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Abstract

In this paper, the concepts of the ω-coincidence neighborhood, local ω-connected set and local ω-connected space on an

Lω-space are introduced. The characterizations of the concepts are given, such as topological invariant property and good

extension.
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1. Introduction

The connectedness is one of the most important notions in topology. In 1988, Wang introduced the concept of the remote-

neighborhood and studied the connectedness on an LF topology space (Wang, 1988). In 2002, Chen and Dong further

generalized the above notions on an LF order-preserving operator space (or on an Lω-space) (Chen and Dong, 2002,

pp.36-41), then the author discussed the ω-connectedness (Huang, 2003, pp.165-168), the quasi ω-Lindelöf property

(Huang, 2004, pp.34-38) and the ω-separation (Huang, 2005, pp.383-388) on an Lω-space respectively. In this paper,

some characterizations with respect to the local ω-connectedness on an Lω-space are given.

2. Preliminary definitions

Throughout this paper, L denotes the fuzzy lattice, M denotes the set consisting of all nonzero irreducible element(i.e.

so-called molecule) in L. X denotes nonempty crisp set, LX denotes the set of all L-fuzzy sets on X. A′ denotes the pseudo-

complement of A. 1X and 0X denote the greatest and the least elements in LX , respectively. M∗(LX) = {xα|x ∈ X, α ∈ M}.
Other notions and symbols can be obtained from references.

Definition 2.1 Let X be a nonempty set, ω : LX → LX is called an LF order-preserving operator if (1) ω(1X) = 1X; (2) For

each A, B ∈ LX , if A ≤ B, then ω(A) ≤ ω(B); (3) For each A ∈ LX , then A ≤ ω(A). Meanwhile, A is called an ω-set in LX

if A = ω(A). Let Ω = {A ∈ LX |A = ω(A)}, then (LX , Ω) is called an LF order-preserving operator space, or an Lω-space.

Definition 2.2 Let (LX , Ω) be an Lω-space, xα ∈ M∗(LX), P, A ∈ LX .

(1) P is called an ω-remote neighborhood of xα if there exists a Q ∈ Ω, such that xα � Q and P ≤ Q. Let ωη(xα) be the

set of all ω-remote neighborhood of xα.

(2) xα is called an ω-adherence point of A if for each P ∈ ωη(xα), we have A � P. Let A−
ω be the set of all ω-adherence

point of A. A is called an ω-closed set of (LX , Ω) if A = A−
ω. A is called an ω-open set of (LX , Ω) if A′ is an ω-closed set.

Definition 2.3 Let (LX , Ω) be an Lω−space, A, B ∈ LX . If A−
ω ∧ B = A ∧ B−

ω = 0X , then A and B are called the ω-separated

sets.

Definition 2.4 Let (LX , Ω) be an Lω-space, A ∈ LX . If there do not exist two nonzero ω-separated sets B and C, such

that A = B ∨ C, then A is called an ω-connected set. Particularly, (LX , Ω) is called an ω-connected space if 1X is an

ω-connected set.

Definition 2.5 Let (LX , Ω) be an Lω-space, A is called the maximal ω-connected set if B is an ω-connected set and B = A
with A ≤ B. A is also called an ω-connected component of (LX , Ω).

Lemma 2.1 Let A, B ∈ LX , if A � B, then A′ ∨ B � 1X .

Proof There exists x ≤ A, x � B, then we have x � A′ and x � B, this means x � A′ ∨ B, hence A′ ∨ B � 1X .

Lemma 2.2 (Huang, 2003, pp.165-168) If (LX , Ω) is an Lω-space, A ∈ LX , then A is an ω-connected set if and only if for
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any two molecules a, b of A and for the ω-remote neighborhood P(x) of x in A, there exist finite molecules x0, x1, · · · , xn

in A, such that

x0 = a, xn = b and A � P(xi) ∨ P(xi+1), (i = 0, 1, · · · , n)

or

P(xi) ∨ P(xi+1) ∨ A′ � 1X (i = 0, 1, · · · , n).

3. ω-connectedness on an Lω-space

Theorem 3.1 If (LX , Ω) is an Lω-space, A ∈ LX , then the followings are equivalent:

(1) A is an ω-connected set.

(2) There do not exist two nonzero ω-closed sets F1, F2, such that A � F1, A � F2, A∧ F1 ∧ F2 = 0X , A′ ∨ F1 ∨ F2 = 1X .

(3) There do not exist two nonzero ω-open sets Q1, Q2, such that A ∧ Q1 � 0X , A ∧ Q2 � 0X , A ∧ Q1 ∧ Q2 = 0X , A′ ∨
Q1 ∨ Q2 = 1X .

Proof (1)⇒ (2): Suppose that there exist two nonzero ω-closed sets F1, F2, such that A � F1, A � F2, A ∧ F1 ∧ F2 =

0X , A′ ∨ F1 ∨ F2 = 1X , then for any molecule x of A, only one of x � F1, x � F2 holds, otherwise we get A � F1 ∨ F2,

and this contradicts A′ ∨ F1 ∨ F2 = 1X . For any molecule x of A, let P(x) = F1 if x � F1 and P(x) = F2 if x � F2. Since

A � F1, A � F2, there exist two molecules a, b of A, such that a � F1, b � F2, hence for arbitrary finite molecules

x0, x1, · · · , xn with x0 = a, xn = b, there exists i(0 ≤ i ≤ n), such that P(xi) = F1, P(xi+1) = F2. This means that

A′ ∨ P(xi) ∨ P(xi+1) = 1X , or A is not an ω-connected set.

(2)⇒ (3): Let F1, F2 be two nonzero ω-closed sets, such that A � F1, A � F2, A ∧ F1 ∧ F2 = 0X , A′ ∨ F1 ∨ F2 = 1X ,

then F′
1 and F′

2 are two nonzero ω-open sets, and for lemma 2.1, we have A ∧ F′
1 � 0X , A ∧ F′

2 � 0X , A ∧ F′
1 ∧ F′

2 = 0X ,

A′ ∨ F′
1 ∨ F′

2 = 1X . Let Q1 = F′
1, Q2 = F′

2, then we have (3).

(3)⇒ (2): Suppose that there exist two nonzero ω-closed sets F1, F2, such that A � F1, A � F2, A ∧ F1 ∧ F2 = 0X ,

A′ ∨ F1 ∨ F2 = 1X , let Q1 = F′
1, Q2 = F′

2, then we get A ∧ Q1 ∧ Q2 = 0X , A′ ∨ Q1 ∨ Q2 = 1X . At the same time, by

lemma 2.1, we have A ∧ Q1 � 0X , A ∧ Q2 � 0X . This means that there exist two nonzero ω-open sets Q1, Q2, such that

A ∧ Q1 � 0X , A ∧ Q2 � 0X , A ∧ Q1 ∧ Q2 = 0X , A′ ∨ Q1 ∨ Q2 = 1X , this contradicts (3).

(2)⇒ (1): Suppose that A is not an ω-connected set, then there exist two molecules a, b of A and for the ω-remote

neighborhood P(x) of x in A, for arbitrary finite molecules x0, x1, · · · , xn with x0 = a, xn = b, there exists i (0 ≤ i ≤ n),

such that

P(xi) ∨ P(xi+1) ∨ A′ = 1X .

We call that a and b cannot connect finitely, let

Wa = {x|x is a molecule which can connect with a in A finitely},
Wb = {x|x is a molecule of A which does not belong to Wa}.
Then for any c ∈ Wa, d ∈ Wb, we have

P(c) ∨ P(d) ∨ A′ = 1X .

Let F1 = ∧{P(c)|C ∈ Wa}, F2 = ∧{P(d)|d ∈ Wb}, then one can get A′ ∨ F1 ∨ F2 =
∧

c∈Wa
d∈Wb

{P(c) ∨ P(d) ∨ A′} = 1X , Obviously,

we have A ∧ F1 ∧ F2 = 0X . Because of a ∈ Wa, b ∈ Wb, hence A � F1, A � F2, this contradicts (2).

Similarly, we have

Theorem 3.2 If (LX , Ω) is an Lω-space, A ∈ LX , then the followings are equivalent:

(1) A is an ω-connected set.

(2) There do not exist two nonzero ω-open sets Q1, Q2, such that A � Q1, A � Q2, A∧Q1 ∧Q2 = 0X , A′ ∨Q1 ∨Q2 = 1X .

(3) There do not exist two nonzero ω-closed sets F1, F2, such that A ∧ F1 � 0X , A ∧ F2 � 0X , A ∧ F1 ∧ F2 = 0X ,

A′ ∨ F1 ∨ F2 = 1X .

Theorem 3.3 If (LX , Ω) is an Lω-space, A ∈ LX , then A is an ω-connected set if and only if A0 = {x ∈ X|A(x) > 0} is an

ω- connected set.

Proof It is obvious that for any A, B ∈ LX , A ∧ B = φ is equivalent to A0 ∧ B = φ, by theorem 3.1 or theorem 3.2, we have

the conclusion.

4. Local ω-connectedness on an Lω-space

Definition 4.1 Let (LX , Ω) be an Lω-space, xα ∈ M∗(LX), Q ∈ Ω.

(1) Q is called the ω-open coincidence neighborhood of xα, if Q′ is the ω-closed remote neighborhood of xα.
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(2) P ∈ LX is called the ω-coincidence neighborhood of xα, if P′ is the ω-remote neighborhood of xα.

Definition 4.2 (LX , Ω) is called a local ω-connected space, if for any xα ∈ M∗(LX) and for any ω-coincidence neighbor-

hood Q of xα, Q includes an ω-connected coincidence neighborhood P of xα.

It is obvious that (LX , Ω) is a local ω-connected space if and only if for any xα ∈ M∗(LX), the ω-coincidence neighborhood

base (Chen, 2004, pp.11-16) of xα is composed of all of the ω-connected coincidence neighborhood of xα.

Theorem 4.1 If (LX , Ω) is an Lω-space, then the followings are equivalent:

(1) (LX , Ω) is a local ω-connected space;

(2) If B is an open ω-connected component, then B is an ω-open set;

(3) (LX , Ω) includes an ω-base which elements are ω-connected.

Proof (1)⇒ (2): Let A ∈ Ω and B is an ω-connected component of A. Now we will prove that B′ is an ω-closed set,

therefore B is an ω-open set. Let xα ∈ M∗(LX) and xα � B′, then xα � A′, by definition 4.1, A is an ω-coincidence

neighborhood of xα. And for (1), A includes an ω-connected coincidence neighborhood P of xα. We notice that xα �
(B ∧ P)′, that is to say B ∧ P � φ. Since B is an ω-connected component of A, B ∧ P ≤ B, hence P ≤ B, B′ ≤ P′, so we

have xα � (B′)−ω, this is B′ = (B′)−ω, or B is an ω-open set.

(2)⇒ (3): Let A ∈ Ω, then A is the union of all ω- connected components of A, by (2) all of the ω- connected components

are ω-open sets, therefore the ω-base of (LX , Ω) is composed of all of the open ω-connected components.

(3)⇒ (1): Let μ is the ω-base of (LX ,Ω) which elements are ω-connected. It obvious that for any xα ∈ M∗(LX), μ(xα) =
{B ∈ μ|xα � B′} is the ω-coincidence neighborhood of xα, hence (LX , Ω) is an local ω-connected space.

Using theorem 3.4 on (Huang, 2003, pp.165-168), we have

Corollary 4.1 Each ω- connected component of local ω-connected space (LX , Ω) is not only an ω-open set but also an

ω-closed set.

Theorem 4.2 Let (LXi
i , Ωi)(i = 1, 2) be two Lω-spaces, f : LX1

1
→ LX2

2
is an (ω1, ω2)-continuous, open, full order

homomorphism (Chen and Dong, 2002, pp.36-41). If (LX1

1
, Ω1) is a local ω1-connected space, then (LX2

2
, Ω2) is a local

ω2- connected space.

Proof We can suppose that β is an ω1-base of (LX1

1
, Ω1) by theorem 4.1, which elements are ω1-connected. For each

B ∈ β, f (B) is ω2-connected (Huang, 2003, pp.165-168). At the same time, since f is an open, full order homomorphism,

f (LX1

1
) = LX2

2
is an ω2-open set, this means that the family β̃ = { f (B)|B ∈ β} is composed of the ω2-connected open sets

of (LX2

2
, Ω2). Now we will prove that β̃ is an ω2-base of (LX2

2
, Ω2). If U is an ω2-open set of (LX2

2
,Ω2), then f −1(U) is an

ω1-open set of (LX1

1
, Ω1), so there exists β1 ⊂ β, such that f −1(U) = ∨B∈β1

B, hence we have

U = f ( f −1(U)) = ∨B∈β1
f (B),

This means that (LX2

2
, Ω2) is a local ω2- connected space.

Corollary 4.2 Local ω- connectedness on an Lω-space has the invariant property of homoeomorphism.

Definition 4.3 Let X be an non-empty set, P(X) is the power set of X. If the operator ω : P(X) → P(X) which satisfies the

followings: (1) ω(X) = X; (2) For any A, B ∈ P(X), if A ⊂ B, then ω(A) ⊂ ω(B); (3) For any A ⊂ X, A ⊂ ω(A), then ω is

called the order-preserving operator of X. Meanwhile, A is called anω-set of X if A = ω(A). Let � = {A ∈ P(X)|A = ω(A)},
then (X, �) is called an ω-order-preserving operator space, or an ω-space.

Theorem 4.3 Let (X, �) be an ω-space, (LX , ωL(�)) is an Lω-space generated topologically by (X, �) (Huang, 2005,

pp.383-388), then (LX , ωL(�)) is local ω-connected if and only if (X, �) is local ω-connected.

Proof Let (LX , ωL(�)) be local ω-connected, then there exists an ω-base μ which elements are ω-connected, let

S = {A0|A ∈ μ}
.

It is obvious that S is an ω-base of �. By theorem 3.3, the elements in S are ω-connected in (LX , ωL(�)), therefore they

are ω-connected in (X, �)(Huang, 2005, pp.383-388), this means that (X, �) is local ω-connected.

Conversely, if (X, �) is local ω-connected, then there exists an ω-base S in � which elements are ω-connected, so the

elements of S are ω-connected in (LX , ωL(�)) (Huang, 2005, pp.383-388). It is obvious that μ = {λ ∧ A|λ ∈ L, A ∈ S } is

an ω-base of ωL(�), when λ � 0, we notice (λ∧ A)0 = A0, so all the elements of μ are ω-connected by theorem 3.3, hence

(LX , ωL(�)) is local ω-connected by theorem 4.1.
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Corollary 4.3 Local ω-connectedness on an Lω-space has good extension.

5. Conclusions

In this paper, starting with the unified operator which is called an Lω-space containing various closure operators such as θ
- closure operator (Chen, 1992), δ-closure operator (Cheng, 1997, pp.38-41), we introduce the concept of the ω-operator,

ω-remote neighborhood, ω-coincidence neighborhood and local ω-connected space, discuss the basic properties of the

Lω-space, such as the ω-connectedness, the local ω-connectedness and the invariant property of homeomorphism. All the

discussions will offer a theoretical foundation in fuzzy operator.

References

Chen, Shuili and Dong, Changqing. (2002). L-fuzzy Order-preserving Operator Spaces. Fuzzy System and Mathematics,

16(special issue), 36-41.

Chen, Shuili. (2004). ω-countability on L-order-preserving Operator Spaces. Fuzzy System and Mathematics, 18(3),

11-16.

Chen, Shuili. (1992). Moore-Smith θ-convergence Theory on Topological Molecular Lattices. Proc. Fuzzy Mathematics
and Systems, Hunan Science and Technology Press, Changsha.

Cheng, Jishu. (1997). Some properties of δ-continuous Order-homomorphism. Fuzzy System and Mathematics, 11(4),

38-41.

Huang, Zhaoxia. (2003). The Connectedness on L-fuzzy Order-preserving Operator Spaces. Proceeding of International
Conference on Fuzzy Information Processing Theories and Applications. Tsinghua University Press & Springer, Beijing,

Vol., 165-168.
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