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Abstract

Let F = (P,Q) ∈ C[X, Y]2 be a polynomial mapping over the complex field C. Suppose that

det JF(X,Y) :=
∂P
∂X
∂Q
∂Y
− ∂P
∂Y
∂Q
∂X
= a ∈ C×.

A mapping that satisfies the assumptions above is called a Keller mapping. In this paper we estimate the size of the

co-image of F. We give a sufficient condition for surjectivity of Keller mappings in terms of its Phantom curve.

This curve is closely related to the asymptotic variety of F.

Keywords: the Jacobian conjecture, Keller mappings, Picard theorem

1. Introduction

In this paper we will prove, among other things, the following results:

Theorem 4.1 If F ∈ C[X,Y]2 satisfies det JF(X, Y) ∈ C
×, and ∀R ∈ R0(F), {S R(X,Y) = 0} ∩ sing(R) = ∅, then

F(C2) = C
2.

Theorem 5.6 If F ∈ C[X,Y]2 satisfies det JF(X,Y) ∈ C×, then

|C2 − F(C2)| ≤ (deg F)3 + (deg F)2 − (deg F).

These results are also true over certain fields K different from C. Our motivation originates in the famous Jacobian

conjecture, Abhyankar (1977), Bass, Connell, and Wright (1982); Keller (1939) and van den Essen (1992, 2000).

The proofs are based on a careful analysis of the asymptotic behavior of the mapping at infinity. The set of all the

asymptotic values of F is called the asymptotic variety of F and is denoted by A(F). See Hadamard (1906) for

asymptotic values of diffeomorphisms. If F is not an automorphism of C2 then this is a planar algebraic curve.

Otherwise it is an empty set. Each component of A(F) is a polynomial curve, i.e. it has a normal parametrization

with polynomials. Equivalently, it has a unique place on the line at infinity (in the projectivization). However, every

such a component is not isomorphic with C and hence must be singular. These are all well known results. We can

refine the description of that structure. There is a finite set of rational but not polynomial mappings which we call a
geometric basis of F. It is denoted by R0(F) and contains rational mappings of the form L◦(X−α, XβY+X−αΦ(X)),

where L(X,Y) is a fixed linear invertible mapping (depending only on F), α ∈ Z+, β ∈ Z+ ∪ {0}, Φ(X) ∈ C[X] and

degΦ < α + β. Moreover, the powers of X that effectively appear in Xα+βY + Φ(X) have a gcd which equals 1.

The cardinality of R0(F) equals the number of components of the asymptotic variety A(F). Each rational mapping

R ∈ R0(F) satisfies an identity of the form F ◦ R = GR ∈ C[X, Y]2. We call that a double asymptotic identity
of F. We call the corresponding polynomial mapping GR the R-dual of F. The irreducible component of A(F)

that corresponds to R ∈ R0(F) is the polynomial curve with the following normal parametrization (meaning a

surjective parametrization), {GR(0,Y) | Y ∈ C}. We call this component the R-component of A(F). If its implicit

representation is HR(X,Y) = 0 for some irreducible HR ∈ C[X,Y] then (HR ◦ GR)(0,Y) ≡ 0. In fact we prove

that (HR ◦ GR)(X,Y) = Xβ−αS R(X,Y), where 1 ≤ β − α, and where S R ∈ C[X,Y]. The planar algebraic curve

{S R(X,Y) = 0}, is called the R-phantom curve. If ∀R ∈ R0(F), {S R(X,Y) = 0} ∩ sing(R) = ∅ then the mapping
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F must be surjective! The reason is the following: If the finite set C2 − F(C2) � ∅ is non-empty then any

(a, b) ∈ C
2 − F(C2) is an asymptotic value of F. We call such an asymptotic value, a Picard-exceptional value

of F (as is the terminology in the theory of analytic functions). The mapping F is surjective if and only if it

has no Picard-exceptional values. Let R be an element of R0(F) that corresponds to (a, b). This means that

(a, b) ∈ {HR(X,Y) = 0} − F(C2). As explained above we have {HR(X,Y) = 0} = {GR(0,Y) |Y ∈ C}. The inverse

image G−1
R ({HR(X,Y) = 0} equals the union {X = 0} ∪ {S R(X,Y) = 0}, i.e. the union of the singular set of R

and the R-phantom curve. If these two sets are disjoint then R is defined on every point of the R-phantom curve

{S R(X,Y) = 0}. In particular GR({S R(X,Y) = 0}) = F(R({S R(X,Y) = 0})) ⊆ F(C2). This means that if F has Picard-

exceptional values on {HR(X,Y) = 0} they must belong to the difference set {HR(X,Y) = 0} −GR({S R(X,Y) = 0}).
We will prove that {HR(X, Y) = 0}−GR({S R(X,Y) = 0}) ⊆ {F(0,Y) | Y ∈ C} and so the R-component {HR(X, Y) = 0}
of the asymptotic variety A(F) contains no Picard-exceptional values of F. Since this is true for any R ∈ R0(F), it

follows that F has no Picard-exceptional values. Hence F is a surjective mapping. We will prove that for certain

choices of the parameters α and β the condition {S R(X, Y) = 0} ∩ sing(R) = ∅ is satisfied. As a corollary we are

able to prove that:

If N ∈ Z+ and a1, . . . , aN ∈ C, then I((X−N , XN+1Y + aN XN + . . . a1X)) contains no Jacobian pair.

This result should be compared to the main theorems in Peretz (1996, 1998) and Wright (1997) which handled

other families of subalgebras of C[X,Y]. The case N = 1 is in the intersection of the two families and originally

was proved by L. Makar-Limanov using techniques from weighted graded algebras. We recall that Pinchuk’s

counterexample to the Real Jacobian Conjecture is contained in the real version R[V,VU,VU2 + U] of the case

N = 1.

2. The Structure of the Asymptotic Variety

An F-asymptotic value (a, b) ∈ C2 is a limiting value of F: C2 → C
2 along a smooth curve that tends to infinity.

The set of all the F-asymptotic values is called the F-asymptotic variety and it is denoted by A(F). Any smooth

curve as above is called an asymptotic tract of F that corresponds to (a, b).

Theorem 2.1 If F is a two dimensional Keller mapping, and if F satisfies the Y-degree condition: deg F =
degY P = degY Q, (F = (P,Q)), then ∀ (a, b) ∈ A(F), there exists a rational mapping: R(X,Y) = (X−α, XβY +
X−αφ(X)), (α ∈ Z

+, β ∈ Z
+ ∪ {0}, φ(X) ∈ C[X], deg φ < α + β and the gcd of the powers of X that effectively

appear in Xα+βY + φ(X) is 1) with the following two properties:

(i) ∃GR ∈ C[X,Y]2 such that GR = F ◦ R off sing(R) = {X = 0}. (The mapping GR is called the R-dual of F);

(ii) ∃Y0 ∈ C such that (a, b) = GR(0,Y0).

Moreover, the set of all those rational mappings R can be chosen to be a finite set.

Proof. We consider the transformed mapping:

F1(U,V) = F
(

1

U
,

V
U

)
=

A(U,V)

UN ,

where N = deg F, A(U,V) ∈ C[U,V]2, deg A(U,V) = deg A(0,V) = N. Any asymptotic value of F is a limiting

value of F1(U,V) as U → 0 and V remains bounded. We use the following representation:

F1(U,V) =

∑N
j=0 Aj(V)U j

UN . (∗)

In this notation Aj(V) ∈ C[V]2, 0 ≤ j ≤ N. These are the two polynomial coefficients of U j. When U → 0

and V remains bounded we will have F1(U,V) → ∞ unless V tends to a zero of the free term A0(V). This

means a simultaneous zero of the pair of polynomials A0(V). The reason is that if V is bounded away from

zeros of A0(V), then the term A0(V)/UN dominates the finite sum F1(U,V) (in Equation (*)) when U → 0. We

conclude that in order to determine all the possible asymptotic values of F, we should consider the limits of

F1(U,V) when U → 0 and V → a0, where a0 is a zero of A0. Let us represent the coefficients of A as follows,

Aj(V) = (V − a0)p j B j(V), 0 ≤ j ≤ N. If Aj ≡ (0, 0) we agree that p j = ∞ and otherwise p j ≥ 0 and

Bj(a0) � (0, 0). Next we make the transformation, V = a0 +WU p, where p will be a positive number that will be

determined soon (in fact it is going to be rational). Putting together everything we obtain,

F1(U,V) =

∑N
j=0 Bj(V)W pj U pp j+ j

UN .
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We want to determine the desired value of p that will lead to a finite limiting value of F1(U,V). If p is a small

positive number, then ∀ 1 ≤ j ≤ N, pp0 < pp j + j. Thus the term that will dominate the finite sum that represents

F1(U,V) is B0(a0)W p0/UN−pp0 . If pp0 = N and pp0 < pp j+ j for 1 ≤ j ≤ N, then with this choice of p = N/p0 we

obtain the family of limiting values B0(a0)W p0 . In the complementary case, we choose p > 0 so that pp0 ≤ pp j + j
for 1 ≤ j ≤ N with equality for at least one value j0 of j. We can write this choice of a value for p as follows,

p = min

{
j

p0 − pj
| 1 ≤ j ≤ N, p0 > p j

}
.

We substitute this and obtain:

F1(U, a0 +WU p) =
C(U,W)

UN−pp0
,

where C(U,W) is a mapping with coordinates that are polynomial in U and U p. It is also a polynomial in W of

degree N or less. Finally C(0,W) is a polynomial in W of degree p0, which contains only the powers W p j that

satisfy the condition pp0 = pp j + j. Let p = b0/c where b0 and c are coprime positive integers. Then to avoid

fractional powers we make further the substitution U = Zc. We get,

F1(Zc, a0 +WZb0 ) =
D(Z,W)

ZcN−b0 p0
. (∗∗)

Here D(Z,W) is a polynomial pair in Z and W and D(0,W) = C(0,W) is a polynomial pair in W of degree p0. We

noted above that the powers W pj that appear in D(0,W) satisfy pp0 = pp j + j. Hence for these j’s

p0 − p j =
c · j
b0

.

Since b0 and c are coprime and since p0 − p j ∈ Z, b0 must be a divisor of j, so that the difference p0 − p j is a

multiple of c. We conclude that D(0,W) is of the form D(0,W) = WαE(Wc), where α ∈ Z
+ ∪ {0}, and E(X) is a

polynomial pair in X of degree 1 or more.

We see that the form of F1 after our transformations, as given in Equation (**) is of the same type in the inde-

terminates Z and W as it was in Equation (*) in the indeterminates U and V . Thus we can repeat the sequence

of transformations with suitable parameters. We conclude that any limiting value of F1 will be attained along a

curve of the form V = a0 + WU p, where U → 0 and W being bounded and p is a positive rational number. If

the parameter p is chosen to be smaller than our minimum value formula then F1 → ∞ along the curve. So finite

limiting values for F1 can be achieved only for this value or larger ones for p. So with that minimum chosen value

for p, asymptotic values of F1 that correspond to the zero a0 of the pair A0 are achieved when Z → 0 and W being

bounded. If the value of p is chosen to be larger than the minimum then, in fact W → 0. On repetition of the

process, each asymptotic value will correspond to a zero a1 of D(0,W). If the multiplicity of the zero a1 is q0, then

the transformation we apply is W = a1 + S Zq, where q is chosen using our minimum process (as with p). We have

q0 ≤ p0 ≤ N. The case q0 = p0 implies D(0,W) = d · (W − a1)p0 with a non zero constant d. So D(0,W) contains

all the powers of W from 0 to p0. Hence the denominator of q, c = 1 and the power of Z in the denominator is

N− p0 or less. We conclude, that repeating the process will in every iteration either strictly reduce the degree of the

leading term, or strictly reduce the power of the denominator by a positive integer. We conclude that the process

must terminate. The way it will terminate is as follows. If we use the notation A(U,V)/UN , the final transformation

must be of the form V = a0+WU p with p = N/p0. The other possibility is that this choice of value for p coincides

with the minimum min{ j/(p0 − p j)}. We obtain a curve of asymptotic values D(0,W), a polynomial in W of degree

p0 ≥ 1. For as the denominator in the last iteration becomes 1, our sequence of transformations assigns a new

polynomial D(Z,W) to the original F(X,Y). Clearly if we perform the process to every zero of the leading term

at every stage we will obtain all the asymptotic values of F. Clearly we obtain in this way finitely many rational

mappings of the type prescribed in the statement of our theorem. We obtain those mappings by composing the

sequence of the transformations (and invert the result). In general asymptotic values of F will be achieved as limits

of F along more than one of the rational curves in our construction. �
Remark 2.2 We did not use the Jacobian condition in our proof. This theorem is valid for polynomial mappings

that are not necessarily Keller.

Theorem 2.3 Let F ∈ C[X,Y]2 be a Keller mapping which is not an automorphism. Then there exists a non empty
set R0(F) of rational mappings R ∈ C(X,Y)2 − C[X,Y]2 that satisfies:
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(i) The cardinality of R0(F) equals the number of the irreducible components of the F-asymptotic variety A(F).

(ii) ∀R ∈ R0(F), the set {GR(a, b) | (a, b) ∈ sing(R)} is an irreducible component of A(F).

(iii) We have the representation A(F) =
⋃

R∈R0(F){GR(a, b) | (a, b) ∈ sing(R)}.
(iv) ∀R ∈ R0(F), the mapping GR = F ◦ R has a polynomial extension to C

2.

Proof. We choose a linear invertible mapping L(U,V) so that F ◦ L satisfies the V-degree condition. Then the

construction outlined in the proof of Theorem 2.1 gives us finitely many rational non polynomial mappings of the

form R(X,Y) = L(X−α, XβY + X−αφ(X)). This aggregate of mappings satisfy GR = F ◦ R ∈ C[X,Y]2 off {X = 0}.
This proves part (iv). Any asymptotic value of F equals GR(0,Y) for some R and Y ∈ C, thus proving part (iii).

The polynomial parametrization {GR(0,Y) | Y ∈ C} is a normal parametrization (i.e. a surjective one) of one of the

irreducible components of A(F) and we conclude the proof of Theorem 2.3. �
Definition 2.4 If F ∈ C[X,Y]2, then any set R0(F) that satisfies properties (i)-(iv) of Theorem 2.3 is called a
geometric basis of F.

Theorem 2.5 Let F ∈ C[X,Y]2 be a Keller mapping which is not an automorphism, and let D be an irreducible
component of A(F). Then:

(i) D is a polynomial curve.

(ii) D is normally parametrized by {GR(0,Y) |Y ∈ C}, where GR is the R-dual of F for some R ∈ R0(F).

(iii) D is a singular plane algebraic curve.

(iv) If HR(X,Y) = 0 is an implicit representation of that irreducible component D of A(F) (HR ∈ C[X,Y] is
irreducible), then (HR◦GR)(X,Y) = Xγ(R)S R(X,Y), where γ(R) ∈ Z+ satisfies the inequality γ(R) ≤ β−α (R(X,Y) =

L(X−α, XβY + X−αφ(X)) as in Theorem 2.3). Also S R(X, Y) ∈ C[X,Y].

Proof. Parts (i) and (ii) follow by Theorem 2.3 part (ii) (a polynomial curve is a curve that has a normal polynomial

parametrization). Now for the proof of part (iii): as implied by parts (i)-(ii) each irreducible component of A(F)

is a surjective polynomial image of C, ({X = 0}). On the other hand by a result of Nguyen Van Chau, Theorem

4.4 in 1999 (also a refined version in 2004), each such a component can not be isomorphic to C. Since the only

non singular irreducible plane algebraic curves are isomorphic images of C it follows that each such a component

of A(F) must be a singular plane algebraic curve. The proof of part (iv): by part (ii) we have (HR ◦GR)(0,Y) ≡ 0

and so ∃ S R(X,Y) ∈ C[X,Y] and a γ(R) ∈ Z+ such that (HR ◦GR)(X, Y) = Xγ(R)S R(X,Y) and S R(X,Y) � 0. At this

point it is convenient to note that β − α − 1 ≥ 0 and that det JGR (X,Y) ≡ c · Xβ−α−1 for some c ∈ C×. This follows

by GR = F ◦ R off sing(R) and by the Jacobian condition (satisfied by F). We denote GR = (G1,G2) ∈ C[X,Y]2.

Using the identity (HR ◦GR)(X,Y) = Xγ(R)S R(X,Y) and the above note we deduce that:

(
∂HR

∂X
◦GR

)
(X,Y) =

(
− 1

α

)
Xα+γ(R)−β+1

(
∂S R

∂X
∂G2

∂Y
− ∂S R

∂Y
∂G2

∂X

)
−
(
γ(R)

α

)
Xα+γ(R)−β ∂G2

∂Y
· S R(X,Y),

(
∂HR

∂Y
◦GR

)
(X,Y) =

(
− 1

α

)
Xα+γ(R)−β+1

(
∂G1

∂X
∂S R

∂Y
− ∂G1

∂Y
∂S R

∂X

)
+

(
γ(R)

α

)
Xα+γ(R)−β ∂G1

∂Y
· S R(X,Y).

If α + γ(R) − β > 0 then we obtain,

∀Y ∈ C, (HR ◦GR)(0,Y) =

(
∂HR

∂X
◦GR

)
(0,Y) =

(
∂HR

∂Y
◦GR

)
(0,Y) = 0,

which is not possible for an irreducible curve such as HR(X, Y) = 0 (with normal parametrization {GR(0,Y) |Y ∈
C}). We conclude that α + γ(R) − β ≤ 0. �
To clarify further the relations among the parameters α, β and γ(R) (after part (iv) of Theorem 2.5) we add the

following proposition.

Proposition 2.6 More relations among the parameters α, β and γ(R) are given by:

(i) If γ = 1, then β − α − 1 = 0 and sing(HR(X,Y) = 0) = {S R(X,Y) = 0} ∩ sing(R).

(ii) If γ ≥ 2, then β − α − 1 > 0.

In particular we deduce that if {S R(X,Y) = 0} ∩ sing(R) = ∅, then γ ≥ 2 and β − α − 1 > 0.
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Proof. We start with the identity (HR◦GR)(X,Y) = Xγ(R)S R(X,Y). We use the notation GR = (G1,G2) and HR(U,V)

and obtain: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂HR

∂U
(GR) · ∂G1

∂X
+
∂HR

∂V
(GR) · ∂G2

∂X
= γ(R)Xγ(R)−1S R(X, Y) + Xγ(R) ∂S R

∂X
,

∂HR

∂U
(GR) · ∂G1

∂Y
+
∂HR

∂V
(GR) · ∂G2

∂Y
= Xγ(R) ∂S R

∂Y
.

To prove part (i) we use the assumption γ(R) = 1 and we substitute in the system above X = 0. The resulting

system is: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂HR

∂U
(GR) · ∂G1

∂X
(0,Y) +

∂HR

∂V
(GR) · ∂G2

∂X
(0,Y) = S R(0,Y) � 0,

∂HR

∂U
(GR) · ∂G1

∂Y
(0,Y) +

∂HR

∂V
(GR) · ∂G2

∂Y
(0,Y) = 0.

Recalling the note we had in the proof of part (iii) of Theorem 2.5: det JGR (X, Y) = −αXβ−α−1 and so depending

whether β − α − 1 = 0 or > 0 we conclude that the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂G1

∂X
(0,Y)

∂G2

∂X
(0,Y)

∂G1

∂Y
(0,Y)

∂G2

∂Y
(0,Y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

is either always invertible (when β−α−1 = 0) or always not invertible (when β−α−1 > 0). In our case the matrix

JGR (0,Y)T can not always be not invertible because this would mean that the two equations in the second system

above are proportional which is an absurd because S R(0,Y) � 0. Thus in case γ = 1 we must have β − α − 1 = 0.

So the second system has a unique solution ∀ Y ∈ C and in particular,

∂HR

∂U
(GR(0,Y)) =

∂HR

∂V
(GR(0,Y)) = 0⇔ S R(0,Y) = 0⇔ (0, Y) ∈ {S R(X,Y) = 0} ∩ sing(R).

To prove part (ii) we use the assumption γ(R) ≥ 2 and we substitute in the first system X = 0. We obtain the

following system: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂HR

∂U
(GR) · ∂G1

∂X
(0,Y) +

∂HR

∂V
(GR) · ∂G2

∂X
(0,Y) = 0,

∂HR

∂U
(GR) · ∂G1

∂Y
(0,Y) +

∂HR

∂V
(GR) · ∂G2

∂Y
(0,Y) = 0.

In this case the matrix JGR (0,Y)T can not always be invertible, because it would imply that

HR(GR(0,Y)) ≡ ∂HR

∂U
(GR(0,Y)) ≡ ∂HR

∂V
(GR(0,Y)) ≡ 0.

Hence, in this case we must have β− α− 1 > 0. In particular if {S R(X,Y) = 0} ∩ sing(R) = ∅ and γ = 1, then by (i)

sing(HR(X,Y) = 0) = ∅ which is a contradiction. Hence, γ ≥ 2. �
Remark 2.7 On the next section we will prove a more accurate version of Theorem 2.5 (iv).

3. The Relation γ = β − α, and the Geometry of the R-Phantom Curve

Theorem 3.1 Let F be a Keller mapping which is not a C
2 automorphism. Assume that F satisfies the Y-degree

condition. Then ∀R(X,Y) = (X−α, XβY + X−αφ(X)) ∈ R0(F) we have the identity HR(GR(X,Y)) = Xβ−αS R(X,Y).

Proof. Let GR = (G1,G2) = F ◦ R (off sing(R)) be the R-dual of F. Let HR(X,Y) = 0 be the R-component of A(F).

Then HR(GR(X,Y)) = XγS R(X,Y) for some γ ∈ Z
+, S R(X,Y) ∈ C[X,Y], S R(0,Y) � 0. This follows by Hilbert’s

Nullstellensatz and the irreducibility of HR (where γ absorbs all the X-powers). So

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂HR

∂U
(GR) · ∂G1

∂X
+
∂HR

∂V
(GR) · ∂G2

∂X
= γXγ−1S R(X,Y) + Xγ

∂S R

∂X
,

∂HR

∂U
(GR) · ∂G1

∂Y
+
∂HR

∂V
(GR) · ∂G2

∂Y
= Xγ

∂S R

∂Y
.
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We think of this system as a 2 × 2 linear system in the two unknowns (∂HR/∂U)(GR) and (∂HR/∂V)(GR). The

coefficients matrix is ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂G1

∂X
∂G2

∂X
∂G1

∂Y
∂G2

∂Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = JGR (X,Y)T .

The determinant of this matrix is det JGR (X,Y)T = −αXβ−α−1. By Cramer’s Rule we have,

−αXβ−α−γ
∂HR

∂U
(GR) =

∣∣∣∣∣∣ γS R + X(∂S R/∂X) ∂G2/∂X
X(∂S R/∂Y) ∂G2/∂Y

∣∣∣∣∣∣ ,
and

−αXβ−α−γ
∂HR

∂V
(GR) =

∣∣∣∣∣∣ ∂G1/∂X γS R + X(∂S R/∂X)

∂G1/∂Y X(∂S R/∂Y)

∣∣∣∣∣∣ .
We evaluate for X = 0:

−α0β−α−γ
∂HR

∂U
(GR(0,Y)) = γS R(0,Y)

∂G2

∂Y
(0,Y),

−α0β−α−γ
∂HR

∂V
(GR(0,Y)) = −γS R(0,Y)

∂G1

∂Y
(0,Y).

We consider the second equation and recall that the specialization X = 0 is an operator that commutes with

∂/∂Y . Hence (∂G1/∂Y)(0,Y) = dG1(0,Y)/dY and so if (∂G1/∂Y)(0,Y) ≡ 0 then G1(0,Y) ≡ c a constant. So

in this case the curve {(G1(0,Y),G2(0, Y)) |Y ∈ C} is either a point or {(c,Y) |Y ∈ C}. But both possibilities

can not occur because this curve is the R-component of A(F), HR(X,Y) = 0 which is a singular non-degenerate

planar algebraic curve. We conclude that (∂G1/∂Y)(0, Y) � 0 and so −γS R(0,Y)(∂G1/∂Y)(0,Y) � 0. Thus

−α0β−α−γ ∂HR
∂V (GR(0,Y)) � 0 which proves that β − α − γ = 0. �

Corollary 3.2 Every intersection point of sing(R) and the R-phantom S R(X,Y) = 0 has a GR-image which is a
singular point of the R-component of A(F), HR(X,Y) = 0.

Proof. Using the proof of Theorem 3.1 we get:

−α∂HR

∂U
(GR(0,Y)) = (β − α)S R(0,Y)

∂G2

∂Y
(0,Y),

−α∂HR

∂V
(GR(0,Y)) = −(β − α)S R(0,Y)

∂G1

∂Y
(0,Y).

This proves that

S R(0,Y) = 0 =⇒ ∂HR

∂U
(GR(0,Y)) =

∂HR

∂V
(GR(0,Y)) = 0.

�
Corollary 3.3 GR(sing(S R = 0)) ∪GR({S R = 0} ∩ sing(R)) = sing(HR = 0).

Proof. If (X0,Y0) is a singular point of the R-phantom curve which is off sing(R), then X0 � 0, S R(X0,Y0) =

(∂S R/∂X)(X0, Y0) = (∂S R/∂Y)(X0,Y0) = 0. Hence also (∂HR/∂U)(GR(X0,Y0)) = (∂HR/∂V)(GR(X0,Y0)) = 0.

This follow by the determinantial formulas in the proof of Theorem 3.1. Hence GR(X0,Y0) is a singular point

of HR(X,Y) = 0. This and Corollary 3.2 prove that GR(sing(S R = 0)) ∪ GR({S R = 0} ∩ sing(R)) ⊆ sing(HR =

0). The singular locus of sing(HR = 0) contains also points (G1(0,Y0),G2(0, Y0)) for which (∂G1/∂Y)(0,Y0) =

(∂G2/∂Y)(0,Y0) = 0. If such a singular point (G1(0,Y0),G2(0,Y0)) coincides with (G1(a, b),G2(a, b)) for which

S R(a, b) = 0 then if a � 0 GR is a local diffeomorphism at (a, b) which implies that (a, b) is also a singular point of

S R(X,Y) = 0. But such a point was already counted for on the set on the left hand side. �
A very important fact that we would like to point out in the result on the next section is that the disjointness of the

singular locus of R and the R-phantom curve implies the surjectivity of the mapping F. The next result proves that

this disjointness holds true in the special case β = α + 1,

Theorem 3.4 Let F be a Keller mapping which is not a C
2 automorphism. Then ∀R ∈ R0(F) of the form R(X,Y) =

L ◦ (X−α, Xα+1Y + X−αφ(X)), we have sing(R) ∩ {S R(X,Y) = 0} = ∅.
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Proof. Without losing the generality we may assume that F satisfies the Y-degree condition. This implies that

each R ∈ R0(F) could be chosen to have the following form: R(X,Y) = (X−α, XβY + X−αφ(X)), α, β ∈ Z+, α < β,
φ(X) ∈ C[X], deg φ < α+ β and the gcd of the set of X-powers that effectively appear in Xα+βY + φ(X) equals to 1.

We assume that β = α+ 1. In this case we have det JR(X,Y) = −α, ∀ (X,Y) � sing(R). By the relation F ◦R = GR,

the R-dual of F, it follows that det JGR ∈ C× (since F is Keller). Thus in this case GR is Keller as well. We know that

the pre-image of the R-irreducible component of A(F) by GR equals the union {S R(X,Y) = 0} ∪ sing(R). In other

words we have G−1
R ({HR(X,Y) = 0}) = G−1

R ({GR(0,Y) |Y ∈ C}) = {S R(X,Y) = 0} ∪ sing(R). Now let us assume,

in order to get a contradiction, that sing(R) ∩ {S R(X,Y) = 0} � ∅. Say (a, b) ∈ sing(R) ∩ {S R(X,Y) = 0}, (a = 0).

Then there exist two sequences (a1
n, b

1
n) ∈ sing(R), (a2

n, b
2
n) ∈ {S R(X,Y) = 0}, so that:

(1) lim(a1
n, b

1
n) = lim(a2

n, b
2
n) = (a, b).

(2) ∀ n, (a1
n, b

1
n) � (a2

n, b
2
n).

(3) ∀ n, GR(a1
n, b

1
n) = GR(a2

n, b
2
n).

Hence (a, b) is singular point of the mapping GR(X,Y) and in particular det JGR (a, b) = 0. This contradicts the fact

that in our case β = α + 1, and as explained above this implies that GR(X, Y) is Keller, i.e. det JGR ∈ C
×. This

completes the proof of the theorem. �
Corollary 3.5 If N ∈ Z+ and a1, . . . , aN ∈ C, then I((X−N , XN+1Y + aN XN + . . . a1X)) contains no Jacobian pair.

Proof. Suppose to the contrary that F ∈ I((X−N , XN+1Y + aN XN + . . . a1X)) is a Keller mapping. Then R(X, Y) =

(X−N , XN+1Y + aN XN + . . . a1X) ∈ R0(F) and by Proposition 2.6(i) we have sing(HR(X,Y) = 0) = {S R(X,Y) =

0} ∩ sing(R). On the other hand, by case 2 in the proof of Theorem 3.4, this implies that sing(HR(X,Y) = 0) = ∅.
This contradicts the fact that the R-component of A(F), {HR(X,Y) = 0} is a singular planar algebraic curve. �
Remark 3.6 By Corollary 3.5, with the value N = 1 we get the result that C[V,VU,VU2 + U] (which equals

to I((X−1, X2Y − X))) contains no counterexample to the Jacobian Conjecture. This was originally proved by L.

Makar-Limanov, (See Peretz, 1996, 1998). He used in a clever way a grading technique on this algebra giving

the weights ±1 to the indeterminates U and V respectively. We recall that Pinchuk’s counterexample to the Real

Jacobian Conjecture is contained in the real version R[V,VU,VU2 + U].

4. A Necessary Condition on the Phantom Curves for the Surjectivity of the Mapping

Theorem 4.1 If F ∈ C[X,Y]2 satisfies det JF(X, Y) ∈ C
×, and ∀R ∈ R0(F), {S R(X,Y) = 0} ∩ sing(R) = ∅, then

F(C2) = C
2.

Proof. If F ∈ Aut(C2), then the claim is true. If F � Aut(C2), then F is a counterexample to the Jacobian

Conjecture. In this case it has a non empty geometric basis R0(F). By pre composing F with a suitable invertible

linear mapping L: C2 → C
2 we can achieve the situation that F satisfies the Y-degree condition: deg F = degY P =

degY Q. This implies that each R ∈ R0(F) could be chosen to have the following form: R(X,Y) = (X−α, XβY +
X−αφ(X)), α, β ∈ Z+, α < β, φ(X) ∈ C[X], deg φ < α + β and the gcd of the set of X-powers that effectively appear

in Xα+βY + φ(X) equals to 1. Also if HR(X, Y) = 0 is an implicit representation of the R-irreducible component of

A(F), then by Theorem 3.1 (HR ◦GR)(X,Y) = Xβ−αS R(X,Y) where S R(X,Y) ∈ C[X,Y]. Finally by the assumptions

we have {S R(X, Y) = 0}∩ sing(R) = ∅. The GR-pre-image of the R-irreducible component of the asymptotic variety

A(F) is the union of singular locus of R, sing(R) = {X = 0} and of the R-phantom curve {S R(X,Y) = 0}. More

accurately we have G−1
R ({HR(X,Y) = 0}) = G−1

R (GR(sing(R))) = sing(R) ∪ {S R(X,Y) = 0}. The irreducible curves

{HR(X,Y) = 0} are exactly the set of the asymptotic values of F, A(F), when we take all the rational mappings

R ∈ R0(F). As is the tradition in complex analysis we call the asymptotic values of F which do not belong to

its image, the Picard exceptional values of F. We denote this set by Picard(F), and ∀R ∈ R0(F) we denote the

R-Picard exceptional values of F by PicardR(F). Thus: PicardR(F) = Picard(F) ∩ {HR(X,Y) = 0}. Hence we have

the representation: Picard(F) =
⋃

R∈R0(F) PicardR(F). As is well known we have C
2 − F(C2) = Picard(F), and the

finiteness 0 ≤ |Picard(F)| < ∞. Our theorem is merely the assertion Picard(F) = ∅, or, equivalently ∀R ∈ R0(F),

PicardR(F) = ∅. We will prove this last assertion. Let us fix an element in the geometric basis of F, R ∈ R0(F). By

the above, the difference set {HR(X,Y) = 0} −GR({S R(X, Y) = 0}) is a finite subset of the R-irreducible component

GR({X = 0}) = {HR(X,Y) = 0}. If F is not surjective, i.e. F(C2) � C
2, then C

2 − F(C2) is a finite set which is

composed exactly of these asymptotic values of F which are the Picard exceptional values of F. We know that {X =
0} ∩ {S R(X,Y) = 0} is empty. It follows that R is defined on all the points of the R-phantom curve {S R(X,Y) = 0}.
Hence by the definition of the R-dual mapping of F we have, GR({S R(X,Y) = 0}) = F(R({S R(X,Y) = 0})) ⊆ F(C2).

Hence if HR(X,Y) = 0 contains Picard exceptional values of F, i.e. if PicardR(F) � ∅, then they form a subset of the
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finite set {HR(X,Y) = 0}−GR({S R(X,Y) = 0}). We conclude that if we prove that, {HR(X,Y) = 0}−GR({S R(X,Y) =

0}) ⊆ F(C2), then {HR(X,Y) = 0} contains no Picard exceptional values of F, i.e. PicardR(F) = ∅. Since R is an

arbitrary member of the geometric basis R0(F) of F this would imply that F is surjective. Thus we now turn to

prove that: {HR(X,Y) = 0} − GR({S R(X,Y) = 0}) ⊆ F(C2). If GR is proper on an irreducible component L of the

R-phantom curve S R(X,Y) = 0, then GR(L) = {HR(X,Y) = 0} because HR(X,Y) = 0 is an irreducible component of

A(F). Since we have {X = 0}∩L = ∅, it follows that R is defined on L and so, {HR(X, Y) = 0} = GR(L) = F(R(L)) ⊆
F(C2). If GR is not proper on any component of the R-phantom curve S R(X,Y) = 0, then any such a component

is an asymptotic tract of GR. Let {( f (T ), g(T )) |T ∈ C} be a parametrization of the component L of the R-phantom

curve. Then, as explained above, R is defined on L and we have, R(L) = {( f (T )−α, f (T )βg(T ) + f (T )−αφ( f (T )))}.
There are two possibilities: (1) The curve {( f (T )−α, f (T )βg(T ) + f (T )−αφ( f (T )))} is an asymptotic tract of the

mapping F. (2) This curve, {( f (T )−α, f (T )βg(T ) + f (T )−αφ( f (T )))} is bounded. Claim: (1) is impossible.

A proof of the claim: (1)⇒ f (T ) → 0 and g(T ) stays bounded. This follows because F satisfies the Y-degree

condition (see Equation (*) in the proof of Theorem 2.1). But then the component L = {( f (T ), g(T ))} of the

R-phantom curve is bounded. This is not possible.

It is worth giving a second proof of the claim: As in the first proof f (T ) → 0, g(T ) stays bounded. On the other

hand ( f (T ), g(T )) is a parametrization of L which is a component of S R(X,Y) = 0. Now we have the representation

S R(X,Y) = eR+X ·TR(X,Y) for some eR ∈ C× and some TR(X,Y) ∈ C[X,Y] (because {S R(X,Y) = 0}∩{X = 0} = ∅).
Thus S R( f (T ), g(T )) ≡ 0 which implies that eR + f (T ) · TR( f (T ), g(T )) ≡ 0. But by f (T ) → 0 and g(T ) stays

bounded we deduce that eR = 0 which contradicts eR ∈ C
×. Thus only possibility (2) occurs. In this case

f (T ) → c ∈ C
× ∪ {∞}. If c ∈ C

× then g(T ) → c1 ∈ C (otherwise the curve R(L) = {( f −α, f βg + f −αφ( f ))}
is not bounded). This implies that L = {( f (T ), g(T ))} is a bounded curve. This is not possible. We deduce that

f (T ) → ∞ and g(T ) → 0 (otherwise the Y-coordinate of R(L), f βg + f −αφ( f ) → ∞ because deg φ(X) < α + β).
Thus f (T ) → ∞ and g(T ) → 0 in such a manner that f βg + f −αφ( f ) → d ∈ C. We deduce that the asymptotic

value of GR along L is F(0, d) and in particular, it belongs to the image of F, F(C2).

Conclusion: The R-dual mapping, GR of F maps the R-phantom curve S R(X,Y) = 0 into F(C2) and moreover

the asymptotic values of GR along the components of S R(X,Y) = 0 also belong to F(C2). In fact they belong to

{F(0,Y) | Y ∈ C}. This proves that {HR(X,Y) = 0} − GR({S R(X,Y) = 0}) ⊆ F(C2), and concludes the proof of the

surjectivity of the Keller mapping F. �
5. More on the Structure of the R-Phantom Curve and a Type of a Picard’s (Small) Theorem

Let F(U,V) be a Keller mapping which is not a C
2-automorphism. Then R0(F) � ∅. Let R(X,Y) = (X−α, XβY +

X−αΦ(X)) ∈ R0(F). We recall that α, β ∈ Z
+, β − α − 1 > 0, the gcd of all the X-powers that effectively appear

in Xα+βY + Φ(X) equals to 1, where Φ(X) ∈ C[X], degΦ < α + β. We can further assume that X−αΦ(X) ∈ C[X].

If HR(X,Y) = 0 is the R-irreducible component of A(F), then (HR ◦ F) ◦ R(X,Y) = Xβ−αS R(X,Y) (Theorem 3.1),

where S R(X,Y) ∈ C[X,Y] and S R(X,Y) = 0 is the R-phantom curve. We have G−1
R ({HR(X,Y) = 0}) = {X =

0} ∪ {S R(X,Y) = 0}, where GR = F ◦ R (off {X = 0}) is the R-dual of F. Thus we obtain by differentiations:

(
∂

∂V
(HR ◦ F)

)
◦ R(X,Y) = X−α

∂S R

∂Y
,

(
∂

∂U
(HR ◦ F)

)
◦ R(X,Y) = −X−α

α

{
(β − α)Xα+βS R(X,Y)+

+Xα+β+1 · ∂S R

∂X
− (βXα+βY − αΦ(X) + XΦ′(X)) · ∂S R

∂Y

}
.

We are interested in the intersection points of the R-phantom curve and of sing(R) = {X = 0}. Let (0,Y0) be

such a point. Then S R(0,Y0) = 0. We can represent S R(X,Y) as follows: S R(X,Y) = f (Y) + X · g(X,Y), where

f (Y) ∈ C[Y] and g(X,Y) ∈ C[X,Y]. Then S R(0,Y0) = 0 ⇒ f (Y0) = 0. By Corollary 3.2 (or Corollary 3.3)

GR(0,Y0) is a singularity of the R-irreducible component of A(F):

∂HR

∂U
(GR(0,Y0)) =

∂HR

∂V
(GR(0,Y0)) = 0.

⇒ 0 =
∂HR

∂V
(GR(0, Y0)) = lim

X→0
X−α
∂S R

∂Y
(X,Y0) = lim

X→0
X−α( f ′(Y0) + X · ∂g

∂Y
(X,Y0))
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⇒ f ′(Y0) = 0 ∧ 0 = lim
X→0

X−α+1 ∂g
∂Y

(X,Y0)

⇒ f ′(Y0) = 0 ∧ ∂g
∂Y

(X,Y0) = Xαh(X,Y0)

⇒ f ′(Y0) = 0 ∧ g(X, Y) = h3(X) + (Y − Y0)2h2(X,Y) + Xαh1(X,Y),

where degX(h3 + (Y − Y0)2h2) < α

⇒ S R(X,Y) = (Y − Y0)2[ f1(Y) + Xh2(X,Y)] + X[H3(X) + Xαh1(X, Y)],

where degX h2(X,Y), deg h3(X) < α. We denote Ψ(X,Y) = f1(Y) + Xh2(X,Y), then

S R(X,Y) = (Y − Y0)2Ψ(X,Y) + X[h3(X) + Xαh1(X,Y)], (1)

where X � |Ψ(X,Y), degX Ψ(X, Y) ≤ α, degX h3(X) < α. By computing the derivatives of S R(X,Y) (in (1)) and

substituting (X,Y) = (0,Y0) we obtain

∂S R

∂Y
(0,Y0) = 0,

∂S R

∂X
(0,Y0) = h3(0).

So far we have used the equation (∂HR/∂V)(GR(0,Y0)) = 0. We now turn to the second component of the gradient

of HR at the singular point GR(0,Y0).

0 =
∂HR

∂U
(GR(0,Y0))

= limX→0, Y→Y0

(
−X−α

α

{
(β − α)Xα+βS R(X, Y)+

+ Xα+β+1 · ∂S R

∂X
− (βXα+βY − αΦ(X) + XΦ′(X)) · ∂S R

∂Y

})

=

(
− 1

α

)
limX→0, Y→Y0

X−α
{
−(−αΦ(X) + XΦ′(X))[2(Y − Y0)Ψ(X,Y) + (Y − Y0)2 ∂Ψ

∂Y
]

}
.

We conclude that

X−α(−αΦ(X) + XΦ′(X))[2(Y − Y0)Ψ(X, Y) + (Y − Y0)2 ∂Ψ

∂Y
] ∈ C[X, Y].

Also by X−αΦ(X) ∈ C[X] we have X−α+1Φ′(X) ∈ C[X] and hence X−α(−αΦ(X) + XΦ′(X)) ∈ C[X]. Moreover

(X−αΦ(X))′ = X−α−1(−αΦ(X) + XΦ′(X)) ∈ C[X], so limX→0 X−α(−αΦ(X) + XΦ′(X)) = 0.

Let us suppose that the R-phantom curve S R(X,Y) = 0 intersects sing(R) in the set of points (0,Yj), 0 ≤ j ≤ N − 1.

Then by the above calculation we have for each 0 ≤ j ≤ N − 1:

S R(X,Y) = (Y − Yj)
2Ψ j(X,Y) + X[h3 j(X) + Xαh1 j(X, Y)].

We substitute X = 0 and obtain:

(Y − Y0)2Ψ0(0,Y) = (Y − Y1)2Ψ1(0,Y) = . . . = (Y − YN−1)2ΨN−1(0,Y).

Since Y0, . . . ,YN−1 are the total set of zeros of S R(0,Y) we obtain:

Proposition 5.1

S R(X,Y) = Ψ(X)

N−1∏
j=0

(Y − Yj)
2+ε j + X[h3(X) + Xαh1(X,Y)], (2)

Ψ(0) � 0, degΨ(X) ≤ α, ε j ∈ Z+ ∪ {0}, deg h3(X) < α.

Corollary 5.2 Either all the intersection points sing(R) ∩ {S R(X,Y) = 0} are critical points of S R(X,Y) or none is
such a critical point.
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Proof. This follows by

∀ 0 ≤ j ≤ N − 1,
∂S R

∂Y
(0,Yj) = 0,

∂S R

∂X
(0,Yj) = h3(0).

�
By Corollary 3.3 a point (X0, Y0) � sing(R) is a singular point of S R(X,Y) = 0 iff GR(X0,Y0) is a singular point

of HR(X,Y) = 0. If we substitute Equation (**) of Proposition 5.1 into the basic relation (HR ◦ F) ◦ R(X,Y) =

Xβ−αS R(X,Y) take X → 0 and remember that Ψ(0) � 0 we obtain the following estimate for X → 0 and Y fixed:

(HR ◦ F)(X−α, XβY + X−αΦ(X)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω(Xβ−α), for Y � {Y0, . . . , YN−1},
O(Xβ−α+1), for Y ∈ {Y0, . . . , YN−1}.

The R-phantom curve does not intersect sing(R) iff {Y0, . . . , YN−1} = ∅ and this is equivalent to:

lim
X→0

(HR ◦ F)(X−α, XβY + X−αΦ(X))

Xβ−α
= c ∈ C×.

This is equivalent to: {
∂β−α+1

∂Y∂Xβ−α
((HR ◦ F)(X−α, XβY + X−αΦ(X)))

}
X=0

= 0.

This is equivalent to:

∂β−α

∂Xβ−α

{(
∂(HR ◦ F)

∂V
(X−α, XβY + X−αΦ(X))

)
· Xβ
}
= X · h5(X, Y),

for some h5(X,Y) ∈ C[X, Y]. Here we think of (HR ◦ F)(U,V). Since HR ◦ F ∈ I(R) it follows that

Xβ · ∂(HR ◦ F)

∂V
(X−α, XβY + X−αΦ(X)) ∈ C[X,Y],

which is equivalent to

Xα−1 · ∂(HR ◦ F)

∂V
(X−α, XβY + X−αΦ(X)) = h6(X,Y) ∈ C[X,Y].

We proved the following:

Theorem 5.3 Let F be a Keller mapping which is not a C
2-automorphism. Let R(X,Y) = (X−α, XβY + X−αΦ(X)) ∈

R0(F). Then {S R(X,Y) = 0} ∩ sing(R) = ∅ iff

∂(HR ◦ F)

∂V
(R) =

h6(X,Y)

Xα−1
,

for some h6(X,Y) ∈ C[X,Y].

Remark 5.4 Theorem 4.1 says that the disjointness {S R(X,Y) = 0}∩ sing(R) = ∅ condition that appears in Theorem

5.3 is sufficient for the surjectivity of the Keller mapping F, i.e. for F(C2) = C
2. At this point it looks as if the

condition given in Theorem 5.3 that is equivalent to {S R(X,Y) = 0} ∩ sing(R) = ∅ is improbable to hold for all

Keller mappings. The reason is that apriori we only have:

Xβ ·
(
∂(HR ◦ F)

∂V

)
◦ R ∈ C[X,Y].

This follows immediately from HR ◦ F ∈ I(R). However according to Theorem 5.3, we would like to have:

Xα−1 ·
(
∂(HR ◦ F)

∂V

)
◦ R ∈ C[X,Y],

which is far away from what we have. However, we recall that in the beginning of this section we noticed that:

Xα ·
(
∂(HR ◦ F)

∂V

)
◦ R =

∂S R

∂Y
∈ C[X,Y].
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This looks promising. We only have a difference of 1 between α and α − 1.

Theorem 5.5 If F ∈ C[X,Y]2 satisfies det JF(X,Y) ∈ C×, then

C
2 − F(C2) ⊆

⋃
R∈R0(F)

GR(sing(R) ∩ {S R(X,Y) = 0}).

Also
C

2 − F(C2) ⊆
⋃

R∈R0(F)

sing({HR(X,Y) = 0}).

Proof. Each R ∈ R0(F) contributes the R-Picard exceptional values of F from among the GR images of the

intersection points of the two two curves sing(R) and the R-phantom curve. These give the entire set of the Picard

exceptional values of F. This proves the first equation. The second follows by Corollary 3.3 which implies that:

∀R ∈ R0(F), GR(sing(R) ∩ {S R(X,Y) = 0}) ⊆ sing({HR(X,Y) = 0}).
�

How large can the set of the Picard exceptional values of F be?

Theorem 5.6 If F ∈ C[X,Y]2 satisfies det JF(X,Y) ∈ C×, then

|C2 − F(C2)| ≤ (deg F)3 + (deg F)2 − (deg F).

Proof. Our starting point will be the result in Theorem 5.5:

C
2 − F(C2) ⊆

⋃
R∈R0(F)

GR(sing(R) ∩ {S R(X,Y) = 0}).

By the Bezout Theorem |sing(R) ∩ {S R(X,Y) = 0}| ≤ deg S R(X,Y). In fact we have by Proposition 5.1 |sing(R) ∩
{S R(X,Y) = 0}| = |{S R(0,Y) = 0}| = degY S R(0,Y). We know that G−1

R (GR(sing(R))) = sing(R) ∪ {S R(X,Y) = 0}
and we are led to consider

deg G−1
R (GR(0,Y)) − deg sing(R) = deg G−1

R (GR(0,Y)) − 1.

So that

|C2 − F(C2)| ≤
∑

R∈R0(F)

(deg G−1
R (GR(0,Y)) − 1).

It follows that

|C2 − F(C2)| ≤
∑

R∈R0(F)

(deg GR − 1).

We need to estimate deg GR. Off sing(R), we have:

GR(X,Y) = (F ◦ R)(X,Y) = F(X−α, XβY + X−αΦ(X)).

Let us take a coordinate of F, P(U,V) =
∑

i+ j≤N ai jUiV j. Then on composition with R we get

(P ◦ R)(X,Y) =
∑

i+ j≤N

ai j(X−α)i(XβY + X−αΦ(X)) j.

The degree of a generic monomial is (β + 1) j − iα, i + j ≤ N. So we are looking at max{β + 1) j − iα | i + j = N} =
(β + 1) · N. We arrive at the estimate deg GR ≤ (β + 1) · deg F and hence

|C2 − F(C2)| ≤
∑

R∈R0(F)

(deg F · ((β + 1) deg F − 1).

From this it follows that

|C2 − F(C2)| ≤ deg F · ((deg F + 1) · deg F − 1).

�
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Theorem 5.6 gives a cubic estimate (in terms of the degree of F) for the size of the set of the Picard exceptional

values of F.

Remark 5.7 The independent interest of bringing the results of this section is that we get a type of a Picard’s

(small) Theorem for polynomial étale mappings K2 → K2. This result mostly, does not require the field K to be

algebraically closed. It does assume the special form of the elements in the geometric basis of F, i.e.

R(X,Y) = (X−α, Xβ · Y + X−αΦ(X)).
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