→ z0.

Set Cλ := {u = λ}(0 � λ < ∞), D0 := {δ � u} ∩ (Δ − e) and Dλ := {δ � u � λ} such that δ is sufficiently small

positive number. Then we may assume that Dλ is connected, Cλ consists of finite number of closed curve and Cδ
is a Jordan closed curve near C0. We fix such a constant δ. When dv(z) is a conjugate differential of du(z), we can

assume that
∫

Cλ
dv(z) = 2π by Selberg theorem.

We set |Dλ| =
∫
δ�u�λ h(z)du(z)dv(z) and |Cλ| =

∫
u=λ

√
h(z)|dz|. Then following lemmas are proved.

8



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 3; 2014

Lemma 2.1 (Lemma 2, Suzuki,1987) There exists a subsequence {λν}ν=1,2,··· such that

lim
ν→∞
|Cλν |
|Dλν |

= 0, λ1 < λ2 < · · · → ∞.

Proof. By the Schwarz Lemma,

|Cλ|2 �
∫

u=λ
dv
∫

u=λ
h(z)dv = 2π

d
dλ
|Dλ|.

If we set Eε := {λ ∈ [1,∞); ε|Dλ| � |Cλ|} for every small fixed ε > 0,

mes(Eε) =
∫

Eε
dλ � 2π

ε2

∫ ∞
1

d|Dλ|
|Dλ|2 =

2π

ε2
(

1

|D1| − lim
λ→∞

1

|Dλ| ) < ∞.

Therefore, there are λ1 < λ2 < · · · → ∞ and ε1 > ε2 > · · · → 0 such that
|Cλν |
|Dλν | < εν. �

Lemma 2.2 (cf. Lemma 1, Suzuki, 1987) |Dλ| � 2|∂Dλ|.
Proof. Let a subdivision of Dλ = ΣN

μ=1
dμ and ∂Dλ = ΣN

μ=1
∂dμ = ΣT

τ=1∂dτ where dμ is a small simply connected

domain, ∂dτ is a part of some ∂dμ by cancellation and h(z)|dz|2 = F∗μg on dμ where Fμ = π−1|dμ .
Then

|Dλ| = Σμ
∫

dλ
ddc log(

4|F′μ(z)|2
(1−|Fμ(z)|2)2 )

= 2Σμ
∫
∂dμ

dc log(
|F′μ(z)|

1−|Fμ(z)|2 )

= 2Σμ{
∫
∂dμ

d(argF′μ(z)) − ∫
∂dμ

dc log(1 − |Fμ(z)|2)}
= −2Σμ

∫
∂dμ

dc log(1 − |Fμ(z)|2)

= −2Στ
∫
∂dτ

dc log(1 − |Fμ(z)|2) � 2|∂Dλ|,

since |dc log(1 − |w|2)| = |2Im( wdw̄
1−|w|2 )| � 2 |dw|

1−|w|2 . �
Lemma 2.3 Let Cλν and Dλν be same in Lemma 2.1. Then |Cλν | → 0(ν→ ∞).

Proof. From Lemma 2.2,
1

2
� |∂Dλν ||Dλν |

=
|Cδ| + |Cλν |
|Dλν |

.

Since limν→∞
|Cλν |
|Dλν | → 0 and |Cδ| is a constant, |Dλν | is uniformly bounded for ν. Then we conclude that |Cλν | →

0(ν→ ∞). �
3. Preliminary (2)

In this section we denote that M is a connected normal complex space with an arbitrary dimension (for its definition,

see for example Nishino,2001, pp. 212, 267).

Definition 3.1 We denote u ∈ PS H(M) when following conditions are satisfied;

(1) u is an upper semicontinuous function on M, −∞ � u < ∞ and u � −∞.

(2) For any open set W in C and any holomorphic map ψ : W → M, u ◦ ψ is a subharmonic function on W in the

usal sence or identically equal to −∞.

Definition 3.2 (cf. Definition 2.5, Fujimoto,1971) We define a subset E of M as a pluripolar set if we can take

every point p of E such that for some up ∈ PS H(Up) where Up is a coordinate neighborhood of p in M such that

E ∩ Up ⊂ {p ∈ Up; up = −∞}. And we call E′ a capacity zero set if we can take an at most countable family {Eν}
of pluripolar subsets of M such as E′ =

⋃
ν Eν.

Remark 3.3 (Remark in Fujimoto, 1971, p. 3) A closed set in complex plane C is of capacity zero in the sence of

above definition if and only if it is of logarithmic capacity zero in the usual sence. It is well known that an analytic

subset of M is a closed pluripolar set.
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Proposition 3.4 (Proposition 3.1, Fujimoto, 1971) Let E be a closed capacity zero set in a normal space M and
f ∈ O(M − E) be locally bounded on every point of E. Then f ∈ O(M).

Corollary 3.5 (Corollary 3.2, Fujimoto, 1971) If E be the same as the above proposition, then D − E is connected
for any domain D of M.

Remark 3.6 Since the concept of the capacity zero set contains the one of the pluripolar set, above results are

established when E is a closed pluripolar set.

Theorem 3.7 Let E be a closed capacity zero set in a normal space M and f be a holomorphic map of (M − E) to
a space X which may be open or compact. If for every point of p ∈ E there is a neighborhood of U of p and a Stein
subdomain X0 of X such that f (U−E) � X0 where X0 may be depend on U−E, then f is extended holomorphically
to a map of M to X.

Proof. Since X0 is Stein, there is an analytic polyhedronP of X0 which contains f (U−E). By Oka-Grauert theorem

(see for example (Nishino, 2001, Theorem 8.1)), P is imbedded to a polydisk of CN as a normal analytic subset,

then above claim is true from Proposition 3.4. �
Since the open Riemann surface is Stein, the following corollary is obtained.

Corollary 3.8 Let M and E be the same as in Theorem 3.7. If f is a holomorphic map of M − E to any open
or compact Riemann surface R with f (M − E) � R where genus g of R satisfies 0 � g � ∞, f can be extended
holomorphically to a map of M to R.

4. Conclusion and Applications

We use the word “hyperbolic” as “Kobayashi hyperbolic”. For the concept of Kobayashi hyperbolicity and its

properties, see for example (Kobayashi, 2005) which is a manifold version and (Kobayashi, 1998) which is a space

version.

Proposition 4.1 Let Δ be the unit disk in z-plane and e be a compact set of logarithmic capacity zero. Let X
be an open or compact hyperbolic space with an arbitrary dimension such that for every connected compact set
K � X there is a holomorphically separable function on a neighborhood of K. Then if f is a holomorphic map
of Δ − e to X such that f (Δ − e) is relatively compact in X, in particular if X is compact, then f can be extended
holomorphically to a map of Δ to X.

Proof. Let z0 be an arbitrary point of e and Cλν is the same of Lemma 2.3. We write λν to ν anew. Let C0
1

be one of

C1 which surrounds z0 and C1
2 consits of C2 surrounded by C0

1
. Let C0

2
be one of C1

2 which surrounds z0 (we may

assume that C0
ν is a Jordan closed curve). We define inductively C0

ν and C1
ν+1 such the method and Eν is a domain

surrounded by C0
ν as the outer boundary and C1

ν+1 as the inner boundary. From Corollary 3.5, there is a zν ∈ C0
ν with

zν → z0(ν → ∞). When we take a subsequence that {zν} if necessary, we may assume that f (zν) → r ∈ X(ν → ∞)

because f (Δ − e) is relatively compact in X.

Let z′ν be an arbitrary point of C0
ν . Then dX( f (z′ν), r) � dX( f (zν), r)+ dX( f (zν), f (z′ν)) � dX( f (zν), r)+ dΔ−e(zν, z′ν) �

dX( f (zν), r) + |Cν| → 0(ν → ∞). Let z′ν+1 be an arbitrary point of C1
ν+1. Then dX( f (z′ν+1), r) � dX( f (zν+1), r) +

dX( f (zν+1), f (z′ν+1)) � dX( f (zν+1), r) + dΔ−e(zν+1, z′ν+1) � dX( f (zν+1), r) + |Cν+1| → 0(ν→ ∞).

Therefore if we give an arbitrarily small positive number ε, there is a large integer Nε such that ‖ f (∂Eν)−r‖ < ε for

ν � Nε depending a number ε. We assume that there is a point z′ν ∈ Eν such that ‖ f (z′ν) − s‖ < ε for ν � Mε which

is a large integer depending a number ε where s is a point of X with r � s. And f (Ēν) is compact with f (Ēν) � X
because it’s dimension is one and it’s genus is zero. From the condition, there is a holomorphic function g on f (Ēν)
such that g(r) = 0 and g( f (z′ν)) = 1 for fixed ν � max(Nε,Mε) where ε is sufficiently small. Then |g ◦ f (∂Eν)| � 1

2

and |g ◦ f (Eν)| � 1
2

by the maximum principle. This contradicts to |g ◦ f (z′ν)| = 1.

Then f (zν) → r for every zν → z0 where zν ∈ Δ − e and f can be extended holomorphically at z0 by Proposition

3.4. And f can be extended holomorphically a map of Δ to X because we take z0 ∈ e arbitrarily. �
Remark 4.2 Let e be a logarithmic closed capacity zero set in Δ. There is a simply connected domain D surrounded

by a closed Jordan curve where D is near Δ such as Δ ⊃ D and D ∩ e is compact in D from Corollary 2.5. Then

there is a conformal map ϕ of D to Δ and ϕ(e) is a compact logarithmic capacity zero set of Δ. Therefore we may

assume that above proposition holds good to such D.

Remark 4.3 In Proposition 4.1 if f is a holomorphic injective map of Δ − e to X, f (Ēν) is a bordered Riemann

surface with genus 0. Then it is easy to see that f can be extended holomorphically to a map of Δ to X which is an
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arbitrary open or compact hyperbolic space.

Proposition 4.4 Let Δ and e be the same as in Proposition 4.1. Let X be a compact hyperbolic space with an
arbitrary dimension whose universal covering space X̃ is a Stein space. Then if f is a holomorphic map of Δ − e
to X, then f can be extended holomorphically to a map of Δ to X.

Proof. We use the same notations in the proof of Proposition 4.1. We take a disjoint Jordan smooth curves l1, · · · , lp

from points z1, · · · , zp on C0
ν to z1

1, · · · , z1
p on C1

ν+1,1 · · ·C1
ν+1,p respectively in Ēν where C1

ν+1 = C1
ν+1,1 ∪ · · · ∪C1

ν+1.p

such that E′ν = Eν −⋃p
i=1

li is simply connected domain. Let π: X̃ → X be a covering map and g be a holomorphic

function on X̃. The function g ◦ π−1 ◦ f is a single valued function on E′ν, it is a single valued function on Eν by

Painlevé theorem and the nature of f . Since X̃ is Stein, we can take g such that g(π−1(r)) = 0 and g(π−1( f (z′ν)) = 1.

Then f can be extended holomorphically to a map of Δ to X from the proof of Proposition 4.1. �
Theorem 4.5 Let M be a manifold with an arbitrary dimension and E be a closed capacity zero set of M. Let X
be the same as in Proposition 4.1. Then if f is a holomorphic map of M − E to X such that f (M − E) is relatively
compact in X, in particular if X is compact, f can be extended holomorphically to a map of M to X.

Proof. Let (z0) be an arbitrary point of E and D̄0 be some closed neighborhood of M. Let D̄1 be some closed

neighborhood of (z′0) of M such that (z′0) � E and D̄1 ⊂ D̄0 and (z0) ∈ D1 from Corollary 3.5. And we may assume

that D1 is biholomorphic to a closed unit ball B̄ centered at (0) which corresponds to (z′
0
). We identify D̄1 to B̄.

Since every line L through (0) in B̄, B̄ ∩ L ∩ E is a closed logarithmic capacity zero set and B ∩ L = Δ can be

deformed a little to D such that Proposition 4.1 holds good for D from Remark 4.2. Then every line L through (0)

in B̄, we may consider that f|L is a holomorphic map of Δ to X. It is easy to see that f is holomorphic on B by

blowing up method at (0) and Hartogs theorem. Since we take (z0) as an arbitrary point of E, f can be extended

holomorphically to a map of M to X. �
Theorem 4.6 Let M and E be the same as in Theorem 4.5 and X be the same of Proposition 4.4. Then if f is an
holomorphic map of M − E to X, then f can be extended holomorphically to a map of M to X.

Proof. From Proposition 4.4 and the same method of Theorem 4.5, f can be extended holomorphically to a map

of M to X. �
Corollary 4.7 Let M and E be the same as in Theorem 4.5. If f is a holomorphic map of M − E to a compact
Riemann surface R whose genus ≥ 2, f can be extended holomorphically to a map of M to R.

Proof. Since the universal covering of R is a unit disk, above statement is true by Theorem 4.6. �
From Remark 4.3 and the same method of Theorem 4.5 following corollary is obtained.

Corollary 4.8 Let M be and E be the same as in Theorem 4.5. If f is a holomorphic injective map of M − E to a
compact hyperbolic space X with an arbitrary dimension, f can be extended holomorphically to a map of M to X.

From above corollary it is easy to see the following theorem.

Theorem 4.9 Let X be an arbitraly compact hyperboric manifold, E be a closed capacity zero set of X and
f ∈ Aut(X − E). Then f ∈ Aut(X).

Problem 4.10 Let X be a compact hyperbolic space. When is the universal covering space of X a Stein space ?
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