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Abstract

In this article, we first give the representation of solutions for the oblique derivative boundary value problem

of generalized Lavrent′ev-Bitsadze equations including the Lavrent′ev-Bitsadze equation. Next we verify the

uniqueness of solutions of the above problem. Finally we prove the solvability of oblique derivative problems for

quasilinear mixed (generalized Lavrent′ev-Bitsadze) equations of second order, at the same time the estimates of

solutions of the above problem is also obtained. The above problem is an open problem proposed by J. M. Rassias.
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1. Formulation of Oblique Derivative Problem for Generalized Lavrent′ev-Bitsadze Equations

In Bers (1958), Bitsadze (1988), Rassias (1990), Smirnov (1978), Zarubin (2012), and Wen (2008), the authors

posed and discussed the Tricomi problem of second order equations of mixed type by using the methods of integral

equations, functional analysis, energy integrals and so on, the obtained results possess the important applications

to gas dynamics. Now by using the complex analytic method we handle the oblique derivative boundary value

problem of generalized Lavrent′ev-Bitsadze equations, which includes the Lavrent′ev-Bitsadze equation as a spe-

cial case, where the intersectional part of the elliptic closed domain and hyperbolic closed domain is a hyperbolic

curse.

Let D be a simply connected bounded domain in the complex plane C with the boundary ∂D = Γ ∪ L, where

Γ (⊂ {ŷ = y − 3R +
√

R2 + x2 > 0}) ∈ Cα(0 < α < 1) is a curse with the end points z∗ = R∗ = −R∗ = −2
√

2R, z∗ =
R∗ = 2

√
2R, R is a positive number, and L = L1 ∪ L2, L1 = {x + y = −R∗ ≤ x ≤ 0}, L2 = {x − y = R∗, 0 ≤ x ≤ R∗}

are line segments, L0 = {−R∗ ≤ x ≤ R∗, y +
√

R2 + x2 = 3R} is a hyperbolic curse, and denote by D+ = D ∩ {ŷ >
0}, D− = D ∩ {ŷ < 0} the elliptic domain and hyperbolic domain respectively, z0 = 2iR, and z1 = −2 j

√
2R is the

intersection point of L1, L2, where i is the imaginary unit and j is the hyperbolic unit with the condition j2 = 1.

Here the common boundary of elliptic domain and hyperbolic domain is a hyperbolic curse, which has not been

discussed in our previous papers, and in Wen (2013), the common boundary of elliptic domain and hyperbolic

domain is a circle. We consider the second order quasilinear equation of mixed type

uxx + sgnŷ uyy = aux + buy + cu + d in D, (1.1)

where ŷ = y − 3R +
√

R2 + x2, a, b, c, d are functions of z(∈ D), u, ux, uy(∈ R), its complex form is the following

complex equation of second order
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Luz=

{uzz

uzz

}
=F(z, u, uz), F=Re[A1uz]+A2u+A3 in

{D+

D−

}
, (1.2)

where Aj = Aj(z, u, uz), j = 1, 2, 3, and

uzz̄ =
1

2
[(uz)x + i(uz)y] =

1

4
[uxx + uyy] in D+,

uzz =
1

2
[(uz)x + j(uz)y] =

1

4
[uxx − uyy] in D−,

A1 =

{
(a + ib)/2 in D+,

(a − jb)/2 in D−,
A2 =

c
4
, A3 =

d
4

in D.

In which we use the complex number z = x + iy in D+ and the hyperbolic number z = x + jy in D− with the

hyperbolic unit j. In this article, the notations are as the same in References (Wen, 1986, 1992, 2002, 2008, 2010,

2013; Wen, Chen, & Xu, 2008; Huang, Qiao, & Wen, 2005).

Suppose that the Equation (1.2) satisfies the following conditions, namely

Condition C 1) Aj(z, u, uz) ( j = 1, 2, 3) are continuous in u ∈ R, uz ∈ C for almost every point z ∈ D+, and

measurable in z ∈ D+ and continuous in D− for all continuously differentiable functions u(z) in D∗ = D\{z∗, z∗}
and satisfy

Lp[A1,D+] ≤ k0, ,C[A2,D−] ≤ εk0, Lp[A3,D+] ≤ k1,

C[Aj,D−] ≤ k0, j = 1, 2, C[A3,D−] ≤ k1.
(1.3)

2) For any continuously differentiable functions u1(z), u2(z) in D∗, there is

F(z, u1, u1z) − F(z, u2, u2z) = Re[Ã1(u1 − u2)z] + Ã2(u1 − u2) in D, (1.4)

where Ã j = Ã j(z, u1, u2) ( j = 1, 2) satisfy the conditions

Lp[Ã1,D+] ≤ k0, Lp[Ã2,D+] ≤ εk0, C[Ã j,D−] ≤ k0, j = 1, 2 (1.5)

in (1.3),(1.5), p (> 2), k0, k1 are positive constants, and ε is a sufficiently small positive constant. In particular, the

condition (1.4) obviously holds, when (1.2) is a linear equation.

Problem P The oblique derivative boundary value problem for (1.2) is to find a continuously differentiable solution

u(z) of (1.2) in D∗ = D\{z1, z2}, which is continuous in D and satisfies the boundary conditions

1

2

∂u
∂ν
= Re[λ(z)uz] = r(z), z ∈ Γ, 1

2

∂u
∂ν
= Re[λ(z)uz̄] = r(z), z ∈ L1,

u(z0) = b0, Im[λ(z)uz]z=z0
= b1, Im[λ(z)uz̄]|z=z1

= b2,

(1.6)

where ν is a given vector at every point on Γ∪ L1, λ(z) = a(x)+ ib(x) = cos(ν, x) ∓i cos(ν, y), and ∓ are determined

by z ∈ Γ and z ∈ L1 respectively, b0, b1, b2 are real constants, and λ(z), r(z), b0, b1, b2 satisfy the conditions

Cα[λ(z),Γ] ≤ k0, Cα[r(z),Γ] ≤ k2, Cα[λ(z), L1] ≤ k0, Cα[r(z), L1] ≤ k2,

|b0|, |b1|, |b2| ≤ k2, maxz∈L1
|a(z) − b(z)| = 0 or maxz∈L1

|[a(z)]2 − [b(z)]2|−1 ≤ k0,
(1.7)

in which α (1/2 < α < 1), k0, k2 are positive constants. The above boundary value problem is a general boundary

value problem, which includes the irregular oblique derivative boundary condition. The boundary value problem

for (1.2) with A3(z, u, uz) = 0, z ∈ D, u ∈ R, uz ∈ C, r(z) = 0, z ∈ Γ and b0 = b1 = b2 = 0 will be called Problem

P0. The number

K =
1

2
(K1 + K2)

is called the index of Problem P and Problem P0, where

Kj =

[
φ j

π

]
+ J j, J j = 0 or 1, eiφ j =

λ(t j − 0)

λ(t j + 0)
, γ j =

φ j

π
− Kj, j = 1, 2, (1.8)
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in which [a] is the largest integer not exceeding the real number a, t1 = z∗, t2 = z∗ on L0, here we only discuss the

case of K = 0 on ∂D+, and the solution of Problem P is unique.

Besides, if the index K = 1/2, we can add a point condition

Im[λ(z)uz̄]|z=z2
= b3, (1.9)

where z2 is an inner point of Γ, b3 is a real constant with the condition |b3| ≤ k2, and the boundary value problem

for (1.2) will be called Problem Q.

Setting that

w(z) = uz =

{
[ux − iuy]/2 = U(z) + iV(z) in D+,

[ux − juy]/2 = U(z) + jV(z) in D−,
(1.10)

it is clear that Problem P for (1.2) is equivalent to the Riemann-Hilbert boundary value problem (Problem A) for

the first order complex equation of mixed type

wz̄ = F, F = Re[A1(z)w] + A2(z)u + A3(z) in D (1.11)

with the boundary conditions

Re[λ(z)w(z)] = r(z), z ∈ Γ, u(z0) = b0, Im[λ(z0)w(z0)] = b1,

Re[λ(z)w(z)] = r(z), z ∈ L1, Im[λ(z1)w(z1)] = b2,
(1.12)

and the relation

u(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2Re
∫ z

z0
w(z)dz

2Re
∫ z

z0
w(z)dz

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + b1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
∫ z

z0
[U(z)dx − V(z)dy]

2
∫ z

z0
[U(z)dx − V(z)dy]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ + b1 in

⎧⎪⎪⎨⎪⎪⎩
D+

D−

⎫⎪⎪⎬⎪⎪⎭ . (1.13)

From the formula (2.10), Chapter II, Wen (2002), we see that the above integral is independent of integral path in

D and u(z) is continuously differentiable in D∗ = D\{z∗, z∗}.
Obviously the Lavrent′ev-Bitsadze equation

uxx + sgnŷuyy = 0, i.e, wz̄ = 0 in D, (1.14)

is a special case of generalized Lavrent′ev-Bitsadze Equation (1.1), the relation of u(z) and w(z) is as stated in

(1.10) and (1.13).

2. Solvability of Oblique Derivative Problem for Lavrent′ev-Bitsadze Equation

We first prove the existence and representation of solutions for Problem A of the equation

wz̄ = 0 in D, i.e.

wz̄ = (U + iV)z = 0 in D+,

wz̄ = e1(U + V)μ + e2(U − V)ν = 0, i.e. (U + V)μ = 0, (U − V)ν = 0 in D−,

(2.1)

with the boundary conditions

Re[λ(z)w(z)] = r(z), z ∈ Γ, Re[λ(z)w(z)] = r(z), z ∈ L1,

Im[λ(z1)w(z1)] = b2, Re[λ(z)w(z)] = U(z) − V(z) = r0(z), z ∈ L0,
(2.2)

where w = U + iV in D+, w = U + jV in D−, μ = x + y, ν = x − y, λ(z) = a(z) + jb(z) � 0 on L1, λ(z) = 1 + j
on L0, r(z) on L1 is a known real function, r0(z) on L0 is an undetermined real constant, b2 is a real constant, and

λ(z), r(z), b2 satisfy the conditions

Cα[λ(z),Γ] ≤ k0,Cα[λ(z), L1] ≤ k0,Cα[r(z),Γ] ≤ k2, Cα[r(z), L1] ≤ k2,

|b j| ≤ k2, j = 0, 2, maxz∈L1
|a(z) − b(z)| = 0 or maxz∈L1

|[a(z)]2 − [b(z)]2|−1 ≤ k0,
(2.3)
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in which α (0 < α < 1), k0, k2 (≥ k0) are positive constants; and

w(z) = U + jV = (U + V)e1 + (U − V)e2 = f (x − y)e1 + g(x + y)e2

= f (ν)e1 + g(μ)e2 =
1
2
{ f (ν) + g(μ) + j[ f (ν) − g(μ)]}, (2.4)

in which e1 = (1 + j)/2, e2 = (1 − j)/2.

From the boundary condition (1.15) of Tricomi problem in Section 1, we can find the directive derivation for (1.15)

according to the arc length parameter s on Γ ∪ L1, and get the boundary conditions of oblique derivative problem

(Problem P) as follows

us/2 = [uxxs + uyys]/2 = Re[(xs + ixy)(ux − iuy)/2]

= Re[(xs − iys)w(z)] = Re[(a(z) + ib(z))w(z)] = φ′(s)/2 on Γ,

us/2 = [ux + uyyx]/2
√

2 = Re[(1 − jyx)(ux − juy)/2
√

2]

= Re[(1 − j)w(z)]/
√

2 = Re[(a(z) + ib(z))w(z)] = φ′(s)/2 on L1,

(2.5)

in which a(z) + ib(z) = xs − iys on Γ, and s = x
√

2, a(z) + jb(z) = (1 − j)/
√

2 on L1, i.e. a(z) + b(z) = 0 on L1.

Later on we shall use the condition on L1.

For this, we shall find the solution of the last system of (2.1) in D− with the boundary conditions

Re[λ(z)(U + jV)] = r(z), z ∈ L1 = {−R∗ ≤ x ≤ 0, x + y = −R∗},
Re[λ(z)(U + jV)] = r0(z), z ∈ L0 = {−R∗ < x < R∗, ŷ = y − 3R +

√
R2 + x2 = 0}.

(2.6)

In fact the solution of Problem A for (2.1) in D− can be expressed as

ξ = U + V = f (ν), ν = x − y,

η = U − V = g(μ), μ = x + y,

U(z) = [ f (ν) + g(μ)]/2, V(z) = [ f (ν) − g(μ)]/2, and

w(z) = [(1 + j) f (ν) + (1 − j)g(μ)]/2,

(2.7)

in which f (t), g(t) are two arbitrary real continuous functions on L0 = [−R∗ ≤ x ≤ R∗, y − 3R +
√

R2 + x2 = 0],

thus the formulas in (2.6) can be rewritten as

a(z)U(z) − b(z)V(z) = r(z) on L1,

U(x + y) − V(x + y) = r0(x + y) on L0, i.e.

[a(z) − b(z)] f (x − y) + [a(z) + b(z)]g(x + y)= 2r(z) on L1,

U(x + y) − V(x + y) = r0(x + y) on L0, i.e.

[a((1 + j)x + jR∗) − b((1 + j)x + jR∗)] f (2x + R∗)

+[a((1 + j)x + jR∗) + b((1 + j)x + jR∗)]g(−R∗)

= 2r((1 + j)x + jR∗) on L1 = {−R∗ ≤ x ≤ 0, x + y = −R∗},
U(x − y) − V(x − y) = r0(x − y) on L0 = {−R∗ ≤ x ≤ R∗, ŷ = 0}, i.e.

[a((1 + j)t/2 − (1 − j)R∗/2) − b((1 + j)t/2 − (1 − j)R∗/2)] f (t)

+[a((1 + j)t/2 − (1 − j)R∗/2) + b((1 + j)t/2 − (1 − j)R∗/2)]g(−R∗)

= 2r((1 + j)t/2 − (1 − j)R∗/2), t = 2x + R∗ ∈ [−R∗,R∗],

U(t) − V(t) = r0(t), t = μ ∈ [−R∗,R∗], i.e.

f (t) = f (ν) = U(ν) + V(ν)

=
2r((1 + j)t/2 − R∗(1 − j)/2) − H(t)

a((1 + j)t/2 − R∗(1 − j)/2) − b((1 + j)t/2 − R∗(1 − j)/2)
, t = ν ∈ [−R∗,R∗],

U(μ) − V(μ) = g(μ) = r0(μ), t = μ ∈ [−R∗,R∗],

(2.8)

4



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 2; 2014

in which H(t) = [a((1 + j)t/2 − R∗(1 − j)/2) + b((1 + j)t/2 − R∗(1 − j)/2)]g(−R∗). When z = z0, we have

λ(z1)w(z1) = a(z1)U(z1) − b(z1)V(z1) + j[a(z1)V(z1) − b(z1)U(z1)] = r(z1) + jb1,

and can find
U(z1) = (a(z1)r(z1) + b0b(z1))/([a(z)]2 − [b(z)]2),

V(z1) = (b(z1)r(z1) + b0a(z1))/([a(z1)]2 − [b(z1)]2),

g(−R∗) = U(z1) − V(z1) =
(a(z1)r(z1) + b0b(z1) − b(z1)r(z1) − b0a(z1))

[a(z0)]2 − [b(z0)]2
.

(2.9)

Thus we can derive

U =
1

2
{ 2r((1 + j)ν/2 − (1 − j)R∗/2) − H(ν)g(−R∗)
a((1 + j)ν/2 − (1 − j)R∗/2) − b((1 + j)ν/2 − (1 − j)R∗/2)

+ r0(μ)},

V =
1

2
{ 2r((1 + j)ν/2 − (1 − j)R∗/2) − H(ν)g(−R∗)
a((1 + j)ν/2 − (1 − j)R∗/2) − b((1 + j)ν/2 − (1 − j)R∗/2

− r0(μ))},
(2.10)

if [a(z)]2 − [b(z)]2 � 0 on L1.

Due to the above formula (2.5), we can obtain the oblique derivative condition of Tricomi problem as follows

[a((1 + j)ν/2 − (1 − j)R∗/2) + b((1 + j)ν/2 − (1 − j)R∗/2)g(−R∗) = 0,

U(ν) + V(ν) = f (ν) =
2r((1 + j)ν/2 − (1 − j)R∗/2)

a((1 + j)ν/2 − (1 − j)R∗/2) − b((1 + j)ν/2 − (1 − j)R∗/2)
,

t = ν ∈ [−R∗,R∗].

(2.11)

Substituting y = 3R − √R2 + x2 into the formula (2.10), we obtain the boundary condition

Re[(1 + j)w(z)] = U(x − 3R +
√

R2 + x2) + V(x − 3R +
√

R2 + x2) = r1(z)

=
2r((1 + j)(x − 3R +

√
R2 + x2)/2 − (1 − j)R∗/2) − H(x − 3R +

√
R2 + x2)

a(x − 3R +
√

R2 + x2) − b(x − 3R +
√

R2 + x2)
, i.e.

Re[(1 − i)w(z)] = U(x − 3R +
√

R2 + x2) + V(x − 3R +
√

R2 + x2) = r1(z) on L0,

(2.12)

where H(x− 3R+
√

R2 + x2) = [a((1+ j)(x− 3R+
√

R2 + x2)/2− (1− j)R∗/2)+ b((1+ j)(x− 3R+
√

R2 + x2)/2−
(1 − j)R∗/2)]g(−R∗).

In addition, from the above condition and the first boundary condition in (2.2), noting that the index K = 0, there

exists a unique solution w(z) = U + iV of discontinuous Riemann-Hilbert problem with the boundary conditions

(2.12) and the first condition in (2.2) for the Equation (1.14) in D+ (see Theorem 6.6, Chapter V, Wen, 1992), and

then the solution of Problem A for (1.14) is obtained as follows

w(z) = U(z) + iV(z) in D+,

w(z) =
1

2
[(1 + j)

2[r(h(ν)) − (a(h(ν)) + b(h(ν)))g(−R∗)
a(h(ν)) − b(h(ν))

+ (1 − j)r0(μ)

=
1

2
[
2[r(h(ν)) − (a(h(ν)) + b(h(ν)))g(−R∗)

a(h(ν)) − b(h(ν))
+ r0(μ)]

+
j
2

[
2[r(h(ν)) + (a(h(ν)) + b(h(ν)))g(−R∗)

a(h(ν)) − b(h(ν))
− r0(μ)] in D−,

(2.13)

where h(ν) = (1 + j)ν/2 − (1 − j)R∗/2 = h(x − y). Hence we have the following theorem.

Theorem 2.1 Problem A for (2.1) in D has a unique solution in the form (2.13), which satisfies the estimates

Cη[w(z),D±ε ] = Cη[U(z) + iV(z),D±ε ] ≤ M1,

Cη[ f (ν),D±ε ] ≤ M1, Cα[g(μ),D±ε ] ≤ M1,
(2.14)

5
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where ν = x − y, μ = x + y, D±ε = D± ∩ {|z − R∗| ≥ ε} ∩ {|z − R∗| ≥ ε}, ε is a sufficiently small positive number,
η = min(1 − 2/p0, α), p0 (2 < p0 ≤ p) and M1 = M1(η, k0, k2,D±ε ) are positive constants.

Let the solution w(z) of Problem A for (1.14) be substituted in (1.13). Then the solution u(z) of Problem P for

Lavrent′ev-Bitsadze Equation (1.14) is obtained, which can represented by the formula (1.13). We mention that the

method in this section is completely solved the solvability of oblique derivative problem for Lavrent’ev-Bitsadze

equation, which is differed with our previous researches including (Wen, 2013), and the reasoning is stringent and

very intersenting.

In brief, the proof of the solvability for Problem P of (1.14) can be divided into four steps:

(1) From the second and third conditions in (2.2) for the Equation (1.14) in D−, the boundary condition

Re[(1 − i)w(z)] = r1(z) on L0 (2.15)

is found, and cannot determine Re[(1 − j)w(z)] = U(x + y) − V(x + y) = r0(x + y) on L0.

(2) From the first boundary condition in (2.2) and the above condition (2.15), the continuous solution w(z) of

Problem A in D+\{z∗, z∗} is obtained, at the same time we determine the boundary condition

Re[(1 − j)w(z)] = U(μ) − V(μ) = r0(μ) on L0. (2.16)

(3) From the boundary conditions in (2.2) and (2.16), we can find the solution w(z) of Problem A in D− as stated

in (2.13).

(4) To substitute the solution w(z) of Problem A for the Equation (1.14) into the formula (1.13), thus the solution

u(z) of the oblique derivative boundary value problem (Problem P) for the Lavrent′ev-Bitsadze Equation (1.14) is

gotten.

3. Unique Solvability for Problem P for Generalized Lavrent′ev-Bitsadze Equations

First of all we give the representation theorem of Problem P for the Equation (1.2).

Theorem 3.1 Let the Equation (1.2) satisfy Condition C. Then any solution of Problem P for (1.2) can be expressed
as

u(z) = 2Re

∫ z

z0

ŵ(z)dz + b0 =

{ 2Re
∫ z

z0
w(z)dz

2Re
∫ z

z0
w(z)dz

+ b0 in

⎧⎪⎪⎨⎪⎪⎩
D+

D−

⎫⎪⎪⎬⎪⎪⎭ , (3.1)

where w(z) = uz = [ux − iuy]/2 = w0(z) +W(z) in D+, uz = w(z) = [ux − juy]/2 = w0(z) +W(z) in D−, and w0(z) is
a solution of Problem A for the equation

Lw =
{ wz̄

wz

}
= 0 in

{ D+

D−

}
, (3.2)

with the boundary conditions (1.6) (w0(z) = u0z), and w(z), W(z) possess the form

w(z) = w0(z) +W(z) in D, W(z) = Φ̃(z)eφ̃(z) + ψ̃(z) in D+,

ψ̃(z) = T f , φ̃(z) = φ̃0(z) + Tg, Tg = −1

π

∫ ∫
D+

g(ζ)

t − z
dσt in D+,

W(z) = Φ(z) + Ψ(z), Ψ(z) =

∫ ν
R∗

g1(z)dνe1 +

∫ μ
−R∗

g2(z)dμe2 in D−,

(3.3)

in which e1 = (1 + i)/2, e2 = (1 − i)/2, μ = x + y, ν = x − y, , φ̃0(z) is an analytic function in D+ and continuous in
D+, such that Im[φ̃(x)] = 0 on L0,

g(z) =

⎧⎪⎪⎨⎪⎪⎩
A1/2 + A1w̄/(2w), w(z) � 0,

0, w(z) = 0,
f (z) = Re[A1φ̃z] + A2u + A3 in D+,

g1(z) = g2(z) = Aξ + Bη +Cu + D, ξ = Rew + Imw, η = Rew − Imw,

A = (ReA1 + ImA1)/2, B = (ReA1 − ImA1)/2, C = A2, D = A3 in D−,

(3.4)

6



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 6, No. 2; 2014

where Φ̃(z) is an analytic function in D+ and Φ(z) is a solution of the Equation (3.2) in D− satisfying the boundary
conditions

Re[λ(z)eφ̃(z)Φ̃(z)] = −Re[λ(z)ψ̃(z)], z ∈ Γ,
Re[λ(z)(Φ̃(z)eφ̃(z) + ψ̃(z))] = s(z), z ∈ L0,

Re[λ(z)Φ(z)] = −Re[λ(z)Ψ(z)], z ∈ L0,

Re[λ(z)Φ(z)] = −Re[λ(z)Ψ(z)], z ∈ L1,

Im[λ(z1)Φ(z1)] = −Im[λ(z1)Ψ(z1)],

(3.5)

in which λ(z) = 1 − i or λ(z) = 1 + j on L0. Moreover by Theorem 1.1, Chapter 5, Wen (2002), the solution w0(z)

of Problem A for (3.2) and u0(z) satisfy the estimate in the form

Cβ[u0(z),D] +Cβ[w0(z)X(z),D+] +Cβ[w±0 (μ, ν)Y±(μ, ν),D−] ≤ M2(k1 + k2), (3.6)

where

X(z) =

2∏
j=1

|z − t j|η j , Y±(z) = Y±(μ, ν) = [|ν − R∗||μ − R∗|]η0 ,

η 0 = max(η1, η2), η j =

⎧⎪⎪⎨⎪⎪⎩
|γ j| + δ, γ j < 0,

δ, γ j ≥ 0,
j = 1, 2,

(3.7)

herein t1 = R∗, t2 = R∗, w±0 (μ, ν) = Rew0(z) ± Imw0(z), w0(z) = w0(μ, ν), μ = x + y, ν = x − y, and γ1, γ2 are the
real constants in (1.8), β (= min(α, 1 − 2/p0, δ)), δ are positive constants,

u0(z) = 2Re

∫ z

z0

ŵ0(z)dz + b0 in D (3.8)

and p0 (2 < p0 ≤ p), M2 = M2(p0, β, k0,D) are non-negative constants.

Proof. Let u(z) be a solution of Problem P for the Equation (1.2), and w(z) = uz, u(z) be substituted in the positions

of w, u in (3.4), thus the functions f (z), g(z), g1(z), g2(z), and Ψ̃(z) in D+ and Ψ(z) in D− in (3.3), (3.4) can be

determined. Moreover we can find the solutions Φ̃(z) in D+ and Φ(z) in D− of (3.2) with the boundary conditions

in (3.5), thus using the method as in Section 2, we can get

s(z) =
2r((1 + j)(x − y)/2 − R∗(1 − j)/2) − 2R((1 + j)(x − y)/2 − R∗(1 − j)/2) − H(x − y)

a((1 + j)(x − y)/2 − R∗(1 − j)/2) − b((1 + j)(x − y)/2 − R∗(1 − j)/2)

−Re[λ(z)Ψ(z))] on L0 = {−R∗ ≤ x ≤ R∗, ŷ = y − 3R +
√

R2 + x2 = 0},
(3.9)

here and later on H(x − y) = [a((1 + j)(x − y)/2 − R∗(1 − j)/2)) + b((1 + j)(x − y)/2 − R∗(1 − j)/2))]g(−R∗),
R(z) = Re[λ(z)Ψ(z)] on L0, and then

w(z) = w0(z) +W(z) =

⎧⎪⎪⎨⎪⎪⎩
w0(z) + Φ̃(z)e φ̃(z) + ψ̃(z) in D+,

w0(z) + Φ(z) + Ψ(z) in D−,

is the solution of Problem A for the complex equation

wz̄ = Re[A1w] + A2u + A3 in D, (3.10)

and u(z) is a solution of Problem P for (1.2) as stated in the formula in (3.1). �
Theorem 3.2 Suppose that the Equation (1.2) satisfies Condition C. Then Problem P for (1.2) has a unique solution
u(z) in D.

Proof. Let u1(z), u2(z) be any two solutions of Problem P for (1.2). By Condition C, we see that u(z) = u1(z)−u2(z)

and w(z) = uz satisfy the homogeneous equation and boundary condition

wz̄ = Re[A1w] + A2u in D, (3.11)

Re[λ(z)w(z)] = 0, z ∈ Γ, u(z0) = 0, Im[λ(z))w(z0)] = 0,

Re[λ(z)w(z)] = 0, z ∈ L1, Im[λ(z1)w(z1)] = 0.
(3.12)
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By Theorem 3.1, the solution w(z) can be expressed in the form

w(z) =

{ w0(z) + Φ̃(z)e φ̃(z) + ψ̃(z), ψ̃(z) = T f , φ̃(z) = φ̃0(z) + T̃ g in D+,

w0(z) + Φ(z) + Ψ(z) in D−,

Ψ(z) =

∫ μ
−R∗

[Aξ + Bη +Cu]e1dμ +
∫ ν

R∗
[Aξ + Bη +Cu]e2dν in D−,

(3.13)

where f (z), g(z) are stated as in (3.4), Φ̃(z) in D+ is an analytic function and Φ(z) is a solution of (3.2) in D−
satisfying the boundary condition (3.5). �
According to the proof of Theorem 3.3, Chapter I, Wen (2002), Suppose w(z) � 0 in the neighborhood (⊂ D) of

two characteristic lines through the point z1, we may choose a sufficiently small positive number R0 < 1, such that

8M3M4R0 < 1, where M3 = max{C[A,Q], C[B,Q], C[C,Q], C[D,Q]}, M4 = 1+ 4k2
0(1+ k2

0) is a positive constant,

and M5 = C[w(z),Q0] > 0, herein Q0 = {−R∗ ≤ μ ≤ −R∗+R0, R∗ −R0 ≤ ν ≤ R∗}. From (2.4), (2.13), (3.12), (3.13)

and Condition C, we have

||Ψ(z)|| ≤ 8M3M5R0, ||Φ(z)|| ≤ 16M3k2
0(1 + k2

0)M5R0, (3.14)

thus an absurd inequality M5 ≤ 8M3M4M5R0 < M5 is derived. It shows w(z) = 0, (x, y) ∈ Q0. Moreover, we

extend along the positive directions of μ = x + y and the negative directions of ν = x − y successively, and finally

obtain w(z) = 0 for (x, y) ∈ D− and D+. Hence we have w1(z) − w2(z) = 0, u1(z) − u2(z) = 0 in D. This proves the

uniqueness of solutions of Problem P for (1.2).

Theorem 3.3 Suppose that the mixed Equation (1.2) satisfies Condition C. Then Problem P for (1.2) has a solution
in D.

Proof. It is clear that Problem P for (1.2) is equivalent to Problem A for the complex equation of first order and

boundary conditions:

wz̄ = F, F = Re[A1w] + A2u + A3 in D, (3.15)

Re[λ(z)w(z)] = r(z), z ∈ Γ,
u(z0) = b0, Im[λ(z)uz]|z=z0

= b1,

Re[λ(z)w(z)] = r(z), z ∈ L1, Im[λ(z1)w(z1)] = b2,

(3.16)

and the relation (3.1). From (3.1), it follows that

C[u(z), D̄] ≤ M6[C(X(z)w(z),D+) +C(Y±(z)w±(z),D−)] + k2, (3.17)

where X(z), Y±(z),w±(z) are as stated in (3.7), M6 = M6(D) is a positive constant. In the following, by using

successive approximation as stated in the proof of Theorem 2.6, Chapter IV, Wen (2008), we can find a solution

w(z) of Problem A for the complex Equation (1.2) in D, and substitue w(z) in the formula (3.1), thus the solution

u(z) of Problem P for (1.2) can be derived. �
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