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Abstract

In this paper, we study the numerical solution of a type of system of mixed nonlinear variational inequalities in a

Banach space. Using the properties of η−proximal mapping, we construct some iterative algorithms for solving

systems of mixed nonlinear variational inequalities. Moreover, we establish the convergence theorems for the

proposed numerical methods.
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1. Introduction

Variational inequality is a kind of very important nonlinear problems and a powerful tool for studying a wide

class of problems arising in engineering, physics, economics, optimal control and so on, see for example Duvaut

and Lions (1976), Facchinei and Pang (2003), and references therein. During the last decades, researchers have

made great progress in obtaining numerical solutions of variational inequality, such as projection method and its

variations, linear approximation method, smoothing Newton method, domain decomposition method, etc. Since

standard projection methods depend on the inner product on Hilbert spaces, this kind of technique cannot be

extended to variational inequality in Banach spaces. Even more, for mixed variational inequalities, projection

method is neither appropriate, since it is difficult to find the projection.

Recently, thanks to emergence of new kinds of numerical solutions, variational inequalities have been extended

in many directions. One of the most important extensions is the system of variational inequalities, see Ferris and

Pang (1997), Kazmi and Khan (2007), Verma (2007), and references therein. Huang and Noor (2007) discussed

the convergence of projection method for a kind of system of variational inequalities in Hilbert spaces. Verma

(2001) studied the numerical solution for a kind of a system of nonlinear variational inequalities in Hilbert space,

and proposed a series of projection methods. In this paper, we will go on doing the work in this area. We study

the numerical solution of system of mixed nonlinear variational inequalities in Banach space. We introduce the

definition of η−proximal mapping for a proper subdifferentiable functional. Using the properties of η−proximal

mapping, we construct some iterative algorithms for solving systems of mixed nonlinear variational inequalities.

Morever, we establish the convergence theorems for the proposed numerical methods.

2. Preliminaries

First we give a hypothesis which will be used throughout the paper.

Hypothesis A Let B be a reflexive Banach space, B∗ be the dual space B and 〈·, ·〉 denote the pairing between B∗
and B. Let φ: B→ (−∞,+∞] be a proper lower semicontinuous and subdifferentiable functional.

Let 2B∗ denote all subsets of B∗. Let T : B→ B∗ be single-valued mappings. We consider the following system of

mixed nonlinear variational inequalities (denoted by SMNVI): Find (x∗, y∗) ∈ B × B, such that

〈γ1T (y∗) + x∗ − y∗, x − x∗〉 ≥ φ(x∗) − φ(x), γ1 > 0, ∀x ∈ B,

〈γ2T (x∗) + y∗ − x∗, y − y∗〉 ≥ φ(y∗) − φ(y), γ2 > 0, ∀y ∈ B.
(1)

We first recall the following definitions and some known results.
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Definition 1 The following mapping J: B→ 2B∗ is said to be a normal dual mapping:

J(x) = { f ∈ B∗ : 〈 f , x〉 = ‖ f ‖ · ‖x‖, ‖ f ‖ = ‖x‖}, ∀x ∈ B.

Definition 2 Let Hypothesis A hold and η: B → B∗ be a mapping. Mapping x∗ �→ x, denoted by x = Jφρ (x∗), is

said to be a η−proximal mapping for φ, if for any x∗ ∈ B∗ and constant ρ > 0, there exists x ∈ B satisfying

〈ηx − x∗, y − x〉 + ρφ(y) − ρφ(x) ≥ 0, ∀y ∈ B. (2)

Definition 3 Let A: B → B∗ be a single mapping. A is said to be α−strongly monotone, if for any x, y ∈ B, there

exists constant α > 0, such that

〈Ax − Ay, x − y〉 ≥ α‖x − y‖2.
Hypothesis B Let η : B→ B∗ be an α−strongly continuous mapping.

Definition 4 Let B be a Banach space, T : B → B is said to be s−Lipschitz continuous, if there exists s > 0 such

that

‖T (x) − T (y)‖ ≤ s‖x − y‖, ∀x, y ∈ B.

By the definition of subdifferentiable and (2), we have x∗ − ηx ∈ ρ∂φ(x), hence

x = Jφρ (x∗) = (η + ρ∂φ)−1(x∗).

Remark 1 If B = H is a Hilbert space, η: H → H is an identity mapping on H, and φ is a proper convex

subdifferentiable functional, then η−proximal mapping for φ degenerates to a resolvent operator on H.

Lemma 1 (Xia & Huang, 2008) Let Hypothesises A and B hold. Then for any x∗ ∈ B∗ and any ρ > 0, there exists
unique x ∈ B such that

〈ηx − x∗, y − x〉 + ρφ(y) − ρφ(x) ≥ 0, ∀y ∈ B.

That is, x = Jφρ (x∗), η−proximal mapping for φ is well defined.

Lemma 2 (Xia & Huang, 2008) Let Hypothesises A and B hold. Then η−proximal mapping Jφρ = (η + ρ∂φ)−1

is
1

α
−Lipschitz continuous. If the subdifferentiable ∂φ: B → 2B∗ of φ is ξ−strongly monotone, then η−proximal

mapping Jφρ = (η + ρ∂φ)−1 is
1

α + ρξ
−Lipschitz continuous.

Lemma 3 Let Hypothesises A and B hold. Then, (x∗, y∗) ∈ B × B is the solution of (1) if and only if

x∗ = Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)],

y∗ = Jφρ [η(y∗) − ρ(γ2T (x∗) + y∗ − x∗)],
(3)

where Jφρ = (η + ρ∂φ)−1, ρ > 0 is a constant.

Proof. Let (x∗, y∗) satisfy (3). Since Jφρ = (η + ρ∂φ)−1, we have (3) holds if and only if (x∗, y∗) satisfies

η(x∗) − ρ(γ1T (y∗) + x∗ − y∗) ∈ η(x∗) + ρ∂φ(x∗),

η(y∗) − ρ(γ2T (x∗) + y∗ − x∗) ∈ η(y∗) + ρ∂φ(y∗). (4)

By the definition of functional subdifferentiable, (4) is equivalent to

〈γ1T (y∗) + x∗ − y∗, x − x∗〉 ≥ φ(x∗) − φ(x), ∀x ∈ B,

〈γ2T (x∗) + y∗ − x∗, y − y∗〉 ≥ φ(y∗) − φ(y), ∀y ∈ B.

In summary, (x∗, y∗) is the solution of (1) if and only if (x∗, y∗) satisfies (3), which completes the proof. �
Lemma 4 (Verma, 2001) Let {δn}∞n=0 be a non negative sequence, and satisfy the following inequality

δn+1 ≤ (1 − λn)δn + σn, ∀n ≥ 0,

where, λn ∈ [0, 1],
∞∑

n=0
λn = ∞, and σn = o(λn), then lim

n→∞ δn = 0.
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3. Numerical Methods and Convergence

Based on Lemma 3, we propose the following iterative numerical methods for (1).

Method 1 Let Hypothesises A and B hold. For any (x0, y0) ∈ B × B, calculate (xn+1, yn+1) ∈ B × B:

xn+1 = (1 − an)xn + an(Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)]),

yn+1 = (1 − bn)yn + bn(Jφρ [η(yn) − ρ(γ2T (xn) + yn − xn)]),

where 0 ≤ an ≤ 1, 0 ≤ bn ≤ 1.

Method 2 Let Hypothesises A and B hold. For any(x0, y0) ∈ B × B, calculate (xn+1, yn+1) ∈ B × B:

xn+1 = (1 − an)xn + an(Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)]),

yn+1 = (1 − bn)yn + bn(Jφρ [η(yn) − ρ(γ2T (xn+1) + yn − xn+1)]),

where 0 ≤ an ≤ 1, 0 ≤ bn ≤ 1.

Method 3 Let Hypothesises A and B hold. For any(x0, y0) ∈ B × B, calculate (xn+1, yn+1) ∈ B × B:

xn+1 = (1 − an)xn + an(Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)]),

yn+1 = Jφρ [η(yn) − ρ(γ2T (xn) + yn − xn)],

where 0 ≤ an ≤ 1.

Method 4 Let Hypothesises A and B hold. For any(x0, y0) ∈ B × B, calculate (xn+1, yn+1) ∈ B × B:

xn+1 = (1 − an)xn + an(Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)]),

yn+1 = Jφρ [η(yn) − ρ(γ2T (xn+1) + yn − xn+1)],

where 0 ≤ an ≤ 1.

Remark 2 By Lemma 1, methods 1-4 are well pose.

Theorem 1 Let Hypothesises A and B hold. Let η− I be s−Lipschitz continuous. Suppose that (x∗, y∗) is a solution
of SMNVI (1). Additionally, we assume that operators γ1T − I and γ2T − I are s1−Lipschitz and s2−Lipschitz
continuous, respectively, such that s2bn − an > 0, s1an − bn > 0, and 1 > ρ > 0 satisfies

ρ <
an(α − s − 1)

bns2 − an
, ρ <

bn(α − s − 1)

ans1 − bn
. (5)

Then the sequence {(xn, yn)} generated by Method 1 converges to (x∗, y∗).

Proof. Since (x∗, y∗) is a solution of SMNVI (1), we have

x∗ = Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)],

then

x∗ = (1 − an)x∗ + an(Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)]).

Since γ1T − I is s1−Lipschitz continuous, η: B→ B∗is α−strongly monotone and η− I is s−Lipschitz continuous,

we have

‖xn+1 − x∗‖
= ‖(1 − an)xn + an(Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)]) − (1 − an)x∗ − an(Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)])‖
≤ (1 − an)‖xn − x∗‖ + an‖Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)] − Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)]‖
= (1 − an)‖xn − x∗‖ + an‖Jφρ [η(xn) − ρ(γ1T (yn) + xn − yn)] − Jφρ [η(xn) − ρ(γ1T (y∗) + xn − y∗)]+

Jφρ [η(xn) − ρ(γ1T (y∗) + xn − y∗)] − Jφρ [η(x∗) − ρ(γ1T (y∗) + x∗ − y∗)]‖
≤ (1 − an)‖xn − x∗‖ + an

α
‖ρ(γ1T (yn) − yn − γ1T (y∗) + y∗)‖ + an

α
‖η(xn) − xn + (1 − ρ)xn − η(x∗) + x∗ + (ρ − 1)x∗‖

≤ (1 − an)‖xn − x∗‖ + ρans1

α
‖yn − y∗‖ + an(s + 1 − ρ)

α
‖xn − x∗‖,
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where the second inequality obtained by Lemma 2.

Analogously for y∗, we obtain

‖yn+1 − y∗‖ ≤ (1 − bn)‖yn − y∗‖ + ρbns2

α
‖xn − x∗‖ + bn(s + 1 − ρ)

α
‖yn − y∗‖.

Hence, we have

‖xn+1 − x∗‖ + ‖yn+1 − y∗‖ ≤ max{θ1, θ2}(‖xn − x∗‖ + ‖yn − y∗‖), (6)

where, θ1 = 1− an +
an(s + 1 − ρ) + ρbns2

α
, θ2 = 1− bn +

ρans1 + bn(s + 1 − ρ)
α

. Define the norm ‖ · ‖∗ on B× B as:

‖(u, v)‖∗ = ‖u‖ + ‖v‖, ∀(u, v) ∈ B × B.

Obviously, (B × B, ‖ · ‖∗) is a Banach space. Hence, (6) implies

‖(xn+1, yn+1) − (x∗, y∗)‖∗ ≤ max{θ1, θ2}‖(xn, yn) − (x∗, y∗)‖∗.
By (5), we have θ1, θ2 ∈ (0, 1). Hence, by Lemma 4, we have

(xn, yn)→ (x∗, y∗), n→ ∞,
which completes the proof. �
Similarly to the proof of theorem 1, we have the following theorems.

Theorem 2 Let Hypothesises A and B hold. Let η− I be s−Lipschitz continuous. Suppose that (x∗, y∗) is a solution
of SMNVI (1). Additionally, we assume that operators γ1T − I and γ2T − I are s1−Lipschitz and s2−Lipschitz
continuous, respectively, such that s2bn − an > 0, s1an − bn > 0, and 1 > ρ > 0 satisfies

bns2ans1ρ
2 + (αans1 − αbn)ρ − α2bn < 0,

−anbns2ρ
2 + b̂ρ − α2 < 0,

where
b̂ = αbns2 − αan − αanbns2 + ansbns2 + anbns2.

Then the sequence {(xn, yn)} generated by Method 2 converges to (x∗, y∗).

Theorem 3 Let Hypothesises A and B hold. Let η− I be s−Lipschitz continuous. Suppose that (x∗, y∗) is a solution
of SMNVI (1). Additionally, we assume that operators γ1T − I and γ2T − I are s1−Lipschitz and s2−Lipschitz
continuous, respectively, such that s2 − an > 0, s1an − 1 > 0, 1 > ρ > 0 satisfies

ρ <
an(α − s − 1)

s2 − an
, ρ <

α − 1 − s
s1an − 1

,

Then the sequence {(xn, yn)} generated by Method 3 converges to (x∗, y∗).

Theorem 4 Let Hypothesises A and B hold. Let η− I be s−Lipschitz continuous. Suppose that (x∗, y∗) is a solution
of SMNVI (1). Additionally, we assume that operators γ1T − I and γ2T − I are s1−Lipschitz and s2−Lipschitz
continuous, respectively, such that 1 > ρ > 0 satisfies

s2ρ + (α − ans2s − ans2 − αs2 + αans2)ρ + anα
2 − anαs + anα > 0,

ans1s2ρ
2 + (ans1α − α)ρ + αs + α − α2 < 0,

Then the sequence {(xn, yn)} generated by Method 4 converges to (x∗, y∗).
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