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Abstract

The Cardassian Model for the dark energy, dark matter and unified theory, which have usually invoked as the most

plausible way to explain the recent observational result, have been studied. In this paper we mainly focus our attention

to investigate some observational consequences of a flat, matter dominated and accelerating scenario, on the constraints,

the parameters n and q which fully characterize the Cardassian Model. The dependence of the acceleration red-shift that

is the red-shift at which the Universe begins to accelerate, with the parameters n and q is briefly discussed. When we

consider q = 1 our case 2.1 converges to the case of Cardassian model for the dark energy by S. Sen44. Moreover when

we consider Ωr0, the density parameter for radiation, is zero then our case 2.1 converges to the case of Cardassian model

for dark matter by A., Dev20, as a special case.

PACS : 98.80, Es : 95.35+d; 98.62Sb
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1. Introduction

The current observations indicate that we are living in as spatially flat, low matter density Universe which is currently

undergoing an accelerating expansion (P. De, Bernadis11; S. Hanany26; A. Balbi3; S. Perlmutter34,35; P.M. Garnavich23;

A. G. Rieses37). The most simple explanation of the current cosmological state of the universe requires two dark compo-

nents: one is in the form of non-relativistic dust (dark matter) with vanishing pressure contributing one-third of the total

energy density of the universe and clustering gravitationally at small scales while the second one is a smoothly distributed

component having large negative pressure (dark energy) and contributing around two-third of the total energy density of

the universe.

As none of the two components (dark matter and dark energy) has laboratory evidence both directly or indirectly, one

have to invoke untested physics twice to explain the current observations. That is why people in recent times have

proposed interesting scenarios where one describes both dark matter and dark energy in a unified way through a single

fluid component in the Einsteins equation. Chaplygin gas model is one such interesting possibility which has attracted lot

of attentions in recent times (A. Kamenshchik28; M.C. Bento8,9; N. Bilic13). Padmanabhan and Roy Choudhury have also

proposed an interesting unified description based on a rolling tachyon arising in string theory (T. Padmanabhan32).

Although the simplest candidate for this dark energy is the vacuum energy or the cosmological constant (Λ), alternative

scenarios where the acceleration is driven by dynamical scalar field both minimally (R.R. Caldwell15; P.J.E. Peebles33; P.

G. Ferreira21; E. J. Copeland18; P.J. Steinhardt46; I. Zlatev54; C. Wetterich51; B. Ratra36; T. Barreirs4; V. Sahni38; A. A.

Sen42; M. C. Bento7) and non-minimally (N. Berlolo10; O. Bertolami12; J. P. Uzan49; L. Amendola1,2; M. Gasperini24,25;

A. A. Sen40,41,42) coupled with gravity called quintessence have been widely investigated in recent years (N. Benerjee5,6;

S. Sen45; T. Chiba16).

In particular, Y. Wang50 has studied some observational characteristics of a direct generalization of the original Cardassian

model. According to these authors, the observational expressions in this new scenarios are very different from generic

quintessence cosmologies and fully determined by two dimensionless parameters n and q. They proposed the interesting

alternative to quintessence scenario where the recent acceleration of the flat universe is driven solely by the matter,

instead of using any cosmological constant or vacuum energy term. Since pure matter or radiation cannot alone take into

account the recent acceleration in the flat universe, this goal is accomplished by modifying the Friedman equation with

148 � www.ccsenet.org



Journal of Mathematics Research September, 2009

the empirical additional term named Cardassian term

H2 = Aρ + Bρn (1)

where A = 8πG/3, B and n are constants and are the parameters of the model. Here the energy density (ρ) contains only

matter (ρm) and radiation (ρr) i.e. ρ = ρm + ρr. Since at present ρm >> ρr, ρ can be considered consisting of ρm only.

Observational constraints from a variety of astronomical data have been also investigated recently, both in the original

Cardassian model (Z. H. Zhu53; S. Sen44; A.A. Sen43) and its generalized versions (T. Multamaki31). Although J. M.

Cline17 has shown that cardassian model based on this higher dimensional interpretation, violates the weak energy con-

dition for the bulk stress energy for n < 2/3 which is necessary for accelerating universe in late times. This extra term

may also arise due to the matter self interactions that contributes a negative pressure, through a long-range confining force

which may be of gravitational origin.

The aim of this paper is to explain some observational constraints on the Generalized Cardassian (GC) & Modified

Polytropic Cardassian (MPC) Model for the dark energy & dark matter scenarios. We mainly focus our study on the

constraints that is the free parameters of the model (n and q).

The Freidmann Model :

In Standard cosmology, the evolution of the universe, is governed by the Friedmann equation

H2 =
8πGρ

3
(2)

At the current epoch the critical density is

ρcrit =
3H2

0

8πG
= (1.054)(10−5)h2Gev/cm3 (3)

where subscript refers to the present day.

H0 = 100hKm/s/Mpc (4)

The ratio of energy density to the critical density

Ω = ρ/ρcrit, (5)

In the standard picture, an additional component beyond matter and radiation is assumed to reach the critical density. This

component is taken to be a vacuum energy; a cosmological constant Λ or a time dependent vacuum energy or scalar field

known as quintessence that evolves dynamically with time.

The Hubble parameter can be related to its present day value by:

H = H0EF(z) (6)

where

EF(z)2 = Ωr0(1 + z)4 + Ωm0(1 + z)3 + Ωx0(1 + z)3(1+wx) (7)

where the current contributions from radiation (= Ωr0), matter (= Ωm0) and vacuum (= Ωx0) with wx = (px/ρx), the

equation of state.

2. Formulation of the model

Case1: Generalized Cardassian (GC) model based on The Friedmann equation

In the Cardassian model (K. Freese22) the Friedmann equation has the general form

H2 = g(ρM), (8)

where the ρM is the energy density of ordinary matter and radiation. The Universe is assumed to be flat and there is

neither new type of matter nor a non-zero cosmological constant. The function g is assumed to approach the standard

form, k2ρ at early times, to give accelerated expansion in accordance with the supernova observation. Since the behaviour

of the function is different at different values of ρM , there is an associated scale, ρc, or red-shift Zeq, in the function g that

determines when the evolution is standard and when the non-standard terms begin to dominate.

The original Cardassian form of g(ρ) (omitting the subscript M) is

H2 = Aρ + Bρn, with n < 2/3. (9)

At early times the universe is dominated by the Aρ term, provided that B is small enough at the time of interest. At late

times the ρn term becomes significant, providing acceleration compared to the standard case. In terms of the scale ρc,

equation (3) can be written as

H2 = Aρ[1 + (ρ/ρc)n−1], (10)
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Hence B = A(ρc)1−n.

In a matter dominated universe this is conveniently parameterized by the red-shift at which the two terms are equal, Zeq

(or Zcard)

H2 = Aρ
[
1 + (1 + Zeq)3(1−n)

]
, (11)

Case 2: Modified Polytropic Cardassian (MPC) model based on the Friedmann equation

Recently another Cardassian model has been studied by Y . Wang50. In this Modified Polytropic Cardassian (MPC) model,

the Friedmann equation is given by

H2 = Aρ[1 + (ρ/ρcard)q(n−1)]1/q, (12)

where ρcard (or ρc) is again the energy density of matter at which the non-standard terms begin to dominate and q > 0 is

deceleration parameter. The MPC model is constrained by the supernova observations as well as the CMB The growth of

gravitational instabilities in the Modified Polytropic Cardassian model described by equation (6). The original Cardassian

model is a special case of the MPC model with q = 1.

Case 2.1 : Once the energy density ρ drops below ρcard the universe starts accelerating, following S. Sen44, ρcard has been

rewrite as follow :

ρcard = ρm0(1 + Zcard)3{1 + Ωr0

Ωm0

(1 + Zcard)} (13)

where ρcard (or ρc) is the energy density and Zcard is the red shift at which the second term in equation (1), starts dominating

over the first term. The MPC Model have the three parameter, one B (or ρcard or Zcard), second q (or deceleration

parameter) and third n (power law index parameter). The current contributions from radiation (= Ωr0) and matter (= Ωm0),

the two parameters are defined as Ωm0 =
ρm0

ρcrit
and Ωr0 =

ρr0

ρcrit
respectively.

Substituting the value of ρcard from equation (13), equation (12) at current contributions becomes

H2
0 = Aρ0

⎡⎢⎢⎢⎢⎢⎣1 + ( ρ0

ρm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

1
q

or,

H2
0 = Aρ0

⎡⎢⎢⎢⎢⎢⎣1 + (ρ0 + ρm0

ρm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

1
q

or,

H2
0 =

8πG
3
ρ0

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

1
q

or,

3H2
0

8πGρ0

=

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

1
q

or, from equation (3) considering ρcrit =
3H2

0

8πG we have

ρcrit

ρ0

=

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

1
q

or,

ρ0

ρcrit
=

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

−1
q

(14)

or,
ρ0

ρcrit
=
ρm0 + ρr0

ρcrit
= Ωm0 + Ωr0 = F

Where

F =

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)q(n−1)

(1 + Zcard)3q(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}q(1−n)
⎤⎥⎥⎥⎥⎥⎦

−1
q

(15)

The Original Cardassian model is a special case of the MPC model with q = 1. When we consider q = 1 our MPC model

case converge to the original Cardassian model case of S. Sen44.

F =

⎡⎢⎢⎢⎢⎢⎣1 + (1 + Ωr0

Ωm0

)(n−1)

(1 + Zcard)3(1−n)

{
1 +
Ωr0

Ωm0

(1 + Zcard)

}(1−n)
⎤⎥⎥⎥⎥⎥⎦−1

(16)
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Observational constraints from a variety of astronomical data have been also investigated recently, both in the original

Cardassian model (Z.H. Zhu53; S. Sen44; A. A. Sen43) and in its generalized versions (T. Multamaki31). Perhaps the

most interesting feature of these models is that although being matter dominated, they may be accelerating and can still

reconcile the indications for a flat universe (Ωtotal = 1) from CMB observations with the clustering estimates that point

consistently to Ωm % 0.3 with no need to invoke either a new dark component or a curvature term. In these scenarios,

it happens through a redefinition of the value of the critical density (Z. H. Zhu53; J. M. Cline17). Hence equation (15)

becomes

F =
[
1 + (1 + Zcard)3q(1−n)

]− 1
q

(17)

which converges to the case of Cardassian model for dark matter by A. Dev20, as a special case.

3. Lensing constraints

In this section we use statistics of gravitationally lensed quasars to place limits on the free parameters of GC scenarios.

We work with a sample of 867 (z > 1) high luminosity optical quasars. Our sample consists of data from the following

optical lens surveys: HST Snapshot survey (D. Maoz30), Crampton survey (D. Crampton19), Yee survey (H. K. C. Yee52),

Surdej survey (S. Surdej47), NOT Survey (A.O. Jaunsen27) and FKS survey (C. S. Kochanek29). Since the main difference

between the analyses performed in this section and the previous ones that use gravitational lensing statistics to constrain

cosmological parameters is the cosmological model that here is being considered.

4. Conclusion

The possibility of an accelerating from distance measurements of type Ia-supernovae constitutes one of the most important

results of modern cosmology. In figure (1a, 1b, 1c, 1d), we show a generalized version of the figure of equation (15) in

which the value of Ωm0 = 0.05 and 0.0000989 and plane Zcard n is displayed for selected values of q for certain values

of F(0.1, 0.2, 0.3, 0.4). However, gravitational cluster (R. G. Calberg14) and other data suggest (M.S. Turner48), the total

matter density to be 30% of the usual critical density i.e., ρ0 = 0.3ρcrit. This sets a preferred value 0.3 for F.

In figure (2a, 2b, 2c, 2d), we show the figure of equation (17), in which the plane Zcard n is displayed for selected values

of q for certain values of F(0.1, 0.2, 0.3, 0.4) and which converges to the case of Cardassian model for dark matter by A.

Dev20. as a special case.

Again we draw the figures (3a, 3b, 3c, 3d) by taking the value of Ωm0 = 0.05 and Ωr0 = (0.3 − 0.05)). we show a

generalized version of the figure of equation (15) in which the plane Zcard n is displayed for selected values of q for

certain values of F(0.1, 0.2, 0.3, 0.4).
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The figure 1(b) converge the case of S. Sen44.
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Zcard - n diagram for certain values of F = ρ0

ρcrit
using equation (17) for selected values of q. The contours are labelled

indicating the corresponding fractin of the standard critical density.
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The figure 3(b) also converges to the case of S. Sen44.
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