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Abstract

We study difference equations which arise as discrete approximations to three-point boundary value problems for systems

of first-order ordinary differential equations. We obtain new results of the existence of solutions to the discrete problem by

employing Euler’s method. The existence of solutions are proven by the contraction mapping theorem and the Brouwer

fixed point theorem in Euclidean space. We apply our results to show that solutions to the discrete problem converge to

solutions of the continuous problem in an aggregate sense. We also give some examples to illustrate the existence of a

unique solution of the contraction mapping theorem.
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1. Introduction

In this paper, we study the three-point boundary value problem

Dxk = f (tk, xk), k = 1, · · · , n, (1)

Mx0 + Nxŝ + Rxn = α. (2)

which arises as a discrete approximation to the continuous problem

x′(t) = f (t, x), t ∈ [a, c], (3)

Mx(a) + Nx(b) + Rx(c) = α, (4)

Here f is a continuous, vector-valued and possibly nonlinear function, the step size h = (c−a)/n and grid points tk = a+kh
for k = 0, · · · , n. M, N and R are given d × d matrices, and α ∈ Rd. Let s ∈ {0, 1, · · · , n − 1} be such that s < b < s + 1.

Choose a θ ∈ [0, 1] so that xŝ = θxs+1 + (1 − θ)xs. Thus we approximate xŝ by linear interpolation (see McCormick, 1964,

p. 50-51).
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Numerical solutions to (3), (4) involve discretization. The numerical methods of interest provide solutions that closely

approximate the exact solutions for sufficiently small step size (see Keller, 1991). Since the Euler method is the simplest

numerical scheme for solving initial value problems, we employ this method for approximating the solution of (3), (4),

requiring an extremely small step size.

The discretized boundary value problems and the ‘effect’ that this discretization may have on possible solutions when

compared with solutions to the original continuous boundary value problem, have been researched by (Agarwal, 1985),

(Gaines, 1974) and (Lasota, 1968). For example, (Agarwal, 1985) provides some examples showing that even though the

continuous boundary value problem may have a solution, its discretization may have no solution. Thus we formulate a

convergence theorem which is a generalization of Theorem 2.5, (Gaines, 1974) showing that if solutions to the continuous

problem (3), (4) are unique, then solutions to the discrete problem (1), (2) converge to solutions of the continuous problem.

The primary motivation here for the research in this paper is the work by (Ma, 2002) who studied the existence and

uniqueness of solutions of three-point boundary value problems using the Leray-Schauder continuation theorem when f
is a Carathéodory function. In this work, by employing Euler’s method, we obtain new results of the existence of solutions

to (1), (2) with uniqueness as well as the existence of solutions to (1), (2) without uniqueness. We prove existence and

uniqueness results for nonlinear boundary value problems using the contraction mapping theorem and the Brouwer fixed

point theorem in Euclidean space. We also give some examples to illustrate the existence of a unique solution of the

contraction mapping theorem.

2. Notation and Preliminary Results

Denote X = R(n+1)d = Rd × · · · × Rd % {0, h, · · · , nh} × Rd. Let a, b, c ∈ R with a < b < c and α = (α1, · · · , αd) ∈ Rd. Let

B be a d × d matrix with elements bi j, with the norm

‖ B ‖∞= max1≤i≤d

d∑
j=1

| bi j | . (5)

Let e = (e1, · · · , en), where ek ∈ Rd, k = 1, · · · , n with norms ‖ e j ‖= max1≤i≤d | e ji |, where | . | denotes the modulus

of e ji ∈ R. By abuse of notation we let ‖ e ‖∞= max1≤ j≤n ‖ e j ‖ . Let pk ∈ R, k = 1, · · · , n, where p : [a, b] → R is

continuous with norm ‖ p ‖= max1≤k≤n | pk |, and set ‖ xk ‖= max1≤i≤d | xki |, where | . | denotes the modulus of R.

Set ‖ x ‖∞= max0≤k≤n ‖ xk ‖ for each x = (x0, · · · , xn) ∈ X which defines a norm on X. If x = (x0, · · · , xn) ∈ R(n+1)d,

set �xk = (xk − xk−1) for k = 1, · · · , n and the difference quotient Dxk = �xk/h. If c ∈ Rd is a constant then c satisfies

ck = c for all k = 0, 1, · · · , n. Thus define ‖ c ‖=| c |, where | . | denotes the modulus of R. By a solution to (3), we

mean a vector function x ∈ C1([a, c]; Rd) satisfying (3) for all t ∈ [a, c] and (4). By a solution to (1), we mean a vector

x = (x0, x1, · · · , xn) ∈ R(n+1)d satisfying (1) for all k = 1, · · · , n and (2). The value of the kth component xk of a solution x
of (1) is expected to approximate x(tk), for some solution x of (3). We assume the following:

Assumption (A1). M,N and R are constant square matrices of order d such that

det(M + N + R) � 0. (6)

Lemma 1 Let (A1) hold. Let α ∈ Rd, e = (e1, · · · , en), where ek ∈ Rd, k = 1, · · · , n, and xk ∈ Rd, k = 0, 1, · · · , n be such

that

Dxk = ek, k = 1, · · · , n,
Mx0 + Nxŝ + Rxn = α.

Then

xk =

k∑
j=1

he j + x0, k = 0, 1, · · · , n,

where,

x0 = (M + N + R)−1
(
α − Nθhes+1 − N

s∑
j=1

he j − R
n∑

j=1

he j

)
, (7)

and
∑0

j=1 he j = 0 by definition.

Proof We have xs = x0 +
∑s

j=1 he j, xs+1 = x0 +
∑s

j=1 he j + hes+1, xŝ = x0 + θhes+1 +
∑s

j=1 he j.

Combining this with (2), we conclude that

α = Mx0 + N
(
x0 + θhes+1 +

s∑
j=1

he j

)
+ R
(
x0 +

n∑
j=1

he j

)
,
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where

x0 =
(
M + N + R

)−1(
α − Nθhes+1 − N

s∑
j=1

he j − R
n∑

j=1

he j

)
.

Therefore

xk =

k∑
j=1

he j + x0, k = 0, 1, · · · , n,

where
∑0

j=1 he j = 0 by definition and

x0 = (M + N + R)−1
(
α − Nθhes+1 − N

s∑
j=1

he j − R
n∑

j=1

he j

)
.

This completes the proof.

Lemma 2 Let (A1) hold. Let α ∈ Rd, e = (e1, · · · , en), where ek ∈ Rd, k = 1, · · · , n, and xk ∈ Rd, k = 0, 1, · · · , n be such

that

Dxk = ek, k = 1, · · · , n,
Mx0 + Nxŝ + Rxn = 0.

Then

‖ x ‖∞≤ Γ0h(n + θ) ‖ e ‖∞, (8)

where

Γ0 = max{ ‖ (M + N + R)−1R ‖∞, ‖ (M + N + R)−1M ‖∞, ‖ (M + N + R)−1N ‖∞,
‖ (M + N + R)−1(N + R) ‖∞, ‖ (M + N + R)−1(M + N) ‖∞,
‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1R ‖∞,
‖ (M + N + R)−1(N + R) ‖∞ + ‖ (M + N + R)−1R ‖∞
‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1R ‖∞,
‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1(M + N) ‖∞}, (9)

and ‖ . ‖∞ is given in (5).

Proof Setting α = 0 in (7) we have

xk =

k∑
j=1

he j + (M + N + R)−1
(
− Nθhes+1

−N
s∑

j=1

he j − R
n∑

j=1

he j

)
. (10)

For t0 ≤ tk ≤ ts ≤ ts+1 ≤ tn, we have

xk =

k∑
j=1

he j + (M + N + R)−1

(
− Nθhes+1

−N
( k∑

j=1

he j +

s∑
j=k+1

he j

)
− R
( k∑

j=1

he j

+

s∑
j=k+1

he j +

n∑
j=s+1

he j

))

= (M + N + R)−1M
k∑

j=1

he j − (M + N + R)−1(N + R)

s∑
j=k+1

he j

−(M + N + R)−1R
n∑

j=s+1

he j − (M + N + R)−1Nθhes+1,

k = 0, 1, · · · , n,
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where
∑0

j=1 he j = 0 by definition. Thus

‖ x ‖∞ ≤ Γ1,0h(

n∑
j=1

‖ e j ‖ +θ ‖ es+1 ‖ )
≤ Γ1,0h(n + θ) ‖ e ‖∞, (11)

where

Γ1,0 = max{‖ (M + N + R)−1M ‖∞, ‖ (M + N + R)−1(N + R) ‖∞,
‖ (M + N + R)−1R ‖∞, ‖ (M + N + R)−1N ‖∞,

‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1R ‖∞,
‖ (M + N + R)−1(N + R) ‖∞ + ‖ (M + N + R)−1R ‖∞}, (12)

and ‖ . ‖∞ is given in (5). For t0 ≤ ts ≤ ts+1 ≤ tk ≤ tn, we have

xk =

s∑
j=1

he j +

k∑
j=s+1

he j + (M + N + R)−1

(
− Nθhes+1 − N

s∑
j=1

he j

−R
( s∑

j=1

he j +

k∑
j=s+1

he j +

n∑
j=k+1

he j

))

= (M + N + R)−1M
s∑

j=1

he j + (M + N + R)−1(M + N)

k∑
j=s+1

he j

−(M + N + R)−1R
n∑

j=k+1

he j − (M + N + R)−1Nθhes+1,

k = 0, 1, · · · , n,
where

∑0
j=s+1 he j = 0 by definition. Thus

‖ x ‖∞ ≤ Γ2,0h(

n∑
j=1

‖ e j ‖ +θ ‖ es+1 ‖ )
≤ Γ2,0h(n + θ) ‖ e ‖∞, (13)

where

Γ2,0 = max{‖ (M + N + R)−1M ‖∞, ‖ (M + N + R)−1(M + N) ‖∞,
‖ (M + N + R)−1R ‖∞, ‖ (M + N + R)−1N ‖∞,

‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1R ‖∞,
‖ (M + N + R)−1M ‖∞ + ‖ (M + N + R)−1(M + N) ‖∞}, (14)

and ‖ . ‖∞ is given in (5).

Combining (11) with (13), we obtain

‖ x ‖∞≤ Γ0h(n + θ) ‖ e ‖∞, (15)

where Γ0 = max{Γ1,0,Γ2,0}.
Lemma 3 Let (A1) hold. Let xk ∈ Rd, k = 0, 1, · · · , n, α ∈ Rd, and w ∈ Rd . Then the problem

Dxk = 0, k = 1, · · · , n,
Mx0 + Nxŝ + Rxn = α

has a unique solution xk = w where

w = (M + N + R)−1α. (16)

Lemma 4 Let (A1) hold. Let f : [a, b] × Rd → Rd be a continuous, xk ∈ Rd, k = 0, 1, · · · , n, α ∈ Rd, and w be defined by

(16). Then the problem

Dxk = f (tk, xk), k = 1, · · · , n, (17)

Mx0 + Nxŝ + Rxn = α (18)
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has a unique solution x = u + w if and only if u is the only solution of

Dxk = f (tk, uk + w), k = 1, · · · , n, (19)

Mx0 + Nxŝ + Rxn = 0. (20)

Proof Suppose u is the only solution of (19), (20). Define x = u + w. It is clear that Dxk = f (tk, xk), k = 1, · · · , n, and

Mx0 + Nxŝ + Rxn = M[u0 + w] + N[uŝ + w] + R[un + w]

= Mu0 + Nuŝ + Run + (M + N + R)w

= 0 + α.

Conversely, suppose x = u + w is the only solution of (17), (18). Then it is clear that

Duk = f (tk, uk), k = 1, · · · , n,
Mu0 + Nuŝ + Run = 0.

Thus the proof is complete.

3. Existence Results

In this section, first to obtain an existence theorem without uniqueness of the solution, we will apply the Brouwer Fixed

Point Theorem which is given in (Keller, 1991, p. 382). Then we shall use the contraction mapping theorem which is

given in (Keller, 1991, p. 372) to establish the existence of a unique solution to the boundary value problem (1), (2).

Theorem 1 Let (A1) hold. Let f : [a, b] × Rd → Rd be a continuous function and pk ∈ R, k = 1, · · · , n such that

‖ f (tk, u) − f (tk, v) ‖≤ pk ‖ u − v ‖, k = 1, · · · , n, (21)

for all u, v ∈ Rd, where ‖ f (tk, u) − f (tk, v) ‖= max1≤i≤d | fi(tk, u) − fi(tk, v) |. If

Γ0h(n + θ) ‖ p ‖< 1, (22)

then the three-point boundary value problem (1), (2) has at least one solution.

Proof In view of Lemma 4, to prove that (1), (2) has a solution x = u + w, it suffices to prove the following problem

Duk = f (tk, uk + w), k = 1, · · · , n, (23)

Mu0 + Nuŝ + Run = 0 (24)

has a solution in u, where w is defined by (16). The general solution of (23), (24) is

uk =

k∑
j=1

h f (t j, u j + w) + (M + N + R)−1
(
− Nθh f (ts+1, us+1 + w)

−N
s∑

j=1

h f (t j, u j + w) − R
n∑

j=1

h f (t j, u j + w)
)
, k = 0, 1, · · · , n. (25)

Let l > 0, set Ω = {u ∈ R(n+1)d :‖ u ‖∞≤ l} so that Ω is a closed subset of X = R(n+1)d, where

l ≥ Γ0h(n + θ){‖ p ‖‖ w ‖ +max1≤k≤n ‖ f (tk, 0) ‖}
1 − Γ0h(n + θ) ‖ p ‖ .

Let ‖ f ‖∞,Ω= maxu∈Ωmax1≤k≤n ‖ f (tk, uk + w) ‖. Define T on Ω by

Tuk =

k∑
j=1

h f (t j, u j + w) + (M + N + R)−1
(
− Nθh f (ts+1, us+1 + w)

−N
s∑

j=1

h f (t j, u j + w) − R
n∑

j=1

h f (t j, u j + w)
)
, k = 0, 1, · · · , n, (26)
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where
∑0

j=1 h f (t j, u j + w) = 0 by definition. By the continuity of f , T is continuous. We now show that T : Ω −→ Ω.

Then by (21) we have

‖ f ‖∞,Ω ≤ maxu∈Ωmax1≤k≤n{‖ f (tk, uk + w) − f (tk, 0) ‖ + ‖ f (tk, 0) ‖}
≤ maxu∈Ωmax1≤k≤n{pk(‖ uk ‖ + ‖ w ‖)+ ‖ f (tk, 0) ‖}, k = 1, · · · , n,
≤ ‖ p ‖ (l+ ‖ w ‖) +max1≤k≤n ‖ f (tk, 0) ‖ . (27)

For t0 ≤ tk ≤ ts ≤ ts+1 ≤ tn we have

Tuk = (M + N + R)−1M
k∑

j=1

h f (t j, u j + w) − (M + N + R)−1(N + R)

×
s∑

j=k+1

h f (t j, u j + w) − (M + N + R)−1R
n∑

j=s+1

h f (t j, u j + w)

−(M + N + R)−1Nθh f (ts+1, us+1 + w),

where
∑0

j=1 h f (t j, u j + w) = 0 by definition. Thus

‖ Tu ‖∞ ≤ Γ1,0hmaxu∈Ω{
n∑

j=1

‖ f (t j, u j + w) ‖ +θ ‖ f (ts+1, us+1 + w) ‖}

≤ Γ1,0h(n + θ) ‖ f ‖∞,Ω
≤ Γ1,0(n + θ)h{‖ p ‖ (l+ ‖ w ‖)) +max1≤k≤n ‖ f (tk, 0) ‖}, (28)

where Γ1,0 is given in (12). Also, for t0 ≤ ts ≤ ts+1 ≤ tk ≤ tn we have

Tuk = (M + N + R)−1M
s∑

j=1

h f (t j, u j + w) + (M + N + R)−1(M + N)

×
k∑

j=s+1

h f (t j, u j + w) − (M + N + R)−1R
n∑

j=k+1

h f (t j, u j + w)

−(M + N + R)−1Nθh f (ts+1, us+1 + w),

for k = 0, 1, · · · , n,
where

∑0
j=s+1 h f (t j, u j + w) = 0 by definition. Thus

‖ Tu ‖∞ ≤ Γ2,0hmaxu∈Ω{
n∑

j=1

‖ f (t j, u j + w) ‖ +θ ‖ f (ts+1, us+1 + w) ‖}

≤ Γ2,0h(n + θ) ‖ f ‖∞,Ω
≤ Γ2,0h(n + θ){‖ p ‖ (l+ ‖ w ‖) +max1≤k≤n ‖ f (tk, 0) ‖}, (29)

where Γ2,0 is given in (14). Combining (28) with (29), we obtain

‖ Tu ‖∞ ≤ Γ0h(n + θ){‖ p ‖ (l+ ‖ w ‖) +max1≤k≤n ‖ f (tk, 0) ‖}
≤ l (30)

where Γ0 is given in (9) and

l ≥ Γ0h(n + θ){‖ p ‖‖ w ‖ +max1≤k≤n ‖ f (tk, 0) ‖}
1 − Γ0h(n + θ) ‖ p ‖

provided

Γ0h(n + θ) ‖ p ‖< 1.

Hence Tu ∈ Ω, and the conclusion follows from the Brouwer Fixed Point Theorem that there exists at least one solution

to the boundary value problem (1), (2) in Ω ⊆ X = R(n+1)d.

Theorem 2 Let (A1) hold. Let f : [a, b] × Rd → Rd be a continuous function and pk ∈ R, k = 1, · · · , n such that

‖ f (tk, u) − f (tk, v) ‖ ≤ pk ‖ u − v ‖, k = 1, · · · , n, (31)
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for all u, v ∈ Rd, where ‖ f (tk, u) − f (tk, v) ‖= max1≤i≤d | fi(tk, u) − fi(tk, v) |. If

Γ0h(n + θ) ‖ p ‖< 1, (32)

then the three point boundary value problem (1), (2) has a unique solution.

Proof The proof is similar to the proof of Theorem 1. Let l > 0, and set Ω = {u ∈ R(n+1)d :‖ u ‖∞≤ l} so that Ω is a closed

subset of X = R(n+1)d, where

l ≥ Γ0h(n + θ){‖ p ‖‖ w ‖ +max1≤k≤n ‖ f (tk, 0) ‖}
1 − Γ0h(n + θ) ‖ p ‖ .

Let ‖ f ‖∞,Ω= maxu∈Ωmax1≤k≤n ‖ f (tk, uk + w) ‖. Define T on Ω by

Tuk =

k∑
j=1

h f (t j, u j + w) + (M + N + R)−1
(
− Nθh f (ts+1, us+1 + w)

−N
s∑

j=1

h f (t j, u j + w) − R
n∑

j=1

h f (t j, u j + w)
)
, k = 0, 1, · · · , n.

By the continuity of f , T is continuous. We have already shown that T : Ω −→ Ω in the proof of Theorem 1. Then by

(31) we have

‖ f ‖∞,Ω ≤ maxu∈Ωmax1≤k≤n{‖ f (tk, uk + w) − f (tk, 0) ‖ + ‖ f (tk, 0) ‖}
≤ maxu∈Ωmax1≤k≤n{pk(‖ uk ‖ + ‖ w ‖)+ ‖ f (tk, 0) ‖}, k = 1, · · · , n,
≤ ‖ p ‖ (l+ ‖ w ‖) +max1≤k≤n ‖ f (tk, 0) ‖ . (33)

We obtained

‖ Tu ‖∞ ≤ Γ0h(n + θ){‖ p ‖ (l+ ‖ w ‖) +max1≤k≤n ‖ f (tk, 0) ‖}
≤ l (34)

where Γ0 is given in (9) and

l ≥ Γ0(n + θ)h{‖ p ‖‖ w ‖ +max1≤k≤n ‖ f (tk, 0) ‖}
1 − Γ0h(n + θ) ‖ p ‖

provided

Γ0h(n + θ) ‖ p ‖< 1.

Hence Tu ∈ Ω.

We shall prove that T : Ω −→ Ω is a contraction mapping. Let u, v ∈ Ω ⊆ R(n+1)d. For t0 ≤ tk ≤ ts ≤ ts+1 ≤ tn we have

‖ Tu − Tv ‖∞ ≤ Γ1,0h{
n∑

j=1

‖ f (t j, u j + w) − f (t j, v j + w) ‖

+θ ‖ f (ts+1, us+1 + w) − f (ts+1, vs+1 + w) ‖}
≤ Γ1,0h(n + θ) ‖ f (t j, u j + w) − f (t j, v j + w) ‖
≤ Γ1,0h(n + θ)p j ‖ u j − v j ‖
≤ Γ1,0(n + θ)h ‖ p ‖‖ u − v ‖∞ . (35)

Also, for t0 ≤ ts ≤ ts+1 ≤ tk ≤ tn we have

‖ Tu − Tv ‖∞ ≤ Γ2,0h{
n∑

j=1

‖ f (t j, u j + w) − f (t j, v j + w) ‖

+θ ‖ f (ts+1, us+1 + w) − f (ts+1, vs+1 + w) ‖}
≤ Γ2,0h(n + θ) ‖ f (t j, u j + w) − f (t j, v j + w) ‖
≤ Γ2,0h(n + θ)p j ‖ u j − v j ‖
≤ Γ2,0h(n + θ) ‖ p ‖‖ u − v ‖∞ . (36)

Combining (35) with (36), we obtain

‖ Tu − Tv ‖∞≤ Γ0h(n + θ) ‖ p ‖‖ u − v ‖∞ .
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where Γ0 is given in (9). It follows that for Γ0h(n+ θ) ‖ p ‖ < 1, Tu = u has a unique solution u in Ω ⊂ X = R(n+1)d. This

fixed point is the unique solution of the boundary value problem (1), (2). This completes the proof of the theorem.

The following two examples give the existence of a unique solution of Theorem 2.

Example 1

Consider the following discrete boundary value problem

Dxk = (Dxk1,Dxk2) = (tk xk, tk xk cos xk), (37)

= ( f1(tk, xk), f2(tk, xk)) = f (tk, xk), k = 1, · · · , 20,(
1 0

0 1

)
x0 +

(
1 0

0 1

)
xŝ +

(
1 0

0 1

)
xn = (1, 1), (38)

where xŝ = θx3/2 + (1 − θ)x1/2. The boundary value problem (37), (38) has a unique solution.

Proof We have M = N = R = I, α = (1, 1), n = 20, h = 0.01 and θ = 0.13. Let Ω = {x ∈ R2(n+1) :‖ x ‖∞< l}. By condition

(34), we obtain ‖ Tu ‖∞≤ l provided that l ≥ 0.01398. We have

‖ f ‖∞,Ω ≤ maxx∈Ωmax1≤k≤20{| tk |‖ (xk + w) ‖, | tk |‖ (xk + w) cos(xk + w) ‖}
≤ maxx∈Ωmax1≤k≤20 | tk |

(
‖ xk ‖ + ‖ w ‖

)
≤ ‖ p ‖ (l+ ‖ w ‖),

with pk = tk, k = 1, · · · , 20, ‖ w ‖= 1/3, and ‖ p ‖= max1≤k≤20{| 0.01k |} = 0.2. Thus (33) holds. We have Γ0 = 1.

Condition (32) becomes Γ0h(n + θ) ‖ p ‖= 0.04026 < 1. Thus all of the conditions of Theorem 2 hold and we conclude

that the boundary value problem (37), (38) has a unique solution.

Example 2 Consider the following discrete boundary value problem

Dxk = (Dxk1,Dxk2) = (t2
k xk cos xk, t2

k xk sin xk), (39)

= ( f1(tk, xk), f2(tk, xk)) = f (tk, xk), k = 1, · · · , 20,(
1 0

0 1

)
x0 +

(
1 0

0 1

)
xŝ +

(
1 0

0 1

)
xn = (1, 1), (40)

where xŝ = θx3/2 + (1 − θ)x1/2. The boundary value problem (39), (40) has a unique solution.

Proof We have M = N = R = I, α = (1, 1), n = 20, h = 0.01 and θ = 0.1. Let Ω = {x ∈ R2(n+1) :‖ x ‖∞< l}. By condition

(34), we obtain ‖ Tu ‖∞ ≤ l provided that l ≥ 2.702 × 10−3. We have

‖ f ‖∞,Ω = maxx∈Ωmax1≤k≤20{| t2
k |‖ (xk + w) cos(xk + w) ‖, | t2

k |‖ (xk + w) sin(xk + w) ‖}
≤ maxx∈Ωmax1≤k≤20 | t2

k |
(
‖ xk ‖ + ‖ w ‖

)
≤ ‖ p ‖ (l+ ‖ w ‖),

with pk = t2
k , k = 1, · · · , 20, ‖ w ‖= 1/3, and ‖ p ‖= max1≤k≤20{| (0.01k)2 |} = 0.04. Thus (33) holds. As in the previous

example, we have Γ0 = 1. Condition (32) becomes Γ0h(n + θ) ‖ p ‖= 0.00804 < 1. Thus all of the conditions of Theorem

2 hold and we conclude that the boundary value problem (39), (40) has a unique solution.

4. Convergence of Solutions

In this section, the previous results are applied to formulate a convergence theorem. The following is a generalization of

Theorem 2.5, (Gaines, 1974).

Theorem 3 Let the assumptions of Theorem 2 hold. Given ε > 0, there exists a δ = δ(ε) > 0 such that if 0 < h < δ and x
is the solution of (1), (2), then there is a solution x of (3), (4) such that

max{‖ x(t, x) − x ‖∞: 0 ≤ t ≤ 1} ≤ ε (41)

where x(t, x) = xk + (t − tk)Dxk+1 for tk ≤ t ≤ tk+1.

Proof The proof is similar to that of (Gaines, 1974) and so is omitted.

Remark 1 It follows from Theorem 3 that if the solutions to the continuous problem (3), (4) are unique, then solutions to

(1), (2) converge to solutions of the continuous problem in the sense of Theorem 3.
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