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Abstract

In this paper, inspired from the study on denoising, segmentation and reconstruction in image processing, and combining

with the theories of two phase flows, we introduce one class of initial-boundary value problem of the Cahn-Hilliard

equation with nonlocal terms. Then, by using the Schauder fixed point theorem, we obtain the existence of weak solutions

to this initial boundary value problem for the nonlocal Cahn-Hilliard equation.
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1. Introduction

1.1 Cahn-Hilliard equation

In order to describes the complicated phase separation and coarsening phenomena in a melted alloy, Cahn J.W., Hilliard

E., 1 958, P. 258-297 proposed the following initial-boundary problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ut = −MΔ(εΔu − 1

ε
ϕ′(u)),

∂u
∂n |∂Ω = 0, ∂(ϕ

′(u)−ε2Δu)

∂n |∂Ω = 0,

u|t=0 = u0

(1)

where Ω ⊆ Rn is a domain with smooth boundary ∂Ω, �n is the outer normal vector, t > 0, ε serves as a measure of the

transition region between two metals in an alloy. M is a positive constant, and ϕ(u) is the double potential well function,

e.g.,

ϕ(u) = (u2 − 1)2,

where u = ±1 is the equivalent state.

There are a lot of research work on this topic, for example, Elliott, C.M., Zheng, S. 1986, P.339-357, have established

the existence and uniqueness of the solution to this initial boundary value problem. And Pego, R.L., 1989, P.261-278

has analyzed the asymptotic property of the solution in the case of ε → 0, and the author proved that the limit of the

solution satisfy the Hele-Shaw initial problems with free edge conditions£Then Alikakos, N.D., Bates, P.W. and Chen,

X., 1994, P.165-205, Alikakos, N.D., Fusco, G., 1993, P.637-674, Chen, X., 1993, P.117-151, 1994, P.1371-1395, and

Stoth, B., 1996, P.154-183. have formally investigated the mathematical property of the solution. In recent years, there

are some progress in the study of dynamic behavior and long time behavior of the solution (refer to Schimperna, G., 2007,

P. 2365-2387 and references therein). More recently, Qian, T., Wang, X., Sheng, P., 2003, P.1-15 propose to describe

the two-phase fluid property by coupling Cahn-Hilliard equation and Navier-Stokes equation. In Betes, P.W. and Han, J.,

2005, P.235-277, the author has investigated a class of long distance disturb term Cahn-Hilliard equation with nonlocal

term, they proved the existence, uniqueness and the stability property of the solution by the energy methods.

1.2 The partial differential equations in image processing

In recent years, with the development of partial differential equation and the information sciences, the PDES methods has

been applied affectively and widely in the image processing such as denoising and reconstruction. For example, Perona,

P., Malik, J., 1990, P.629-639 proposed the well-known anisotropic diffusion model. Even though this model has made

great progress in the theory and improved the filtering property of the original methods£there are still some limitations
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with this mothed. For example, if there exists white noise in the image, then the term |∇u| may be very large such that

the diffusion coefficient is very small, thus these noise point remains and the denoise is inefficient. In order to correct this

drawback, Catte, F., Lions, P.L., Morel, J.M. 1992, P.182-193 proposed the following selective smoohing model,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ut = div(F(|∇u ∗ Gσ|2)∇u),

∂u
∂n |∂Ω = 0,

u|t=0 = u0.

(2)

where u denotes the grey value of the image, the Ω ⊆ R2 is the bounded domain with smooth boundary ∂Ω, �n is the outer

normal vector, and F is a smooth non-increasing function with F(0) = 1, F(x) ≥ 1, and F(x) tending to zero at infinity.

For example, we can take

F(s) =
1

1 + s
k2

with k is the parameter and

Gσ =
1

4πσ
e− |x|2

4σ2

is the Gaussian function and u0 is the original image with noise.

Recently, researchers use multi-phase movement model in fluid mechanics for reference to study the edge detection,

segmentation and restoration in image processing. Bertozzi, A.L., Esedoglu, S., & Gillette,2007, P. 285-291 propose the

following initial boundary value problems based on Cahn-Hilliard equation,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ut = −Δ(εΔu − 1

ε
ϕ′(u)) + λχΩ\D( f − u),

∂u
∂n |∂Ω = 0, ∂∇u

∂n |∂Ω = 0,

u|t=0 = u0.

(3)

and use this model to do image restoration and edge detection. The use of the model for inpainting based on the Cahn-

Hilliard equation ,which allowed for fast,efficient inpaining. The existence and uniqueness of a solution to the initial

boundary value problem(3) is investigated, however, just like the Gauss denoise used by Witkin, A.P., 1983, P.1019-1021.

the edge is smoothed in the time of denoise such that the image loose the fidelity.

1.3 The initial-boundary value problem of Cahn-Hilliard equation

Inspired from the Catte, F., Lions, P.L., Morel, J.M., 1992, P.182-193, and Bertozzi, A.L., Esedoglu, S., & Gillette, 2007,P.

285-291, we propose the following initial boundary equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ut = −Δ⎧⎩εdiv(F(|∇u ∗ Gσ|2)∇u) − 1

ε
ϕ′(u)

⎫⎭ + λ · χΩ|D( f − u),

u|∂Ω = 0, ∂u
∂n |∂Ω = 0,

u|t=0 = u0

(4)

Ω ⊆ R2 is the domain with smooth boundary ∂Ω. D ⊆ Ω is the inpainting domain, and �n is outer normal vector. Our

motivation of choosing the right hand side is as follows: The first term: F and Gσ are the same with the corresponding

function used in (2). The introduction of Gσ is to denoise the image. The chosen of F is to produce the anistropic denoise

effect. Just as Catte, F., Lions, P.L., Morel, J.M., 1992, P.182-193 pointed out, this kind of model can well preserve the

edge of the image.

The second term: ϕ(u) is a double potential well function, which is the same with its role in (1). For example, we can

choose ϕ(u) = (u2 − 1)2. For the convenience of the following discussion, we suppose ϕ(u) satisfies

|ϕ′(u)| ≤ C1|u| +C2|u|3, (5)

with C1 and C2 are two positive constant.

The third term: We try to preserve the original image in the domain Ω\D, λ > 0 is the parameter.

The main difference between our equation and the classical Cahn-Hilliard equation is that there is a nonlocal term in main

term of the equation,

div
(
F(|∇u ∗ Gσ|2)∇u

)
.

2. Existence of weak solutions of the Cahn-Hilliard equation with nonlocal terms

In the following, We shall discuss the existence of a weak solution of (4) by a classical fixed point theorem of Schauder.
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Theorem 1. For any ε > 0, u0 ∈ L2(Ω), f ∈ L2(0,T0; L2(Ω)), then there exists 0 ≤ T ≤ T0 such that the initial-boundary

value problem (4) has a solution in the bounded function space, i.e.,

u ∈ L2(0,T ; H2
0(Ω)) ∩ L∞(0,T ; L2(Ω)) ∩ H1(0,T ; H2

0(Ω)′).

Proof. Firstly, let us introduce the space

W(0,T ) = {w ∈ L2(0,T ; H2
0(Ω)) ∩ L∞(0,T ) ×Ω), ∂tw ∈ L2(0,T ; H2

0(Ω)′)}
for any fixed ∀w ∈ W(0,T ), and let us define the weak form: i.e., search u ∈ W(0,T ) satisfy

(Ew) :

⎧⎪⎪⎨⎪⎪⎩
⎧⎩ ∂u
∂t , ν
⎫⎭ = −ε(div(F(|∇w ∗ Gσ|2)∇u), �ν) + 1

ε
(ϕ′(w),�ν) + (λ · χΩ|D( f − u), ν)

u|t=0 = u0,

for any v ∈ H2
0(Ω), which is now linear in w. Here 〈., .〉 specifies the L2 inner product.

In the above problem, taking v = u, then we have

1

2

d
dt

||u(t)||2L2(Ω)
= −

∫
Ω

ε(div(F(|∇u ∗ Gσ|2)∇u)Δudxdy +
1

ε
ϕ′(w)Δudxdy + λχΩ/D

∫
Ω

( f − u)udxdy. (6)

From the first term in (7), we have

−
∫
Ω

(εdiv(F(|∇w ∗ Gσ|2)∇u)Δu) = −ε
∫
Ω

F(|∇u ∗ Gσ|2)|Δu|2 − ε
∫
Ω

∇F(|∇u ∗ Gσ|2)∇uΔu,

Putting the last two equalities together, we have

1

2

d
dt

||u(t)||2L2(Ω)
= −ε

∫
Ω

F(|∇u ∗ Gσ|2)|Δu|2 − ε
∫
Ω

∇F(|∇u ∗ Gσ|2)∇uΔu +
1

ε
ϕ′(w)Δudxdy + λχΩ/D

∫
Ω

( f − u)udxdy, (7)

First, writing the second term above as

−ε ∫
Ω

∇F(|∇u ∗ Gσ|2)∇uΔu ≤ Cε
∫
Ω

∇(|∇u ∗ Gσ|2)∇uΔu
≤ Cσ1ε

∫
Ω

|Δu|2 + εC ||H||2L∞(Ω)

∫
Ω

|∇u|2
≤ Cσ1ε

∫
Ω

|Δu|2 + ε
C3σ1

∫
Ω

|∇u|2

where H = |∇w ∗ Gσ|2. Then based on the interpolation inequality, we have

−ε
∫
Ω

∇F(|∇u ∗ Gσ|2)∇uΔu ≤ Cσ1ε

∫
Ω

|Δu|2 + εη
Bσ1

∫
Ω

|Δu|2 + ε

Bσ1η

∫
Ω

|u|2.

since

|∇w ∗ Gσ|L∞(Ω) ≤ ||Gσ||L∞(Ω)|w|L1(Ω).

and, there exists a constant γ > 0 such that

F(|∇w ∗ Gσ|2) ≥ γ > 0.

Submitting the above term into (8), we have

1

2

d
dt

||u(t)||2L2(Ω)
+εv||Δu||2L2(Ω)

≤ Cσ1ε||Δu||2L2(Ω)
+
εη

Bσ1

||Δu||2L2(Ω)
+
ε

Bσ1η
||Δu||2L2(Ω)

+
1

ε
ϕ′(w)Δudxdy+λχΩ/D

∫
Ω

( f −u)udxdy.

(8)

By the assumption made on ϕ′(w) ≤ C1|w| +C3|w|3, submitting it into (9), then we have

1

2

d
dt

||u(t)||2L2(Ω)
+εv||Δu||2L2(Ω)

≤ (Cσ1ε+
εη

Bσ1

+
C2σ2

2ε
)||Δu||2L2(Ω)

+
ε ||u||2L2(Ω)

Bσ1η
+

C1||w||2L2(Ω)

2ε
+

C2||w||6L2(Ω)

2εσ2

+
λχΩ/D

2

∫
Ω

( f−u)udxdy.

(9)

Also, we have

λχΩ/D

∫
Ω

( f − u)udx ≤ λχΩ/D
2

∫
Ω

f 2 − λχΩ/D
2

∫
Ω

u2,

Hence

1

2

d
dt

||u(t)||2L2(Ω)
+εv||Δu||2L2(Ω)

≤ (Cσ1ε+
εη

Bσ1

+
C2σ2

2ε
)||Δu||2L2(Ω)

+
ε ||u||2L2(Ω)

Bσ1η
+

C1||w||2L2(Ω)

2ε
+

C2||w||6L2(Ω)

2εσ2

+
λχΩ/D

2
(|| f ||2L2(Ω)

−||u||2L2(Ω)
).

(10)
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We now try to satisfy the following conditions with our choice of the constants,

(1). Cεσ1 <
εv
4
, i.e. σ1 <

v
4C

(2).
εη

Bσ1
< εv

4
, i.e. η < Bvσ1

4

(3). C2σ2

2ε
< εv

4
, i.e. σ2 <

vε2
2C2
,

To satisfy the first condition, take σ1 =
v

8C . Then, to satisfy the second, we can choose η = vσ1B
4

. To satisfy the third,

choose σ2 =
vε2
4C2

. With these choices, we end up with the following inequality:

1

2

d
dt

||u(t)||2L2(Ω)
+ ||Δu||2L2(Ω)

≤ C3|| f ||2L2(Ω)
+C4||u||2L2(Ω)

+C5(||w||2L2(Ω)
+ ||w||6L2(Ω)

), (11)

with C3, C4 and C5 are constants.

As Ω ∈ R2 is bounded, by Sobolev embedding theorem, we have ∀ξ > 0, there exists Cξ > 0 such that

||w(t, ·)||6L6(Ω)
≤ Cξ ||w(t, ·)||6L2(Ω)

+ ξ||w(t, ·)||6
H

3
4 (Ω)
, (12)

By submitting the above result into (12) and using Grönwall inequality, we have

sup
0≥t≤T

||u(t)||2L2Ω
+ ||Δu||2L2(0,T ;L2Ω)

≤ C(T )(||u0||2L2(Ω)
+ || f ||2L2(0,T ;L2Ω)

+ ||w||2L2(0,T ;L2Ω)
+Cξ ||w||6L6(0,T ;L2Ω)

+ξ||w||
L6(0,T ;H

3
4 (Ω))

), (13)

Then from the interpolation inequality Wang. X.-P., Wang. Y.-G, 2007 P.18, we have

∫ T

0

‖w (t, ·)‖6

H
3
4 (Ω)

dt ≤ C0

(∫ T

0

‖w (t, ·)‖18
L2(Ω)

dt
) 1

12
(∫ T

0

‖w (t, ·)‖2
H1(Ω)

dt
) 9

4

Submitting the above equation into (14), for properly chosen ξ > 0, T ∈ (0,T0] sufficiently small, such that when

w ∈ W(0,T ), and

‖w‖L∞(0,T ;L2(Ω)) + ‖w‖L2(0,T ;H2
0
(Ω)) ≤ C(T )(||u0||L2(Ω) + || f ||L2(0,T ;L2(Ω)))

then we have

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H2
0
(Ω)) ≤ C(T )(||u0||L2(Ω) + || f ||L2(0,T ;L2(Ω)))

where C(T ) is a positive constant that only depends on T , F, and ϕ. From the above equation, then we have

∂tu ∈ L2
(
0,T ;

(
H2

0 (Ω)
)′)

From the above estimates we introduce the subspace W0 of W defined by

W0 = {w ∈ W(0,T )|||w||L∞(0,T ;L2(Ω))) + ||w||L2(0,T ;H2
0
(Ω)))} ≤ C(T )(||u0||L2(Ω) + || f ||L2(0,T ;L2(Ω)))

From the above analysis, U is a mapping from W0 into W0. In order to use the Schauder theorem, we need to prove that

the mapping u is weakly continuous from W0 into W0.

Let {wi} be a sequence in W0 which converges weakly to some w in W0 and ui = U(wi)

From the above estimates, the sequence {ui} of W0 contains asubsequence {ui} such that

ui → u weakly in L2(0,T ; H2
0(Ω))

∂

∂t
ui → ∂

∂t
u weakly in L2

⎧⎩0, T ; (H2
0(Ω))′

⎫⎭
In H1(Ω)′ we have ui(0) → u0 i → ∞, therefore, we have

ui → u in L2(0, T ; L2(Ω))

wi → w in L2(0, T ; L2(Ω))

F(|∇wi ∗ Gσ|2) → F(|∇w ∗ Gσ|2) in L2(0,T ; L2(Ω)

ϕ(wi)
′ → ϕ(w)′ weakly in L2(0,T ; L2(Ω))
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Then we can pass to the limit in the relation (Ewi ), which yields u = U(w) and it is weakly continuous. From Schauder

theorem there exists a fixed point u ∈ W0(0,T ) for mapping u = U(w). Therefore, the proposed bounded function class

has a solution

u ∈ C([0,T ]; L2(Ω)) ∩ L2(0,T ; H2
0(Ω)).
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