Nonaffine Primitive Solvable Subgroups in General Liner Group $G L\left(3, p^{k}\right)$, Where p Is an Odd Prime, $k \geq 1$ Is an Integer

Ahed Hassoon ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria
Correspondence: Ahed Hassoon, Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria. E-mail: ahed100@gmail.com

Received: December 28, 2013 Accepted: January 25, 2014 Online Published: April 18, 2014
doi:10.5539/jmr.v6n2p72
URL: http://dx.doi.org/10.5539/jmr.v6n2p72

Abstract

We know that if Γ is the automorphisem group of primitive tournament $T=(X, U)$, then $\Gamma=H \cdot G$ where $H=(X,+), G$ is irreducible solvable subgroup in $G L\left(n, p^{k}\right)$ with an odd order. But there are three kinds of irreducible solvable subgroups in $G L\left(n, p^{k}\right)$: imprimitive groups, affine primitive groups, and nonaffine primitive groups. In this paper we will study the structure of nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$, find the order of these subgroups, and show that all nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$ have an even order, and then there are no primitive tournaments as automorphisem group $\Gamma=H \cdot G$ where G is nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$.

Keywords: primitive group, affine group, tournaments

1. Introduction

Let G be a group, $\operatorname{Aut}(G)$ is the automorphisem group of G, and H is a subgroup in $\operatorname{Aut}(G)$. A subgroup B in G is H-invariant if $h(B)=B, \forall h \in H$. We say that H "irreducible" if G and $\{e\}$ are the only H-invariant subgroups in G, other than H is reducible.
We call group G is a semi-direct product of the tow subgroups H and K if: 1) $G=H K, 2) H \unlhd G, 3) H \cap K=1$, and we write $G=H \rtimes N$. If $K \unlhd G$ then G is the direct product $G=H \times N$.
We also say that group G is the central product $\left.G=H_{1}\right\rceil \ldots$ T H_{n} of subgroups H_{1}, \ldots, H_{n}, if:

1) $H_{i} \unlhd G: 1 \leq i \leq n$.
2) $G=H_{1} \ldots H_{n}$.
3) $H_{i} \cap H_{j} \subseteq Z(G): i \neq j$, where $Z(G)$ is the central of G.

Let p be a prime number. We say an Abelian p-group G is elementary Abelian, if $x^{p}=1$ for all $x \in G$ (i.e $G=C_{p} \times C_{p} \times \ldots C_{p}$, where C_{p} is a p-subgroup in G). And a group G is extra-special if it is finite p-group and $\left|G^{\prime}\right|=p, Z(G)=G^{\prime}$ and G / G^{\prime} is elementary Abelian, where G^{\prime} is the commutator group of G. The Fitting subgroup of a group G which denoted by $\operatorname{Fit}(G)$ is product of all nilpotent normal subgroups of G.
We denote to the order of group G by $|G|$. And $[x, y]$ is the commutator x, y.
In this paper we exclude the nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$ from the set of all subgroups which take in structure of the automorphism group of primitive tournament, and I calculate the order of nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$.

2. Methods

We depend on methods in Short, Dold, and Eckmann (1992) to study the nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$, where we consider p as an odd prime and n, k as positive integers. A (round-robin) tournament T of order n consists of n nodes $a_{1}, a_{2}, \ldots, a_{n}$ such that each pair of distinct nodes a_{i} and a_{j} is joined by one and only
one of the oriented arcs $\overrightarrow{a_{i} a_{j}}$ or $\overrightarrow{a_{j} a_{i}}$ and denote to it by $T=(X, U)$, where X is the set of vertex and U is the set of arcs. The set of all permutations \propto on X which $\left(\propto\left(a_{i}\right), \propto\left(a_{j}\right)\right) \in U$ if and only if $\left(a_{i}, a_{j}\right) \in U$ forms a group called the automorphism group $\operatorname{Aut}(T)$ of T. If $\operatorname{Aut}(T)$ is primitive on X then T is a primitive tournament, and $X=G F\left(p^{n k}\right), \operatorname{Aut}(T)=H \cdot G$, where H is the additive group of Galois field $G F\left(p^{n k}\right), G$ is irreducible subgroup in $G L\left(n, p^{k}\right)$ of odd order. We know from Short, Dold, and Eckmann (1992) that if G is irreducible solvable subgroup in $G L\left(n, p^{k}\right)$ three cases are possible:

1) G is imprimitive.
2) G is primitive subgroup in affine group, which has the form:

$$
\left\{x \rightarrow a \sigma(x)+b: a \neq 0, \quad b \in G F\left(p^{k}\right), \quad \sigma \in \operatorname{Aut}\left(G F\left(p^{k}\right)\right)\right\}
$$

3) G is nonaffine primitive.

In this paper we study the structure of nonaffine primitive subgroup in $G L\left(3, p^{k}\right)$, and calculate it's order.
Theorem 1 (Dornhoff, 1971) Let G be a nonaffine primitive solvable subgroup in $G L\left(n, p^{k}\right)$, then:

1) Fit (G) is irreducible.
2) $\operatorname{Fit}(G) / Z(G) \cong E$, where E is extra-special group.
3) $G / F i t(G) \cong D$, where D is an irreducible subgroup of $S L(2, n)$.
4) $p \neq n$.
5) n divides $|Z(G)|$.

Thus by this theorem, a nonaffine primitive solvable subgroup G in $G L\left(n, p^{k}\right)$ has a maximal abelian normal subgroup $Z(G)$ with n divides $|Z(G)|$, and has the form $G=(Z(G) \top E) \rtimes D$, where E is extra-special group, D is an irreducible subgroup of $S l(2, n)$. If G is maximal in $G L\left(n, p^{k}\right)$ it has the form $G=\left(C_{p^{k}-1} \top E\right) \rtimes S L(2, n)$.
Now let $n=q^{l} m$, where $l>0, q$ is a prime number divides $p^{m k}-1$. And let $\bar{z}, \bar{a} \in G L\left(m, p^{k}\right)$, where \bar{z} be an element of order $p^{m k}-1, \bar{a}$ be another element of order m, such that $(\bar{a})^{-1} \overline{z a}=(\bar{z})^{p^{k}}$. Let a and z be the $n \times n$ block diagonal matrices defined by:

$$
z=\left[\begin{array}{cccc}
\bar{z} & 0 & \ldots & 0 \\
0 & \bar{z} & \ldots & 0 \\
0 & 0 & \ldots & \bar{z}
\end{array}\right], a=\left[\begin{array}{cccc}
\bar{a} & 0 & \ldots & 0 \\
0 & \bar{a} & \ldots & 0 \\
0 & 0 & \ldots & \bar{a}
\end{array}\right]
$$

Then Fit (G) has the form $F=F i t(G)=\langle z\rangle$ TE, thus from Short, Dold, and Eckmann (1992) the generators of G come in pairs $\left(u_{i}, v_{i}\right)$, where each pair generating an extra-special q-group of order q^{3}, where:

$$
\begin{aligned}
& u_{i}^{q}=v_{i}^{q}=I_{q^{l}} \\
& {\left[u_{j}, u_{i}\right]=\left[v_{j}, v_{i}\right]=I_{q^{l}}} \\
& {\left[\begin{array}{ll}
v_{j}, & u_{i}
\end{array}\right]= \begin{cases}I_{q^{l}} & : j \neq i \\
\varepsilon I_{q^{l}} & : j=i\end{cases} }
\end{aligned}
$$

And ε is a primitive root of unity of order q in $G F\left(p^{m k}\right)$. To construct matrices u_{i}, and v_{j} satisfying the above relations we use Jordan's method (Dieudonne, 1961). Let u and v be the $q \times q$ matrices defined by:

$$
u=\left[\begin{array}{ll}
0 & 1 \\
I_{q}^{l} & 0
\end{array}\right], v=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \varepsilon & 0 & \ldots & 0 \\
0 & 0 & \varepsilon^{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & \varepsilon^{q-1}
\end{array}\right]
$$

Consequently, $[v, u]=\varepsilon I_{q}$ and for $1 \leq i \leq l$ define u_{i} and v_{i} by: $u_{i}=I_{q^{l-i}} \bigotimes u \bigotimes I_{q^{i-1}}, v_{i}=I_{q^{l-i}} \bigotimes v \bigotimes I_{q^{i-1}}$, where \otimes Kronecker products.

Now define the map $\rho: N_{G L\left(n, p^{k}\right)}(F) \longrightarrow G L(2 l, q)$ by:

$$
\rho(g)=\left[\begin{array}{ccccc}
\alpha_{11} & \beta_{11} & \ldots & \alpha_{1 l} & \beta_{1 l} \\
\gamma_{11} & \delta_{11} & \ldots & \gamma_{1 l} & \delta_{1 l} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_{l 1} & \beta_{l 1} & \ldots & \alpha_{l l} & \beta_{l l} \\
\gamma_{l 1} & \delta_{l 1} & \ldots & \gamma_{l l} & \delta_{l l}
\end{array}\right]
$$

where:

$$
\begin{gathered}
g u_{i} g^{-1}=u_{1}^{\alpha_{i 1}} v_{1}^{\beta_{i 1}} \ldots u_{l}^{\alpha_{i l}} v_{l}^{\beta_{i l}} \cdot z^{\lambda_{i}} \\
g v_{i} g^{-1}=u_{1}^{\gamma_{11}} v_{1}^{\delta_{i 1}} \ldots u_{l}^{\gamma_{i l}} v_{l}^{\delta_{i l}} \cdot z^{\mu_{i}} \\
g z g^{-1}=z^{v}
\end{gathered}
$$

And the λ_{i}, μ_{i} and v are integers. Here we have the following:
Theorem 2 (Short, Dold, \& Eckmann, 1992) Let D be an irreducible solvable subgroup in $S L(2 l, q)$, Suppose D has generating set $\left\{d_{1}, d_{2}, \ldots, d_{r}\right\}$. If d_{i} is the matrix:

$$
\left[\begin{array}{ccccc}
\alpha_{11} & \beta_{11} & \ldots & \alpha_{1 l} & \beta_{1 l} \\
\gamma_{11} & \delta_{11} & \ldots & \gamma_{1 l} & \delta_{1 l} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\alpha_{l 1} & \beta_{l 1} & \ldots & \alpha_{l l} & \beta_{l l} \\
\gamma_{l 1} & \delta_{l 1} & \ldots & \gamma_{l l} & \delta_{l l}
\end{array}\right]
$$

Then there are matrixes g_{i} of $G L\left(n, p^{k}\right)$ satisfying:

$$
\begin{aligned}
& g_{i} u_{j} g_{i}^{-1}=u_{1}^{\alpha_{j 1}} v_{1}^{\beta_{j 1}} \ldots u_{l}^{\alpha_{j} l} v_{l}^{\beta_{j l}} \cdot z^{\lambda_{j}} \\
& g_{i} v_{j} g_{i}^{-1}=u_{1}^{\gamma_{j 1}} v_{1}^{\delta_{j 1}} \ldots u_{l}^{\gamma_{j} l} v_{l}^{\delta_{j l}} \cdot z^{\mu_{j}}
\end{aligned}
$$

Where λ_{j} and μ_{j} are integers.
And if P is a subgroup of $G L\left(n, p^{k}\right)$ defined by $P=<C_{<a>}\left(v_{1}, \ldots, v_{l}\right), g_{1}, \ldots, g_{r}, v_{1}, \ldots, v_{l}, z>$, then P is the complete inverse image of D under ρ, P is primitive and has a maximal Abelian normal subgroup of order divides $p^{m k}-1$. If \mathcal{D} is the set of conjugacy class representatives of the irreducible solvable subgroups of $S L(2 l, q), \mathcal{P}$ is the set of groups P obtained by the method above. One for each D, where $D \in \mathcal{D}$. Then no two elements of \mathcal{P} are conjugate in $G L\left(n, p^{k}\right)$. If M is a primitive solvable subgroup of $G L\left(n, p^{k}\right)$ whose unique maximal Abelian normal subgroup has order that divides $p^{m k}-1$, then M is conjugate to an element of \mathcal{P}.

3. Results and Discussion

3.1 The Nonaffine Primitive Soluble Subgroups in $G L\left(3, p^{k}\right)$

Let $n=3$, then $l=1, q=3$, By Short, Dold, and Eckmann (1992), there is a unique type of maximal nonaffine primitive soluble subgroups in $G L\left(3, p^{k}\right)$ which have maximal Abelian normal subgroup of order $p^{k}-1$. This type has the following form: $M=\left(C_{p^{k}-1} \top E\right) \rtimes S L(2,3)$, where E is extra-special of order 27 and exponent 3 . Then 3| $p^{k}-1$. If $G L\left(1, p^{k}\right)=<\bar{z}>, \varepsilon=(\bar{z})^{\frac{p^{k}-1}{3}}$, then ε is a 3-power order primitive root of unity in $G F\left(p^{k}\right)$ and

$$
v=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon^{2}
\end{array}\right], u=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Here we have $u^{3}=v^{3}=I_{3}$. Consequently, $E=\langle u, v\rangle$ is 3-extra-special of order 27 and exponent 3. If we consider G as irreducible soluble subgroup of M, then it has a maximal Abelian normal subgroup $Z(G)$ satisfying that 3 divides $|Z(G)|$, and is written as $G \cong(Z(G) \top E) \rtimes D$, where E is 3-extra-special of order 27 and exponent 3, D is an
irreducible solvable subgroup of $S L(2,3)$. Then there are three values of the group D, which are $C_{4}, Q_{8}, S L(2,3)$. As 3 divides $|Z(G)|$, we can set $|Z(G)|=3$, which is the first value of $|Z(G)|$. Then $Z(G)=\langle z\rangle$, where:

$$
z=\left[\begin{array}{lll}
\varepsilon & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon
\end{array}\right]
$$

Thus:

$$
F=F i t(G)=Z(G) \top E=\langle u, v, z\rangle
$$

And to obtain the group G we have three cases:
3.1.1 Case (1): $D=C_{4}$

We have $C_{4}=<\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]>$. By Theorem 2, there is a matrix $g_{1} \in G L\left(3, p^{k}\right)$, where $g_{1} u g_{1}^{-1}=\eta_{1} u^{2} v, g_{1} v g_{1}^{-1}=$ $\mu_{1} u v$ and $\eta_{1}, \mu_{1} \in Z(G)$.

One of the solutions for g_{1} is:

$$
g_{1}=\frac{1}{\varepsilon-\varepsilon^{2}}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \varepsilon & \varepsilon^{2} \\
1 & \varepsilon^{2} & \varepsilon
\end{array}\right]
$$

Here we can note that $g_{1} \in S L\left(3, p^{k}\right),\left|g_{1}\right|=4$. Then there are two types of group G :

$$
G_{1}=<g_{1}, u, v, z>, \quad G_{2}=<-g_{1}, u, v, z>.
$$

If $G F\left(p^{k}\right)$ contains a square root ι of -1 , then the group G conjugates with:

$$
G_{3}=<\iota g_{1}, u, v, z>
$$

And we find that $\left|G_{1}\right|=\left|G_{2}\right|=\left|G_{3}\right|=36|Z(G)|=108$.
3.1.2 Case (2) $\mathrm{D}=\mathrm{Q}_{8}$

We have $Q_{8}=<\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]>$. By Theorem 2, in addition to the matrix g_{1}, there is a matrix $g_{2} \in G L\left(3, p^{k}\right)$ satisfying: $g_{2} u g_{2}^{-1}=\eta_{2} u v, g_{2} v g_{2}^{-1}=\mu_{2} u v^{2}$ where $\eta_{2}, \mu_{2} \in Z(G)$.
Setting $\eta_{2}=1, \mu_{2}=\varepsilon^{2}$, we find that one of the solutions for c is:

$$
g_{2}=\frac{1}{\varepsilon-\varepsilon^{2}}\left[\begin{array}{ccc}
1 & \varepsilon & \varepsilon \\
\varepsilon^{2} & \varepsilon & \varepsilon^{2} \\
\varepsilon^{2} & \varepsilon^{2} & \varepsilon
\end{array}\right]
$$

We can also note that $g_{1}^{2}=g_{2}^{2}, g_{2} g_{1} g_{2}^{-1}=g_{1}{ }^{3}, \operatorname{det}\left(g_{2}\right)=1$.
Consequently, there are two kinds of group G :

$$
G_{1}=<g_{1}, g_{2}, u, v, z>, \quad G_{2}=<g_{1},-g_{2}, u, v, z>
$$

And we find that $\left|G_{1}\right|=\left|G_{2}\right|=72|Z(G)|=216$.
3.1.3 Case (3): $D=S L(2,3)$

We have $S L(2,3)=<\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]>$ and by Theorem 2, in addition to the matrixes g_{1}, g_{2}, there is a matrix $g_{3} \in G L\left(3, p^{k}\right)$ satisfying: $g_{3} u g_{3}^{-1}=\eta_{3} u v^{2}, g_{3} v g_{3}^{-1}=\mu_{3} v$, where $\eta_{3}, \mu_{3} \in Z(G)$.
One solution for g_{3} is:

$$
g_{3}=\left[\begin{array}{ccc}
\beta \varepsilon^{-1} & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \beta
\end{array}\right]
$$

where $\beta=\varepsilon^{\frac{2}{3}}=(\bar{z})^{\frac{2\left(p^{k}-1\right)}{9}}$.

Since $p^{k}-1=3 \alpha, \alpha$ is an integer, we have three cases:

1) $\alpha=3 t, t$ is a positive integer, then $p^{k}-1=9 t$ and $p^{k} \equiv 1(\bmod 9)$. Then:

$$
\beta=(\bar{z})^{\frac{2\left(p^{k}-1\right)}{9}}=(\bar{z})^{2 t} \in G F\left(p^{k}\right),
$$

and thus the group G conjugates with: $G_{1}=<g_{1}, g_{2}, g_{3}, u, v, z>$.
2) $a=3 t+1$, then $p^{k}-1=9 t+3 \equiv 3(\bmod 9)$ and $p^{k} \equiv 4(\bmod 9)$. Then

$$
\beta=(\bar{z})^{\frac{2\left(l^{k}-1\right)}{9}}=(\bar{z})^{\frac{2(9+3)}{9}}=(\bar{z})^{2 t+\frac{2}{3}}=(\bar{z})^{2 t}(\bar{z})^{\frac{2}{3}}
$$

If we set $=(\bar{z})^{\frac{1}{3}}$, then $\beta \in G F\left(p^{k}\right)$, and thus the group G conjugates with $G_{2}=<g_{1}, g_{2}, g_{3}, u, v, z>$.
3) $\alpha=3 t+2$, then $p^{k}-1=9 t+6 \equiv 6(\bmod 9)$ and $p^{k} \equiv 7(\bmod 9)$. Consequently,

$$
\beta=(\bar{z})^{\frac{2\left(p^{k}-1\right)}{9}}=(\bar{z})^{\frac{2(9 t+6)}{9}}=(\bar{z})^{2 t+\frac{4}{3}}=(\bar{z})^{2 t+1}(\bar{z})^{\frac{1}{3}}, \quad \text { and } \quad \gamma^{2} \beta \in G F\left(p^{k}\right)
$$

And the group G conjugates with $G_{3}=\left\langle g_{1}, g_{2}, \gamma^{2} g_{3}, u, v, z\right\rangle$.
Thus the group G conjugates with:

$$
\begin{array}{ll}
G_{1}=<g_{1}, g_{2}, g_{3}, u, v, z>: & p^{k} \equiv 1(\bmod 9) \\
G_{2}=<g_{1}, g_{2}, \gamma g_{3}, u, v, z>: & p^{k} \equiv 4(\bmod 9) \\
G_{3}=<g_{1}, g_{2}, \gamma^{2} g_{3}, u, v, z>: & p^{k} \equiv 7(\bmod 9)
\end{array}
$$

And we find that: $\left|\mathrm{G}_{1}\right|=\left|\mathrm{G}_{2}\right|=\left|\mathrm{G}_{3}\right|=216|z|=216 \times 3=648$.

3.2 Results

1) We find that if G is nonaffine primitive solvable subgroup in $G L\left(3, p^{k}\right)$, then its order is: $36|Z(G)|, 72|Z(G)|$ or $216|Z(G)|$, where 3 divids $|Z(G)|$ and $|Z(G)|$ divids $p^{k}-1$.
2) We find that all the nonaffine primitive solvable subgroups in $G L\left(3, p^{k}\right)$ have an even order. Consequently, we can note that these subgroups do not take in the structure of the automorphism group of primitive tournament .
Hence, we strongly recommend a pmabah search for imprimitive subgroups in $G L\left(3, p^{k}\right)$, because the structure of the tournament is unknown when its automorphism group is imprimitive.

Acknowledgements

I am grateful to Mr. Dahi Hassan for helping to get this paper published.

References

Dieudonne, J. (1961). Notes sur les travaux de C. Jordan relatifs a la theorie des groupes finis. Oeuvres de Camille Jordan, tome 1, Gauthier-Villars, Paris, (pp. xvii-xlii).
Dornhoff, L. (1971). Group representation theory (Part A). University Of California At Berkeley, New York.
Short, D., Dold, A., \& Eckmann, B. (1992). The Primitive Soluble Permutation Groups of Degree Less Than 256. Springer-Verlag. http://dx.doi.org/10.1007/BFb0090197

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

